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THE HUTCHINSON-BARNSLEY THEORY
FOR INFINITE ITERATED FUNCTION SYSTEMS

GERTRUDA GWOZDZ-LUKAWSKA AND JACEK JACHYMSKI

We show that some results of the Hutchinson-Barnsley theory for finite iterated
function systems can be carried over to the infinite case. Namely, if {Ft : i 6 N}
is a family of Matkowski's contractions on a complete metric space {X, d) such that
{FiXo)ieH is bounded for some io £ X, then there exists a non-empty bounded and
separable set K which is invariant with respect to this family, that is, K = \J F{(K).

i€N
Moreover, given a 6 NN and i 6 X, the limit lim Fai o • • • o FOn (x) exists and does
not depend on x. We also study separately the case in which (X, d) is Menger convex
or compact. Finally, we answer a question posed by Mate concerning a finite iterated
function system {F\,...,FN} with the property that each of Fi has a contractive
fixed point.

1. INTRODUCTION

Let {Fi : i e / } be a countable family of selfmaps of a complete metric space (X, d),
where either / = { 1 , . . . , TV} for some N € N, or / = N. In case in which / is finite,
Hutchinson [11] proved that if all Ft are Banach contractions, then the mapping

F(A):=\jFi(A) for ACX

has a unique fixed point K in the hyperspace of all nonempty compact subsets oiX. Sub-
sequently, this result was popularised by Barnsley [4], and therefore, in the literature,
T is usually said to be the Hutchinson-Barnsley operator, whereas K is called a fractal
in the sense of Barnsley associated with the iterated function system iterated function
system {Fi : i € I}. It is worth emphasising that two different proofs of the above result
were given in [11]. The first one—which is the most familiar—is based on an application
of the Banach Contraction Principle to operator T with a use of the Hausdorff metric
in the above hyperspace. Recently, this approach was extended to iterated multifunction
systems by Andres and Gorniewicz [3] (see also [1] and [2] for further generalisations
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involving weakly contractive mappings). The second Hutchinson's proof is more elemen-
tary and it uses neither the Hausdorff metric, nor the hyperspace (see [11, Section 3.1]).
(Yet another proof based on ordering techniques is given in [14].) Also the advantage of
this proof is that it gives another characterisation of a fractal. To see that, let us define
first

r(<7, n, x) := Fai o • • • o FOn(x) for a € 7N and x € X.

Following Mate [15], we say that a family {Ft : i € 7} has property (P) if the limit

(1) T(CT) := lim T(a,n,x)
n-Kx>

exists for all a € 7N and x € X, and does not depend on x. (In fact, Mate considered
only the case in which 7 is finite.) Then Hutchinson's argument shows that a finite family
of Banach contractions has property (P), and the fractal K associated with this family
coincides with the set F(7N), that is,

K = { lim FOl o • • • o Fan(x) : a € { 1 , . . . , N}N\ ,

where x 6 X is fixed or may vary with a. This result was partially extended by Mate [15]
in the following way. Let (p be an upper semi-continuous and non-decreasing function
from R+, the set of all non-negative reals, into R+ such that (p(t) < t for all t > 0. Let
Fi,... ,FN be ip-contractions, that is,

(2) d{FiX, FiV) ^ <p(d(x, y)) for x, y e X and i e { l , . . . , W}.

(The class of such ^-contractions was introduced by Browder [6].) If, given
a € {1,...,./V}N and x € X, the sequence (r(cr,n,i))n e > is bounded, then the fam-
ily {Ft,...,FN} has property (P).

However, in practice the latter assumption is inconvenient for verifying unless (X, d)

is bounded. Our first purpose here is to show that, in fact, it can be dropped if (p is such
that

(3) lim sup (t - <p(t)) — oo.
t—«x>

Moreover, the result is still true if we consider an infinite iterated function system as
stated in Theorem 1, in which we also give a list of equivalent conditions for the existence
of a non-empty bounded set K C X such that

(4) K = \jFi(K).

Following Hutchinson [11], every non-empty set K (not necessarily bounded) satisfying
(4) is said to be invariant with respect to {Ft : i € N}. Simple examples show that
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a family {F{ : i € N} of (^-contractions need not possess a compact invariant set (see
Example 2). Also note that the limit condition (3)—introduced in the metric fixed point
theory by Matkowski [18]—is unnecessary if (X, d) is metrically convex or compact (see
Theorems 3 and 4, respectively).

In this paper we also study the following problem (see Theorem 3) posed by Mate
[15]: Let each F{ (i = 1,...,N) have a contractive fixed point xit tha t is, X{ = FtXi

and given x € X, (F?x)neti converges to i j . Is it true that the family {Fi,..., F^} has
property (P)? We answer this question in the negative; moreover, our Example 4 inspired
us to find another sufficient condition for property (P) (see Theorem 5). That extends
the following well-known result from the theory of contractive mappings: If F: X —> X
is such that, for some p e N, Fp has a contractive fixed point x., then i , is also a
contractive fixed point of F.

2. INVARIANT SETS OF INFINITE FAMILIES OF ^-CONTRACTIONS

Throughout this section we assume that <p: R+ —• R+ is non-decreasing and such
that lim y"(t) = 0 for t > 0. Then it is easy to show that (p(t) < t for t > 0. Matkowski

n—«x>

[17, Theorem 1.2] (also see [9, page 15]) proved that each ^-contraction has a contractive
fixed point. For a detailed discussion of several classes of mappings satisfying nonlinear
contractive conditions, see [12]; in particular, Matkowski's theorem extends an earlier
result of Browder [6]. The main result of this section is the following theorem dealing
with infinite families of Matkowski's contractions.

THEOREM 1 . Let {X, d) be a complete metric space and F,: X -> X (i G N)
be (^-contractions with ip (independent of i € NJ satisfying the limit condition (3). The
following statements are equivalent:

(i) there exists an x0 € X such that (Fjio)t6N is bounded;

(ii) given x £ X, (Fix)ien is bounded;

(iii) (zOjgN is bounded, where i j is a fixed point of F^;

(iv) there exists a non-empty bounded set K C X such that

«6N

Moreover, if (i) holds, then the family {Ft : i € N} has property (P) and given x 6 X, se-
quences (P(cr, n, i ) ) n g N converge to F(CT) uniformJy with respect to a 6 NN. Furthermore,
the set K, :— F(NN) satisfies the following conditions:

(a) K. is bounded and K. = (J Fi(K.);

(b) ifKCX is bounded and K = \J F^K), then K C K,, that is, K. is the
ieN

greatest (with respect to the inclusion C) Gxed point of the Hutchinson-

Barnsley operator T in the hyperspace of all bounded subsets of X.
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The proof of Theorem 1 will be preceded by the series of auxiliary results.

LEMMA 1 . Let (X, d) be a metric space and F,r. X -> X fi € Nj be Lipschitzian
with the Lipschitz constant Li such that L := supLj < oo. Assume that each Fi has a

fixed point x, (not necessarily unique). Consider (i), (ii) and (iii) of Theorem 1. Then

PROOF: (i)=>(ii): Given x € X, we have

d(F{x, FjXo) ^ L d(x,x0) for all i e N.

Set A := {F{x0 : i € N} and r := Ld(x,x0)- Then

Since .4 is bounded, so is AT and hence (ii) holds.

(ii) implies (i) a fortiori. (iii)=>(ii): Given x € X,

By (iii), r := L sup {d{x,Xi) : i e N} < oo, so {^x : i 6 N} C {i{ : i 6 N}r which yields
(ii). D

LEMMA 2 . Let (X, d) be a metric space. Assume that F<: X -> X (i 6 NJ are
continuous and each of them has a contractive fixed point x,. Consider (iii) and (iv) of
Theorem 1. Then (iv)=>(iii).

PROOF: (iv) implies that given i 6 N , Fi(K) C Jf. Hence and by continuity, we get

F{(K) CFjK) CK.

Let x € K. By hypothesis, i^ni -» z* as n —̂  oo. Since F?x € A', we infer xt € A".
Since, by (iv), also K is bounded, so is {xi : i 6 N}. D

Let s: NN -4 NN be the shift operator, that is,

s(<Ti,...,crn,...) :=(<72,...,<rn+i,...) f ° r ^ € NN.

PROPOSITION 1 . Let (X,d) be a metric space. Assume that F{: X -> X

(i G N) are continuous and such that {Fi : i 6 N} has property (P). Let E C NN be such
that E ^ 0, s(£) C E and s '^E) C E. Then the set T(E) is invariant with respect to
{Fi-.ie N}.

P R O O F : Set K := T(E). Clearly, A" is non-empty. If i 6 K, then

x = r ( a ) = lim Fax o • • • o Fffn (x) for some a 6 E.
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By property (P), there exists the limit

y := lim Fa2 o • • • o Fatl{x) = r(s(a)).
n—*oo

Then, by continuity of Fai, we have x = Fai(y). Since s(E) C E, we infer y G K and

thus x 6 F a i ( i f ) . This yields the inclusion: K C \J F{(K). Conversely, if x G Fi(K) for
i6N

some i G N, then there is a y € K such that i = Fi(y) and y = F(CT) for some a G E.

Then, by continuity of F,, we get

x = lim ^ o Fffl o • • • o Fffn(y) = I V ) ,
n—*oo

where a' := (i, CTI, - • • ,<?„,...). Since a' G s - 1 ( £ ) <= £> w e mfer x € K. D

EXAMPLE 1. Fix a a* € NN and set

Eff- := {a € N : 3jjeN Vn6N ai+n — o*+n).

Then Eff- is the least element of the family

{E C NN : a' € E, s(E) C E and s~l{E) C E } .

LEMMA 3 . Under the assumptions of Theorem 1, if (i) holds, then, given

sup | d (x , Fu o • • • o Fin(x)) : n € N, iu ..., in e NJ < oo,

that is, the semigroup generated by mappings Fi is pointwise bounded on X.

P R O O F : Let x e X. Given n G N, set

an := sup {d(x,Fh o • • • o Fi n(x)) : iu ... ,in G

Then ai = sup {d(x, FJX) : i 6 N}. Since all Ft are, in particular, non-expansive,
Lemma 1 yields ai is finite. By (3), there is an M > 0 such that M - <p(M) ̂  a i . Using
induction we show that an ^ M for all n G N. Clearly, ai ^ M. Let n G N be such that
an < M. Then, given i i , . . . , in+x G N,

Fi n + 1 ( i ) ) ^ d(x, Fux) + <p(d{x, Fi2 o • • • o Fin+1 ( i))

aj + v(Af) ^ M,

since F*, is a (^-contraction, </? is non-decreasing and <i(x, Fj2 o • • • o Fjn+1 (x)) ^ an. Since
t i , . . . , i n + i were arbitrary, we infer an + 1 ^ M. Thus, by induction, (a n ) n 6 N is bounded
which completes the proof. D

PROOF OF THEOREM 1: Assume that (i) holds. We show {F{ : i G N} has property
(P). Let a G NN and x G X. By Lemma 3, the constant

(5) M:=sup{d(x,Filo---oFin(x)) : n G N, i, J,,€N}
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is finite. Hence, given j , k e N, we have

d(Fai o • • • o Fa.(x),Fai o • • • o Fa.+k(x)) < <pi(d{x,Faj+l o • • • o Fff.+t(x)))

since FC T l , . . . , Faj are (^-contractions and <p is non-decreasing. Since ip>(M) -4 0 as
j -¥ oo, given e > 0, there is an I > 0 such that ipi(M) < e for all j ^ Z. Hence and by
(6), we infer

(7) d(T{a,j,x), T(a,j + k,x)) < e for all j > I and A; € N

which means (F(a, n, x) ) n g N is a Cauchy sequence, so it converges to some y € X. We
show the limit does not depend on x. Given x' € X,

d(r(a,n,x),F(<7,n,x')) ^ yn(d(x,x')) -> 0 as n->oo.

Thus we may set T(a) := lim Ffa, n, x). Letting fc -4 oo in (7), we obtain
n-K»

d(r(a,j,x),r(cr))^£ for all j ^ / .

Note that I does not depend on a which means (r((7, n, x)) converges to F(a) uniformly
with respect to a € NN. In particular, {Fj : i € N} has property (P).

Now, since all Ft are continuous, Proposition 1 yields K, is invariant with respect
to {Fi : i S N}. Moreover, if x e X and M is denned by (5), then given a e NN,

d(x, F,,, o • • • o F ^ x ) ) < M for all n € N.

Letting n —> oo, we get d(x, T(cr)) ^ M which yields the boundedness of K, since M
does not depend on a. Thus /f» satisfies (a); in particular, the above argument shows
that (i)=»-(iv) holds. Hence and by Lemmas 1 and 2, we infer (i), (ii), (iii) and (iv) are
equivalent.

Finally, we prove (b). Assume that K is a non-empty bounded subset of X and
K = U Fi{K). Let x G K. Then there are aY € N and xi € K such that x = F^xx.

Similarly, Xi = Fff,X2 for some a2 6 N and x2 € if. Continuing in this fashion, we get
sequences a € NN and (xn)neN such that xn € K and x = Fffl o • • • o FCTn (xn) for all n € N.
Seti/n :=F(a ,n ,x ) . Then

<*(*, Vn) = d(Fai o • • • o FOn (xn), Fn o • • • o Fan (x)) ^ ^ ( d ( x , xn))

< ^"(diam /f) -¥ 0 as n -+ oo.

Hence yn -»• x, that is, x = F(CT) which means x e Kt. This yields K C.K,. D

Theorem 1 implies the following somewhat surprising property of the Hutchinson-

Barnsley operator T.
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COROLLARY 1 . Let Wt,(X) denote the hyperspace of all non-empty bounded
subsets of X. Under the assumptions of Theorem 1, consider the operator

T(A):=\jFi{A)forACX.

The following statements are equivalent:

(i) T has a fixed point in Hb{X);

(ii) T maps Hb(X) into Ub{X).

P R O O F : (i)=>(ii): By Theorem 1 ((iv)=>(iii)), (xi)ieti is bounded. Set B := {x{ : i
€ N}. Let A e %b{X) and x € A. Given i e N, we have

FiXi) < <p(d(x,xt)) < <p(r),

where r := diam (AuB). Clearly, r is finite and Ftx € B^(r> which yields F(A) C B^rl
Thus T(A) is bounded.

(ii)=>-(i) follows immediately from Theorem 1 since (ii) implies that (i^x)j€N is
bounded whenever x £ X. D

The following example shows that an infinite iterated function system need not have
a compact invariant set even if (X, d) is compact. Moreover, a bounded invariant set
need not be unique.

EXAMPLE 2. Let X := [0,1] and Ftx := x/2 + 1/2" for i € N and x € X. Suppose,

on the contrary, there exists a non-empty compact set K C X such that K = \J Fi(K).
ten

Then Fi(K) C K, so by the Contraction Principle, Fi has a fixed point in K which means
K D {1/2'"1 : i € N}. Hence 0 € K since K is closed. However,

(J Fi(K) C (J Ft(X) = lJ[l/2', 1/T + 1/2] = (0,1],
t€N «€N i6N

so 0 ^ U Fi(K) which yields a contradiction. On the other hand, by Theorem 1, the

above family has bounded invariant sets as, for example, (0,1] (= T(NN)) or (0,1] (1Q.

Though F(NN) need not be compact, it is always separable as shown below.

LEMMA 4 . Endow N with the discrete topology, and the product NN with the
Tychonoff topology TT- Under the assumptions of Theorem 1, if (i) holds, then F is
continuous from (NN,rT) into {X,d).

PROOF: Let a 6 NN and e > 0. By Theorem 1, K.(= T(NN)) is bounded and
invariant. Let i € K.. There is a p € N such that ^ ( d i a m K.) < e. Set
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Then U is a neighbourhood of a. If a' € U and n € N, then

d{T{a,p + n,x), I V , p + n, z))

, , o • • • o Fap o • • • o FOp+n(x), Faio...oFapo F^+i o • • • o Fff-+n (*))

o • • • o Fap+n(x), o • • • o

e,

because a,' = <7< for i = 1, . . . ,p; moreover, since x is in K., so are FCTj>+1 o • • • o Fff|>+B(i)
and Fa' : o • • • o FCT<+n(a;). Letting n —> oo, we obtain

which yields the continuity of F. D

COROLLARY 2 . Under the assumptions of Theorem 1, if (i) holds, then the set
F(NN) is bounded, separable and invariant with respect to {Ft : i € N}.

P R O O F : In virtue of Theorem 1, we only need to show F(NN) is separable. This
follows immediately from Lemma 4 and [8, 1.4.11 and 2.3.16] since F is continuous and
(NN,r:r) is separable. D

As a consequence of Theorem 1, we get the following extension of [15, Theorem 2]
by omitting the assumption of boundedness of (F(a, n, z))n6N-

THEOREM 2 . Let (X, d) be a complete metric space and N e N. Let Fi,...,FN

be ip-contractions on X with ip satisfying (3). Then {Ft,..., FN} has property (P), and
the set F ( { 1 , . . . , iV}N) is compact and invariant with respect to this family.

PROOF: Set F< := Fj for i > N. Then (Ft)i€y satisfies the assumptions of The-
orem 1 including (i), so it has property (P). In particular, F(cr) is well defined for all
a e {1 , . . •, N}K which means {F i , . . . , FN] has property (P). Moreover, if a € NN and
we define

a\ := Oi if Oi 6 { 1 , . . . , N}; a\ := 1 otherwise,

then it follows from the definition of (F,)J6N that F(CT) = F(CT'). Consequently,
K. = F(NN) = F({1 , . . . , N}N). Since, by Tychonoff's theorem, { 1 , . . . , JV}N is a com-
pact subset of NN and, by Lemma 4, F is continuous, we infer K* is compact. Also, by

Theorem 1, K. = (J Ft{K») which yields K, = (J Ft(K,). U

The following theorem illuminates connections between invariant sets of an infi-
nite iterated function system {Fj : i G N} and invariant sets of its finite subfamilies
{ F , , . . . , F n } ( n e N ) .

PROPOSITION 2 . Let the assumptions of Theorem 1 be satisfied including con-

dition (i). For n € N, let Kn(= F ( { 1 , . . . , n}N) J be a compact invariant set with respect

to {F i , . . . , F n } . Then t ie set K := \J Kn is bounded and invariant with respect to

{Ft : i € N}. n 6 N
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P R O O F : Set

En := { l , . . . , n } N for all n € N,

and E := (J En. Then

n€N n€N

so K C T(NN). Since, by Theorem 1, T(NN) is bounded, so is K. In virtue of Proposition 1
it suffices to show that s(E) C E and s-1(E) C E. Clearly, s(En) C En for n e N which
yields s(E) C E. Now assume a € s- 1(E), that is, s(a) € En for some n € N. If CTJ ̂  n,
then a e En; otherwise, a € ECTl. Thus in both cases we have a € S. That means
s-^E) C £. D

Now we discuss a question whether condition (i) of Theorem 1 is necessary for
property (P). Also one may ask if the assumption that all F* are (^-contractions with
<p independent of i is essential. It turns out that for some families of mappings both
conditions are also necessary for property (P) as shown in the following
EXAMPLE 3. Let X ~ R be endowed with the Euclidean metric. Let on € R \ {0} and
A € R (i 6 N). Set

Ftx := eta + ^ for x € X and i G N.

We show that {Ft : i e N } has property (P) if and only if

a := sup {|a,| : i € N} < 1 and P := sup {|ft| : i € N} < oo,

that is, Fi are Banach a-contractions satisfying (i) of Theorem 1. The sufficiency part
follows of course from Theorem 1. So assume {F, : i 6 N } has property (P). Suppose, on
the contrary, a ^ 1. Then, given n € N, 2"/(2n + 1) < a, so there is a an E N such that

It is easy to verify that

(8) Faio-- -oFan(x) = aOl •... • aOnx
3=2

n

Denote o» := affI • . . . • affn, 6n := /3ai + £ affl • . . . • aaj_lP<rj. By property (P), Fai o • • • o

Fffn(0) -¥ F(a), that is, 6n -> T(CT), and Fffl o- • -oFan(l) -> T(a), that is, an+bn -+ F{a).
n

Hence an -¥ 0. On the other hand, \an\ ^ Fl2*/(1 + 2*) which yields a contradiction

since f] 2 * / ( 1 + 2*) 7^ 0. Thus a < 1. Now suppose, on the contrary, P = oo. By

induction we define a sequence (an)n€N- Set O\ := 1. For n ^ 2, take an such that
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oo

Then the series £ aOl • ... • aOn_lp0n diverges. On the other hand, Fai o • • • o ^ ( 0 )
n=2

—> T{a) which, by (8), implies the convergence of the above series; a contradiction. Thus
P is finite.
REMARK 1. Note that the assumption that F{ of Example 3 are not constant functions
is essential. Indeed, any family of constant functions does have property (P) though it
need not satisfy (i) of Theorem 1. So, in general, condition (i) is not necessary for (P).

3. INVARIANT SETS IN M E N G E R CONVEX SPACES AND COMPACT SPACES

Recall that (X, d) is said to be metrically convex or Menger convex (see, for example,
[5]) if given i , y € X, x ^ y, there is a z € X such that x ^ z ^ y and d(x,y)
— d(x, z) + d(z, y). In this case, with the help of Matkowski's [19] result, the assumptions
of Theorem 1 may be weakened in the following way.

THEOREM 3 . Let (X, d) be a complete metrically convex space and F,;: X —> X
(i € NJ be (^-contractions, where ip: R+ —¥ K+ is such that (f(t) < t for t > 0. Then the
assertion of Theorem 1 holds.

P R O O F : By hypothesis, we have

d(F{x, FiV) < <p(d(x, y)) for x, y € X and i € N.

Without loss of generality, we may assume <p(0) = 0. Then (p is continuous at 0, so
by [19, Proposition 3], there is an increasing concave function 7: R+ —• E + such that
7(t) < t for t > 0 and

d(F{x, F{y) ^ 7(d(z,y)) for x,y € X and i € N.

Then 7 is continuous and lim 7n(t) = 0 (see, for example, [6]). Moreover, by [10,
n—*oo

Theorem 7.2.5], 7 is subadditive. Using [10, Theorem 7.6.1] we infer

which yields lim (t — j{t)) = oo. Thus we may apply Theorem 1 substituting there 7
t—>OO pi

f o r <p. LJ
In the same way we could restate Theorem 2 for finite iterated function system.

Moreover, in case in which (X, d) is compact, we need not use a function <p at all letting
Fi be Edelstein's [7] contractions, according to the following

THEOREM 4 . Let (X,d) be a compact metric space, N € N and Fi. X -> X

(ie {\,...,N}) be such that

d(Fii, Fiy) < d(x, y) for all x, y € X, x ^ y.

Then {Fi,...,Fyv} Aas property (P), and there exists a compact and invariant set with

respect to this family.
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P R O O F : By [13, Proposition 1], given i e {l,...,N}, there is a subadditive and
non-decreasing function ^ : R+ -> R+ such that tpi(t) < t for all t > 0 and

d(FiX,Fiy) ^ <pi(d(x,y)) for x,y € X.

Set < (̂i) := max {<pi(t),..., <px(t)} for t € R+. Clearly, the above properties of <pi carry
over to if. Thus repeating the argument of the preceding proof, we infer lim (t — </?(£))
= oo. Now the assertion follows directly from Theorem 2. D

REMARK 2. Though the assumptions of Theorem 3 on function ip are essentially weaker
than those of Theorem 1, both theorems deal, in fact, with the same class of mappings
as can be deduced from the proof of Theorem 3. The same comment concerns relations
between Theorems 2 and 4.

4. AROUND M A T E ' S QUESTION

Example 4 given below settles in the negative a question posed by Mate [15]. Fol-
lowing [15], we say that a mapping F: X -» X has property (Q) if, for every x £ X,
there exists the limit lim Fnx and does not depend on x.

EXAMPLE 4. Let X :— [0,1] be endowed with the Euclidean metric. Set

Fx := x + 1/2 if i € [0,1/2); Fx := 1 if x 6 [1/2,1],
Gx := 0 if x e [0,1/2); Gx := x - 1/2 if x E [1/2,1].

Clearly, F and G are continuous selfmaps of X. Since F2 and G2 are constant (F2 = 1,
G2 = 0), we infer F and G have property (Q). We show, however, {F, G} has no property
(P). Moreover, sequences (r(cr, n, i ) ) N need not converge. To see it, set

02j-i := 1 and CT2J := 2 for j € N.

Then, given x € X, T(a, 2n,x) = (F o G)n(x) = F o G(x), because

F o G(x) = 1/2 if i 6 [0,1/2); F o G(x) = x if x £ [1/2,1],

so F o G is an involution. On the other hand,

T(a,2n + l,x) = Fo (GoF)n(x) = FoGoF{x)

since G o F(z) = x if a: € [0,1/2); G o F{x) = 1/2 if x € [1/2,1]. Hence we get

r(a, In + 1, x) = x + 1/2 if x € [0,1/2); T(a, 2n + 1, x) = 1 if x € [1/2,1].

Thus we may conclude that (T(a, n, x))n6N is convergent if and only if x = 0 or x = 1.

So (P) is not valid for the family {F, G} though (Q) holds for each of these mappings.
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Observe that the essence of Example 4 lies in the fact that F2 and G2 are Banach
contractions whereas F oG and Go F are not contractive. Indeed, if both these compo-
sitions had been Banach contractions, then (P) would have been valid for {F,G}. That
can be deduced from the following more general result (mentioned by Mate [16] only for
families of affine selfmaps of Rn): If F\,..., Fft are selfmaps of a complete metric space
(X, d) such that for some p G N all mappings from the family

(9) dp ••= {Ft, o • • • o Fip : iu ..., ip e { 1 , . . . , N}}

are Banach contractions, then {Fi,..., FN} has property (P). Note that, by the Hutchin-
son [11] theorem, the above assumption implies (P) is valid for 5P. It turns out that the
latter condition is also sufficient for property (P) of { F j , . . . , FN}, according to the fol-
lowing

THEOREM 5 . Let (X, d) be a metric space (not necessarily complete), JVgN and
Fi,..., FN be selfmaps of X. If, for some p € N, 5p defined by (9) has property (P),
then so does {Flt..., FN). Moreover, T ({1 , . . . , N}N) = r p ( { l , . . . , NP}N), where Tp is
defined below by (10).

PROOF: Clearly, #p is finite. Denote its elements by Gj, i € {l,...,Np}. Given
a e {1,. •., iVp}N, n € N and x 6 X, set

(10) r p (<y,n , i ) :=G. 1 o . . -o (?,.(*).

Now let a 6 { 1 , . . . , 7V}N and x 6 X. Then, for each n e N,

r(a,pn, i ) = ( F , , o - o F J p ) o . . . o ( ^ , - , ) + . ° ' " ' ° F°J(x)

where a' € { 1 , . . . , 7VP}N is such that G^. = Fapii_l)+1 o • • • o FOpi for i € N. Hence we get
T(a,pn, x) = rp(a',n,x). Since (P) is valid for 5p> we infer

lim T(cr,pn,x) = Tp(a').
n—*oo

Since this limit does not depend on x, we may conclude substituting successively
Fix,..., FNx for x that

(11) V£ > 03*GN V n ^ Vi6{i,...iVV} d(T(a,pn,Fjx),rp(a')) < e.

Fix an e > 0. By (11), there is a A; € N such that if n ^ k, then the inequality of (11)
holds for all j € { 1 , . . . , N}; in particular, for j := ffpn+i, we have

e.

Since T{o,pn, Fapn+1x) = T{a,pn + l,x), the above argument shows

lim T{a,pn +1, x) = Tp(o').
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Continuing in this fashion, we obtain

lim T{a,pn + k,x)= TJa') for all k € { 0 , 1 , . . . ,p - 1}
n—*oo

which yields lim T(cr, n,x) = FP(CT'). That means {F\,..., FN\ has property (P). More-
n-foo

over, the above argument shows

Since the opposite inclusion is obvious, the proof is completed. D

REMARK 3. Since property (P) of singleton {F} is equivalent to property (Q) of F,
Theorem 5 yields the result stated in the last sentence of the introduction.

As an immediate consequence of Theorems 2 and 5, we obtain the following
COROLLARY 3 . Let (X, d) be a complete metric space and N € N. Let

F\,..., Ftf be selfmaps of X (not necessarily continuous) such that, for some p € N,
all compositions Ftl o • • • o Fip (iit..., ip € { 1 , . . . , N}) are ip-contractions with tp as

in Theorem 2. Then {Fi,. ..,FN} has property (P), and there exists a compact and

invariant set with respect to this family.

To illuminate the assumptions of Corollary 3, consider the following

EXAMPLE 5. Let X := R be endowed with the Euclidean metric. Let a be any irrational

number, and D denote the Dirichlet function. Set

Fi := D and F2 := D + a.

It is easily seen that the assumptions of Corollary 3 are satisfied with p = 2 since all
compositions Ft o Fj (i,j € {1,2}) are constant. On the other hand, Theorem 2 is not
applicable here since Fx and F2 are discontinuous. So Corollary 3 does extend Theorem 2.
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