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Abstract

In this paper we analyze different forms of fractional relaxation equations of order
ν ∈ (0, 1), and we derive their solutions in both analytical and probabilistic forms. In
particular, we show that these solutions can be expressed as random boundary crossing
probabilities of various types of stochastic process, which are all related to the Brownian
motion B. In the special case ν = 1

2 , the fractional relaxation is shown to coincide
with Pr{sup0≤s≤t B(s) < U} for an exponential boundary U . When we generalize the
distributions of the random boundary, passing from the exponential to the gamma density,
we obtain more and more complicated fractional equations.
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1. Introduction

The differential equation

d

dt
p(t) = −λp(t), t ≥ 0, (1.1)

is known in the physics literature as the relaxation equation. The solution to (1.1), with
initial condition p(0) = 1, is clearly equal to p(t) = e−λt . Since the end of the 1990s
intensive research has focused on the application of fractional calculus to mathematical physics:
many classical equations have been modified by substituting the integer-order derivatives with
fractional derivatives. Equation (1.1) has been extended in the following fractional sense:

dν

dtν
ψ(t) = −λψ(t), t ≥ 0. (1.2)

Here ν ∈ (0, 1) and dν/dtν represents the fractional derivative according to the Caputo
definition, i.e.

dν

dtν
u(t) =

⎧⎪⎪⎨⎪⎪⎩
1

�(m− ν)

∫ t

0

1

(t − s)1+ν−m
dm

dsm
u(s) ds for m− 1 < ν < m,

dm

dtm
u(t) for ν = m,
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480 L. BEGHIN

with m = �α� + 1. Obviously, for ν = 1, the fractional relaxation equation (1.2) coincides
with the standard equation (1.1).

Equation (1.2) has been studied in, e.g. [16] and [19], and its solution was given analytically
in terms of the Mittag-Leffler function as

ψν(t) = Eν,1(−λtν), (1.3)

where

Eα,β(z) =
∞∑
r=0

zr

�(αr + β)
, α, β ∈ C, Re(α),Re(β) > 0.

The analysis of the fractional relaxation equation is primarily physically motivated, e.g. to study
the electromagnetic properties of a wide range of materials (which display a long-memory,
instead of exponential, decay—see [30] and [31]) as well as the rheological models for the
description of some viscoelastic materials (see [10], [21], [22], and [29]).

Moreover, the so-called Mittag-Leffler distribution has often been applied to statistics (see,
e.g. [15] and [26]) or to queueing theory [28].

The solutionψν(t), t ≥ 0, can actually be expressed in probabilistic terms in two interesting
forms, which we will present and explore here. The first form represents the probability of
no events up to time t (or survival probability) for the so-called fractional Poisson process
Nν(t), t ≥ 0 (see, amongst others, [2], [4], [14], [18], and [32]). Indeed, the equality

ψν(t) = pν0(t) = Pr{Nν(t) = 0} (1.4)

holds and, thus, we can apply the results obtained in the above-cited articles to ψν(t). For
example, we will resort to the equality of the one-dimensional distribution between Nν and
a composition of the standard Poisson process N(t) with a random time process Tν(t),
i.e. N(Tν(t)), t ≥ 0. Thus, thanks to (1.4), we can write

ψν(t) =
∫ ∞

0
e−λyqν(y, t) dy = Pr{Tν(t) < U}, (1.5)

where qν(y, t) is the density of Tν (which is itself a solution to a fractional diffusion equation)
and U is an exponential random variable with parameter λ > 0. Equation (1.5) is particularly
interesting in the special case where ν = 1

2 , since it becomes

ψ1/2(t) =
∫ ∞

0
e−λy e−y2/4t

√
πt

dy = Pr{|B(t)| < U}, (1.6)

where B is a Brownian motion starting from 0 and with variance 2t .
As a consequence, a second probabilistic interpretation of the solution to the fractional

relaxation equation (1.2) can be given in terms of the crossing probability of a random boundary
by a standard Brownian motion, for ν = 1

2 . Indeed, it is well known that the relationship

Pr{|B(t)| < z} = Pr
{

sup
0≤s≤t

B(s) < z
}

= Pr{B(s) < z for all s ∈ (0, t)}

holds, where the expression on the right-hand side is commonly referred to as the crossing
probability. For other values of ν, e.g. ν = 1

3 , a related result holds, as we will see in the next
section.
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Moreover, (1.5) shows that the solution to (1.2) can be expressed as a standard relaxation
with random time represented by Tν , i.e. as ψ(Tν(t)). The results given in [20] also allow us
to express the solution as a time-changed relaxation via an inverse stable subordinator E(t),
i.e. as ψν(t) = ψ(E(t)). In fact, ψ(Tν(t)) and ψ(E(t)) share one-dimensional distributions
and, therefore, the two approaches can be considered equivalent.

In the successive sections we analyze some extensions of result (1.5) in the following
directions.

• We consider other random time processes in place of Tν and, therefore, in (1.6) instead
of Brownian motion: for example, the sojourn time of a Brownian motion on the positive
half-line, the first passage time of a Brownian motion through a certain level, and the
elastic Brownian motion (by analogy with the analysis carried out for the fractional
Poisson process in [5]).

• We consider a different random variable (i.e. the gamma) instead of U in (1.6).

• We introduce in (1.2) the assumption of a distributed fractional derivative (see [1]
and [19]).

2. Fractional relaxation equation of order ν

A first probabilistic expression of the solution ψν(t), t ≥ 0, to (1.2) can be found by
considering that the latter coincides with the fractional equation satisfied by the survival
probability (i.e. the probability of no events up to time t) of a fractional Poisson process of
order ν ∈ (0, 1). Let Nν(t), t ≥ 0, denote the process with probabilities pνk (t) solving the
recursive differential equation

dνpνk
dtν

= −λ(pνk − pνk−1), k ≥ 0, t ≥ 0, (2.1)

with initial conditions

pνk (0) =
{

1, k = 0,

0, k ≥ 1,

and pν−1(t) = 0. The process Nν has been studied in a series of papers (see, e.g. [2], [14],
and [18] for the homogeneous case, and [32] for the nonhomogeneous case) and its distribution
has been expressed in analytic forms in terms of derivatives of the Mittag-Leffler function or
as generalized Mittag-Leffler (GML) functions

E
γ
α,β(z) =

∞∑
j=0

(γ )j z
j

j !�(αj + β)
, α, β, γ ∈ C, Re(α),Re(β),Re(γ ) > 0, (2.2)

where (γ )j = γ (γ + 1) · · · (γ + j − 1) for j = 1, 2, . . . and γ 	= 0, and (γ )0 = 1 (see [4]).
Moreover, in [2] a probabilistic expression for the process was given as the composition of a
standard Poisson processN with a random time argument Tν , independent ofN . The following
equality for one-dimensional distributions was proved to hold in [2]:

Nν(t)
d= N(Tν(t)). (2.3)
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Here Tν(t) possesses the transition density qν(y, t) coinciding with the folded solution to the
fractional diffusion equation

∂2νv

∂t2ν
= ∂2v

∂y2 , t ≥ 0, y ∈ R; v(y, 0) = δ(y), vt (y, 0) = 0, (2.4)

i.e. with

qν(y, t) =
{

2v(y, t), y ≥ 0,

0, y < 0.
(2.5)

It should be noted that, since the process Nν is non-Markovian, identity (2.3) does not extend
to finite-dimensional distributions of order larger than 1.

Alternatively, it was also proved in [20] and [25] that qν(y, t) solves the equation

∂νq

∂tν
= −∂q

∂y
, t ≥ 0; q(y, 0) = δ(y), (2.6)

where, in this case, y ≥ 0. In any case we can write

pνk (t) = Pr{Nν(t) = k} = λk

k!
∫ +∞

0
yke−λyqν(y, t) dy,

so that we immediately have, in view of (2.1) for k = 0,

ψν(t) = pν0(t) = Pr{Nν(t) = 0} =
∫ +∞

0
e−λyqν(y, t) dy. (2.7)

Therefore, in view of (2.3), the fractional relaxation ψν can be expressed as the composition of
the standard relaxation with the random time Tν :

ψν(t) = ψ(Tν(t)), t ≥ 0.

2.1. Exponential boundary crossing probabilities of Brownian motion

Owing to (2.7), we give a second probabilistic form of the solution to (1.2) in terms of
boundary crossing probabilities in the following result.

Theorem 2.1. LetU be a random boundary, exponentially distributed (with parameter λ > 0).
Then the crossing probability of U by the independent random process Tν(t) with transition
density qν(y, t), i.e.

ψν(t) = Pr{Tν(t) < U}, (2.8)

satisfies the fractional relaxation equation (1.2), with initial condition ψν(0) = 1.

Proof. We consider the analytic expression of the folded solution qν(y, t) to problem (2.4)
in terms of the Wright function

Wα,β(x) =
∞∑
j=0

xj

j !�(αj + β)
, α ≥ −1, β > 0, x ∈ R,

which reads

qν(y, t) = 2v(y, t) = 1

tν
W−ν,1−ν

(
− y

tν

)
, y, t ≥ 0
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(see, e.g. [16]). Therefore, we can rewrite (2.8) as

ψν(t) = Pr{Tν(t) < U}
= λ

∫ ∞

0
e−λy Pr{Tν(t) < y} dy

= λ

tν

∫ ∞

0
e−λy

∫ y

0
W−ν,1−ν

(
− z

tν

)
dz dy

= 1

tν

∫ ∞

0
e−λzW−ν,1−ν

(
− z

tν

)
dz

= Eν,1(−λtν), (2.9)

by the well-known formula for the Laplace transform of the Wright function (see [27, Equa-
tion (1.165), p. 39]). The last expression in (2.9) coincides with the solution to (1.2) given
in (1.3).

The previous results can be particularly relevant in the special case where ν = 1
2 , since the

random process Tν reduces to a reflecting Brownian motion; indeed, in this case the equation
governing the process, (2.4), coincides with the heat equation and q1/2(y, t) becomes the
Gaussian with variance 2t , folded with respect to the origin. Therefore, the fractional relaxation
equation of order 1

2 is solved by

ψ1/2(t) = 1√
πt

∫ +∞

0
e−λye−y2/4tdy = Pr{|B(t)| < U} = Pr

{
sup

0≤s≤t
B(s) < U

}
. (2.10)

The previous expression can be checked directly by applying (1.3):

ψ1/2(t) = E1/2,1(−λ
√
t)

=
∞∑
j=0

(−2λ
√
t)j�(j/2 + 1/2)

�(j + 1)
√
π

(by the duplication property of the gamma function)

= 1√
π

∫ ∞

0
e−zz−1/2

∞∑
j=0

(−2λ
√
zt)j

j ! dz

= 1√
π

∫ ∞

0
e−zz−1/2e−2λ

√
zt dz, (2.11)

which gives (2.10) after a change of variable.
Also, for ν = 1/2n, n ≥ 1, the solution can be expressed in terms of the boundary

crossing probability of known processes. Indeed, the random process Tν coincides in this
case with the (n − 1)-times iterated reflecting Brownian motion defined as In−1(t) =
|B1(|B2(. . . (|Bn(t)|) . . .)|)|, where the Bj (t) are independent Brownian motions with variance
2t for any j . The transition density q1/2n(y, t) of In−1 is given by

q1/2n(y, t) =
∫ +∞

0
· · ·

∫ +∞

0

e−y2/4s1
√
πs1

e−s2
1/4s2√
πs2

· · · e−s2
n−1/4t√
πt

ds1 · · · dsn−1, y, t ≥ 0,

which coincides with the folded solution to the following fractional diffusion equation:

∂1/2nq

∂t1/2
n = ∂2q

∂y2 , y ∈ R, t ≥ 0; q(y, 0) = δ(y)
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(see [23] for n = 1 and [24] for n > 1). Therefore, in this case, the solution to the fractional
relaxation equation can be expressed in terms of the exponential boundary crossing probability
of an iterated Brownian motion, i.e.

ψ1/2n(t) = ψ(In−1(t)) =
∫ +∞

0
e−λyq1/2n(y, t) dy = Pr{In−1(t) < U}.

For other rational values of the fractional order ν, such as, e.g. ν = 1
3 , the solution can still

be represented as the boundary crossing probability, but of less known processes.
For ν = 1

3 , the random process Tν in (2.8) reduces to the process A(t), whose transition
function is given by

q1/3(y, t) = 3

√
32

t
Ai

(
y

3
√

3t

)
, y, t ≥ 0, (2.12)

where

Ai(w) = 1

π

∫ ∞

0
cos

(
aw + α3

3

)
dα, w ∈ R, (2.13)

is the Airy function (see [24]). By exploiting the relationship between (2.13) and the modified
Bessel function

Iν(w) =
∞∑
k=0

(w/2)2k+ν

k!�(k + ν + 1)
, w ∈ R,

i.e.

Ai(w) =
√
w

3

[
I−1/3

(
2
√
w3

3

)
− I1/3

(
2
√
w3

3

)]
, w > 0,

we can rewrite the transition density (2.12) of the process A(t), t ≥ 0, as

q1/3(y, t) =
√
y

3t

[
I−1/3

(
2

√
y

33t

)
− I1/3

(
2

√
y

33t

)]
, y, t ≥ 0.

Therefore, in this case, the fractional relaxation can be written as

ψ1/3(t) = ψ(A(t)) =
∫ +∞

0
e−λyq1/3(y, t) dy = Pr{A(t) < U}.

For the process A(t), the following relationship between the crossing probability and the
maximum distribution has been proved in [6, Equation (1.16)]:

Pr
{

sup
0≤s≤t

A(t) < u
}

= Pr{A(t) < u} − Pr{A(t) > u} +K(t);

here

K(t) = 1

�(2/3)

∫ t

0

1
3
√
t − s

∂

∂u
q1/3(u, s) ds.

It is worth comparing the asymptotic behavior of the different crossing probabilities intro-
duced so far. By using the well-known integral representation of the Mittag-Leffler function
(see [1] or [2] for c = 1),

Eν,β(−ctν) = t1−β

π

∫ +∞

0
rν−βe−rt r

ν sin(βπ)+ c sin((β − ν)π)

r2ν + 2rνc cos(νπ)+ c2 dr, (2.14)

https://doi.org/10.1239/aap/1339878721 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1339878721


Fractional relaxation equations and Brownian crossing probabilities 485

we obtain the following asymptotic behavior of the solution ψν :

ψν(t) 


⎧⎪⎪⎨⎪⎪⎩
1 − λtν

�(1 + ν)
, 0 < t � 1,

1

λtν�(1 − ν)
, t → ∞.

(2.15)

Therefore, the boundary crossing probability of Brownian motion exhibits a power decay for
t → ∞ of exponent 1

2 , instead of the usual exponential decay of the standard relaxationψ . For
the n-times iterated Brownian motion, the exponent 1/2n of t is smaller than 1

2 and decreases
as n becomes larger. This is intuitively explained by the fact that the number of compositions
increases in the definition of the process In: this strays the fractional relaxation more and
more away from the standard (exponential) behavior as n increases, and makes the tail of the
relaxation more and more heavy.

For the process A(t), the crossing probability possesses a power decay for t → ∞ with
exponent 1

3 , which is between the Brownian case and the iterated case (for any n > 1).

2.2. Exponential boundary crossing probabilities of more general processes

We now present some extensions of the previous results, obtained by considering the crossing
probabilities of different kinds of process. This corresponds to substituting the random process
Tν(t) in (2.8) with some other process, linked to the Brownian motion by various relationships,
such as the elastic Brownian motion, the Bessel process (or its square), the first passage time
through a level t by a standard Brownian motion, or its sojourn time on the positive half-line.

We start with the sojourn time of a Brownian motion on the positive half-line, which is a
positive, nondecreasing process. Let �+

t (t) = meas{s < t : B(t) > 0} be the sojourn time on
the positive half-line of a standard Brownian motion B. Then its density q+(s, t) is given by

q+(s, t) = Pr{�+
t ∈ ds} = ds

π
√
s(t − s)

, 0 < s < t.

Theorem 2.2. Let U be a random boundary, exponentially distributed with parameter λ > 0.
Then the crossing probability ofU by the random process�+

t (t)with transition density q+(s, t)
is given by

ψ+(t) = ψ(�+(t)) = Pr{�+(t) < U} = e−λt/2I0

(
λt

2

)
(2.16)

and (2.16) solves the following second-order differential equation

d2ψ+

dt2
+

(
λ+ 1

t

)
dψ+

dt
= − λ

2t
ψ+, ψ+(0) = 1. (2.17)

Proof. We write the crossing probability as

ψ+(t) =
∫ t

0
e−λs ds

π
√
s(t − s)

= 1F1

(
1

2
; 1; −λt

)
([11,Equation 3.383.1, p. 365]),

(2.18)

where 1F1(α, γ ; x) denotes the confluent hypergeometric function, defined as

1F1(α; γ ; x) = 1 +
∞∑
j=1

α(α + 1) · · · (α + j − 1)

γ (γ + 1) · · · (γ + j − 1)

xj

j !
for x, α ∈ C and γ ∈ C \ Z

−
0 .
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486 L. BEGHIN

By applying the relationship with the Bessel functions (see Equation 9.215.2 of [11, p. 1086]),
after some computations, we obtain the final form (2.16). As far as the equation satisfied
by (2.16) is concerned, we recall that I0(λx) coincides with the solution to the equation

d2

dx2 I0(λx)+ 1

x

d

dx
I0(λx) = λ2I0(λx), (2.19)

as can easily be checked. Therefore, by the transformation I0(λt/2) = eλt/2ψ+(t), from (2.19)
we obtain (2.17), since

d

dt
I0

(
λt

2

)
= λ

2
eλt/2ψ+(t)+ eλt/2

d

dt
ψ+(t),

d2

dt2
I0

(
λt

2

)
= λ2

4
eλt/2ψ+(t)+ λeλt/2

d

dt
ψ+(t)+ eλt/2

d2

dt2
ψ+(t).

Alternatively, we can resort to form (2.18) and exploit the fact that the confluent hypergeometric
function 1F1(α; γ ; x) satisfies the following equation:

x
d2

dx2 1F1 + (γ − x)
d

dx
1F1 = α 1F1.

By taking into account the facts that

d

dt
1F1

(
1

2
; 1; −λt

)
= −λ d

d(−λt) 1F1

(
1

2
; 1; −λt

)
,

d2

dt2
1F1

(
1

2
; 1; −λt

)
= λ2 d

d(−λt)2 1F1

(
1

2
; 1; −λt

)
,

we again obtain (2.17).

The asymptotic behavior of ψ+(t) can be deduced by noting that Iν(x) 
 (x/2)ν/�(ν+ 1)
as x → 0 and that

1F1(α; γ, x) 
 �(γ )

�(α)
e−iπαx−α, Re(x) → −∞

(see [13, p. 29]); thus, we obtain

ψ+(t) 


⎧⎪⎪⎨⎪⎪⎩
1 − λt

2
, 0 < t � 1,

1√
λπt

, t → ∞.

(2.20)

The limiting behavior of ψ+(t) is the same as that of the standard relaxation for t → 0, while
it coincides with that of ψ1/2(t) for t → ∞ (up to multiplicative constants).

Another process that can be considered instead of the random time Tν(t) in (2.8) is the first
passage time through a level t by a standard Brownian motion, denoted as

T (t) = inf{s > 0 : B(s) = t}.
We are interested here in the crossing probability

ψT (t) = ψ(T (t)) =
∫ ∞

0
e−λsqT (s, t) ds = Pr{T (t) < U}, (2.21)
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where the density of T (t), t ≥ 0, is the well-known stable law of index 1
2 , i.e.

qT (s, t) = te−t2/2s
√

2πs3
, s, t ≥ 0.

As is well known, T (t) is a nondecreasing Lévy process and so is a subordinator with Laplace
exponent �(λ) = √

2λ. Therefore, (2.21) coincides with the Laplace transform of the first
passage time, i.e.

ψT (t) = e−t�(λ) = e−t√2λ

(see [7] for further details on this topic).
Clearly, ψT (t) satisfies the standard relaxation equation, even if with a different constant:

dψT
dt

= −√
2λψT , ψT (0) = 1.

We note that time changing the relaxationψ using the 1
2 -stable subordinatorT (t) again produces

a standard relaxation, while performing the same operation using an inverse stable subordinator
E(t) yields the fractional relaxation ψ1/2 (as mentioned in the introduction).

If we now consider n independent Brownian motions Bj , j = 1, . . . , n, and use them
to construct the n-times iterated process T1(T2(. . . Tn(t) . . .)), t ≥ 0, where Tj = inf{s >
0 : Bj (s) = t}, j = 1, . . . , n, then its crossing probability can be evaluated as follows:

ψnT (t) = Pr{T1(T2(. . . Tn(t) . . .)) < U}

=
∫ ∞

0
e−λs

(∫ +∞

0
dz1 · · ·

∫ +∞

0
dzn−1

te−t2/2z1√
2πz3

1

· · · zn−1e−z2
n−1/2zn√

2πz3
n

zne−z2
n/2s√

2πs3

)
ds

=
∫ +∞

0
dz1 · · ·

∫ +∞

0
dzn−1

te−t2/2z1√
2πz3

1

· · · zn−1e−z2
n−1/2zn√

2πz3
n

∫ ∞

0
e−λs zne−z2

n/2s√
2πs3

ds

=
∫ +∞

0
dz1 · · · te

−t2/2z1√
2πz3

1

· · ·
∫ +∞

0

zn−1e−z2
n−1/2zn√

2πz3
n

e−zn
√

2λ dzn−1

=
∫ +∞

0
dz1 · · · te

−t2/2z1√
2πz3

1

· · ·
∫ +∞

0

zn−2e−z2
n−2/2zn−1√

2πz3
n−1

e−zn−1

√
2
√

2λ dzn−2

= e−λ1/2n21−1/2n t .

Again, the probability ψnT satisfies (for any n) the standard relaxation equation with constant
λ1/2n21−1/2n and displays an asymptotic behavior similar to the standard relaxation, despite
the complicated construction via the n-times composition.

We now analyze the crossing probability of an exponential boundaryU for a squared Bessel
process. Let us denote by R2

γ (t) = (Rγ (t))
2, t ≥ 0, the square of a γ -Bessel process, starting

at 0. It is well known that, for γ = n, this process can be expressed as

R2
n(t) =

n∑
j=1

B2
j (t), t ≥ 0,

where the Bj (t), j = 1, . . . , n, are independent Brownian motions in R
n. Moreover, the
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density of R2
γ can be written as

p2
γ (s, t) = sγ /2−1e−s/2t

(2t)γ /2�(γ /2)
, s, t ≥ 0

(see, e.g. [9]), which is a more tractable form (for our aims) than that of Rγ . Thus, the crossing
probability of this process can be easily evaluated as

ψγ (t) = Pr{R2
γ (t) < U} =

∫ ∞

0
e−λs sγ /2−1e−s/2t

(2t)γ /2�(γ /2)
ds = 1

(2λt + 1)γ /2
, (2.22)

which satisfies the following first-order differential equation:

d

dt
ψγ = γ λ

2λt + 1
ψγ , ψγ (0) = 1.

In this case, the behavior ofψγ (t) for increasing (but still finite) values of t can be represented
as ψγ (t) 
 (k/t)γ /2 (for some constant k and 0 < γ < 2), and, thus, it coincides with the one
described as ‘algebraic decay’ and displayed by relaxation processes in complex material (see,
e.g. [29]). However, for the other fractional relaxations, this is true only in the limit for t → ∞.
Indeed, function (2.22) coincides with the so-called Nutting law, which is commonly used to
fit experimental data of materials featuring nonstandard (i.e. non-Debye) relaxation (see [21]
and the references therein).

As we have seen, the generalizations analyzed so far in this section are not linked to fractional
equations; on the other hand, in the following case, we consider crossing probabilities governed
again by fractional equations. Let Bel

α (t), t ≥ 0, be the so-called elastic Brownian motion with
absorbing rate α > 0 (see [3] and [12]), defined as

Bel
α (t) =

{
|B(t)|, t < Tα,

0, t ≥ Tα,
(2.23)

where Tα is a random time with distribution

Pr{Tα > t | Bt } = e−αL(0,t), α > 0,

Bt = σ {B(s), s ≤ t} is the natural filtration, andL(0, t) = limε↓0(1/2ε)meas{s ≤ t : |B(t)| <
ε} is the local time in the origin of B. It is well known that its distribution can be expressed as

qel
α (s, t) = 2eαs

∫ +∞

s

we−αw e−w2/2t

√
2πt3

dw + qα(t)δ(s), s, t ≥ 0, (2.24)

where δ(s) is Dirac’s delta function with the pole at the origin and

qα(t) = 1 − Pr{Bel
α (t) > 0} = 1 − 2eα

2t/2
∫ +∞

α
√
t

e−w2/2

√
2π

dw

is the probability that the process is absorbed by the barrier at 0 up to time t . Thus, we define
the crossing probability of an exponential boundary U for the process Bel

α as

ψel
α (t) = Pr{Bel

α (t) < U} =
∫ ∞

0
e−λsqel

α (s, t) ds. (2.25)

Theorem 2.3. Let U be a random boundary, exponentially distributed with parameter λ > 0.
Then the crossing probability ofU for the random processBel

α (t)with transition density qel
α (s, t)
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is given by

ψel
α (t) = Pr{Bel

α (t) < U} = 1 − λ

λ− α

[
E1/2,1

(
−α

√
t√

2

)
− E1/2,1

(
−λ

√
t√

2

)]
(2.26)

for any λ 	= α and by

ψel
λ (t) = Pr{Bel

λ (t) < U} = 1 − λ
√

2tE1/2,1/2

(
−λ

√
t√

2

)
(2.27)

forα = λ. The crossing probabilityψel
α (t) satisfies the following fractional differential equation

for any α, λ > 0:

d

dt
ψel
α + α + λ√

2

d1/2

dt1/2
ψel
α = αλ

2
(1 − ψel

α )− λ√
2πt

, ψel
α (0) = 1. (2.28)

Proof. We take the Laplace transform of (2.25), which reads, for any α, λ > 0,∫ ∞

0
e−ηtψel

α (t) dt =
∫ ∞

0
e−ηt dt

∫ ∞

0
e−λsqel

α (s, t) ds

= 2
∫ ∞

0
e−ηt dt

∫ ∞

0
e−λs+αs ds

∫ +∞

s

we−αw e−w2/2t

√
2πt3

dw

+ 1

η
− 2

∫ ∞

0
e−ηt+α2t/2 dt

∫ +∞

α
√
t

e−w2/2

√
2π

dw

= 2
∫ ∞

0
e−λs+αs ds

∫ +∞

s

e−(α+√
2η)w dw + 1

η

− 2

2η − α2 + 2α√
2π(2η − α2)

1√
η

∫ +∞

0
e−z 1√

z
dz

= 2√
2η + α

∫ ∞

0
e−λs−√

2ηs ds + 2η − α2 − 2η + √
2ηα

η(2η − α2)

= 2

(
√

2η + α)(
√

2η + λ)
+ α(

√
2η − α)

η(2η − α2)

= αλη−1 + √
2αη−1/2 + 2

(
√

2η + α)(
√

2η + λ)
. (2.29)

We can check that (2.29) coincides with the Laplace transform of (2.26) for α 	= λ, i.e.

L{ψel
α ; η} =

∫ ∞

0
e−ηtψel

α (t) dt

= 1

η
− λ

λ− α

∞∑
j=0

1

�(j/2 + 1)

[(
− α√

2

)j
−

(
− λ√

2

)j] ∫ ∞

0
e−ηt tj/2 dt

= 1

η
− λ

λ− α

1

η

∞∑
j=0

[(
− α√

2η

) j

−
(

− λ√
2η

)j]

= 1

η
− λ

λ− α

1

η

( √
2η√

2η + α
−

√
2η√

2η + λ

)
,
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which easily gives (2.29). As a further check of (2.26), it is easy to see that, for α = 0 (in
the case of no absorption), it reduces to ψ1/2(t) = E1/2,1(−λ√t), since in this case Bel(t) =
|B(t)|, t ≥ 0.

For α = λ, the Laplace transform (2.29) becomes∫ ∞

0
e−ηtψel

λ (t) dt = λ2η−1 + √
2λη−1/2 + 2

(
√

2η + λ)2
. (2.30)

By comparing (2.30) with the formula holding for the Laplace transform of the GML function
defined in (2.2) (see [13, p. 47]), i.e.

L{tγ−1Eδβ,γ (ωt
β); η} = ηβδ−γ

(ηβ − ω)δ
(2.31)

(where Re(β) > 0, Re(γ ) > 0, Re(δ) > 0, and η > |ω|1/Re(β)), we easily obtain

ψel
λ (t) = 1 − λ

√
t√

2
E2

1/2,3/2

(
−λ

√
t√

2

)
, (2.32)

which can be also rewritten as (2.27).
By taking the Laplace transform of (2.26) and considering the well-known expression for

the Laplace transform of the Caputo derivative, i.e.

L

{
dνu

dtν
; η

}
=

∫ ∞

0
e−ηt dν

dtν
u(t) dt = ηνL{u; η} −

m−1∑
r=0

ην−r−1 dr

dt r
u(t)

∣∣∣∣
t=0
, (2.33)

we obtain

ηL{ψel
α ; η} − ψel

α (0)+ α + λ√
2
η1/2L{ψel

α ; η} − α + λ√
2
η−1/2ψel

α (0)

= αλ

2

(
1

η
− L{ψel

α ; η}
)

− λ�(1/2)√
2πη

. (2.34)

By taking into account the initial condition ψel
α (0) = 1, the solution of (2.34) coincides

with (2.29).

In order to study the asymptotics of the solution ψel
α (t) for α 	= λ, we use the integral

expansion for the Mittag-Leffler function (2.14), so that we obtain

ψel
α (t) = 1 − λ

λ− α

1

π

∫ +∞

0
z−1/2e−z

[
α/

√
2

z/
√
t + α2

√
t/2

− λ/
√

2

z/
√
t + λ2

√
t/2

]
dz. (2.35)

Therefore, the limiting behavior of the crossing probability reads

ψel
α (t) 


⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − λ

√
2t√
π
, 0 < t � 1,

1 −
√

2

α
√
πt
, t → ∞,

(2.36)
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where the first line is obtained from (2.35) as follows:

ψel
α (t) = 1 + λ

√
t√

2π

∫ +∞

0
z−3/2e−z dz

= 1 + λ
√
t√

2π
�

(
−1

2

)
= 1 − λ

√
2t√
π

(by the reflection formula of the gamma function).

Thus, in this case, the crossing probability maintains a limiting behavior similar to the previous
ones for t → 0, but is drastically different for t → ∞ (see (2.15)). In the last case, instead of
tending to 0, it tends to 1: this can be intuitively explained by noting that the absorbing effect
is stronger as t increases and, in the limit, the process Bel will be absorbed with probability 1.
This effect is directly correlated with the absorbing rate α. Thus, it is evident from (2.36) that
ψel
α loses the usual property of complete monotonicity that characterizes the standard and also

the fractional relaxations (see, e.g. [19]).
In the case α = λ we must apply the integral expansion of GML functions (see [1]),

Ekν,β(−ctν) = t1−β

2π i

∫ ∞

0
e−rtrνk−β

[
eiπβ

(rν + ceiπν)k
− e−iπβ

(rν + ce−iπν)k

]
dr (2.37)

(for k = 2, ν = 1
2 , β = 3

2 , and c = λ/
√

2), so that (2.32) can be developed as

ψel
λ (t) = 1 + λ√

2

1

2π

∫ ∞

0

e−rtr−1/2

(r + λ2/2)2

[(√
r − iλ√

2

)2

+
(√

r + iλ√
2

)2]
dr

= 1 + λ√
2t

1

π

∫ ∞

0
e−zz−1/2 z/t − λ2/2

(z/t + λ2/2)2
dz.

Therefore, also for α = λ, the asymptotic behavior is given exactly by (2.36).

Remark 2.1. An interesting relation can be found between the crossing probabilities ψel
α (t)

and ψ1/2(t): for λ 	= α, ψel
α (t) can be rewritten, in view of (2.26) and (2.11), as

ψel
α (t) = 1 − λ

λ− α
[ψα1/2(t)− ψλ1/2(t)],

where ψα1/2(t) and ψλ1/2(t) denote the crossing probabilities Pr{|B(t)| < U} of an exponential
boundary U of parameters α and λ, respectively, for Brownian motion. Thus, the identity

d1/2

dt1/2
ψel
α = − λ

λ− α

[
d1/2

dt1/2
ψα1/2(t)− d1/2

dt1/2
ψλ1/2(t)

]
= λ

λ− α

[
α√
2
ψα1/2(t)− λ√

2
ψλ1/2(t)

]
,

is also verified for the corresponding differential equations by applying Theorem 2.1 for ν = 1
2 .

2.3. Crossing probabilities of a gamma-distributed boundary

We extend the previous results by considering the crossing probabilities of a random bound-
ary, distributed with different laws, instead of an exponential boundary. In particular, we choose
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its natural generalization, i.e. the gamma distribution. Thus, we consider the probability, which
extends (1.6),

ψk1/2(t) = Pr{|B(t)| < G} =
∫ ∞

0
[1 − FG(y)]e−y2/4t

√
πt

dy, (2.38)

where G is a gamma random variable (RV) with parameters λ, k > 0 and FG denotes its
cumulative distribution function. For our convenience, we write the latter as

FG(y) = λk

�(k)

∫ y

0
e−λzzk−1 dz = (λy)k

�(k)

∞∑
j=0

(−λy)j
j ! (j + k)

.

Theorem 2.4. Let G be a gamma-distributed random boundary with parameters λ, k > 0.
Then the crossing probability of G by a standard Brownian motion is given by

ψk1/2(t) = Pr{|B(t)| < G} = 1 − (λ
√
t)kEk1/2,k/2+1(−λ

√
t), (2.39)

which satisfies the fractional relaxation equation

k∑
j=1

(
k

j

)
λ−j dj/2

dtj/2
ψk1/2(t) = −ψk1/2(t), (2.40)

with initial condition ψk1/2(0) = 1 for k ≥ 1 and the additional conditions

dr

dt r
ψk1/2(t)

∣∣∣∣
t=0

= 0, r = 1, . . . ,

⌊
k

2

⌋
for any odd k > 1,

dr

dt r
ψk1/2(t)

∣∣∣∣
t=0

= 0, r = 1, . . . ,
k

2
− 1 for any even k > 2.

Proof. We can rewrite (2.38) as

ψk1/2(t) =
∫ ∞

0

(
1 − (λy)k

�(k)

∞∑
j=0

(−λy)j
j ! (j + k)

)
e−y2/4t

√
πt

dy

= 1 − 1

�(k)
√
πt

∞∑
j=0

(−1)jλj+k

j ! (j + k)

∫ ∞

0
yj+ke−y2/4t dy

= 1 − 1

�(k)
√
π

∞∑
j=0

(−1)j (2λ
√
t)j+k

j ! (j + k)
�

(
j

2
+ k

2
+ 1

2

)

= 1 − 2

�(k)

∞∑
j=0

(−1)j (λ
√
t)j+k

j ! (j + k)

�(j + k)

�(j/2 + k/2)

= 1 − (λ
√
t)k

�(k)

∞∑
j=0

�(j + k)(−λ√t)j
j !�(j/2 + k/2 + 1)

. (2.41)

If we now assume that k is an integer, we can recognize in (2.41) the GML function (2.2),
so that we obtain (2.39). As a further check, it is easy to ascertain that, in the special case
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k = 1 (where the RV G reduces to the exponential RV U ), the crossing probability ψk1/2 given
in (2.39) coincides with the fractional relaxation ψ1/2 in (2.11):

ψk1/2(t) = 1 − λ
√
tE1/2,3/2(−λ

√
t)

= 1 +
∞∑
l=1

(−λ√t)l
�(l/2 + 1)

= E1/2,1(−λ
√
t)

= ψ1/2(t).

In order to derive (2.40), we resort to the Laplace transform of (2.39), which reads

L{ψk1/2; η} = (
√
η + λ)k − λk

η(
√
η + λ)k

, (2.42)

by again applying formula (2.31) for γ = k/2+1, β = 1
2 , and δ = k. We now rewrite (2.42) as

k∑
j=0

(
k

j

)
λk−j [ηj/2L{ψk1/2; η} − ηj/2−1] = −λ

k

η
. (2.43)

By simplifying this expression, we obtain the Laplace transform of (2.40). We can check that
the initial conditions are satisfied by using the series expression ofEkν,β(−ctν), and noting that,
for t = 0, Ekν,β(−λ

√
t) = 1/�(β); thus, we obtain

ψk1/2(t)
∣∣
t=0 = 1 − (λ

√
t)k

�(k/2 + 1)

∣∣∣∣
t=0

= 1.

For the other conditions, we can apply the formula for the rth-order derivative of a GML
function (see Equation (1.9.6), of [13, p. 46]),

dr

dzr
[zβ−1E

ρ
α,β(λz

α)] = zβ−r−1E
ρ
α,β−r (λz

α), λ ∈ C, r ∈ N, (2.44)

so that we obtain

dr

dt r
ψk1/2(t) = −λktk/2−rEk1/2,k/2−r+1(−λ

√
t), r ∈ N. (2.45)

By recalling (2.33), we note that the Laplace form (2.43) holds if the derivatives of order r of
ψk1/2 vanish for r = 1, . . . , �k/2� if k > 1 is odd and for r = 1, . . . , k/2 − 1 if k > 2 is even;
this is verified by (2.45).

Finally, we check that (2.40) becomes, for k = 1, the fractional relaxation equation
d1/2ψ1/2(t)/dt1/2 = −λψ1/2(t).

Remark 2.2. By comparing (2.39) with the results in [4], we can deduce that the crossing
probability ψk1/2(t) can be written in terms of the fractional Poisson process of order ν = 1

2 as

ψk1/2(t) = Pr{Tk > t} = Pr{N1/2(t) < k}, (2.46)

where Tk = inf{t ≥ 0 : N1/2(t) = k} is the waiting probability of the kth event. On the other
hand, we can prove that the following relationship holds between the crossing probabilities
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given in (2.38) for a gamma boundary of parameters (λ, k) and (λ, k−1) (respectively denoted
as ψk1/2(t) and ψk−1

1/2 (t)):

d1/2

dt1/2
ψk1/2(t) = −λ[ψk1/2(t)− ψk−1

1/2 (t)]. (2.47)

Indeed, we can evaluate the fractional derivative of order 1
2 of ψk1/2 by considering (2.45):

d1/2

dt1/2
ψk1/2(t) = − λk√

π(k − 1)!
∞∑
j=0

(j + k − 1)!(−λ)j
j !�(j/2 + k/2)

∫ t

0
(t − s)−1/2sk/2+j/2−1 ds

= −λktk/2−1/2Ek1/2,k/2+1/2(−λ
√
t). (2.48)

By applying the recursive formula for the GML function proved in [4], i.e.

xnEmν,nν+z(−x)+ xn+1Emν,(n+1)ν+z(−x) = xnEm−1
ν,nν+z(−x), n,m > 0, z ≥ 0, x > 0,

for m = n = k, x = −λ√t , ν = 1
2 , and z = 1

2 to (2.48), we obtain

d1/2

dt1/2
ψk1/2(t) = −t−1/2(λktk/2Ek1/2,k/2+1/2(−λ

√
t))

= −t−1/2[λktk/2Ek−1
1/2,k/2+1/2(−λ

√
t)− λk+1t (k+1)/2Ek1/2,k/2+1(−λ

√
t)]

= −λktk/2−1/2Ek−1
1/2,k/2+1/2(−λ

√
t)+ λ(1 − ψk1/2(t)),

which gives (2.47). The latter could alternatively be obtained by observing that

p
1/2
k (t) = Pr{N1/2(t) = k} = ψk1/2(t)− ψk−1

1/2 (t)

satisfies (2.1) with ν = 1
2 and taking into account (2.46).

The asymptotic behavior of the crossing probability ψk1/2 for small t can be deduced by the
series expression of the GML function,

Ekν,β(−ctν) 
 1

�(β)
− ctνk

�(β + ν)
, 0 < t � 1, (2.49)

so that we obtain

ψk1/2(t) 
 1 − (λ
√
t)k

�(k/2 + 1)
. (2.50)

The same result can be obtained by resorting to the Laplace transform and to the Tauberian
theory, which allows us to infer (formally) the asymptotic behavior of a function f (t) for
t → ∞ and t → 0+ from the limiting behavior of its Laplace transform L{f ; η} for η → 0+
and η → ∞, respectively (see also [19] for details). To this end, we rewrite (2.42) as

L{ψk1/2; η} = 1

η
− λk

η(
√
η + λ)k

,

which, for η → ∞, can be approximated as

L{ψk1/2; η} = 1

η
− λk

ηk/2+1 + o(η−k/2−1),
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so we again obtain (2.50). For t → ∞, it is worth writing (2.42) as

L{ψk1/2; η} =
∑k
j=1

(
k
j

)
ηj/2−1/2λ−j∑k

j=0

(
k
j

)
ηj/2+1/2λ−j 
 k

λη1/2 as η → 0+,

so that we obtainψk1/2(t) 
 k/λ
√
πt . Thus, the limiting behavior ofψk1/2 can be summarized as

ψk1/2(t) 


⎧⎪⎪⎨⎪⎪⎩
1 − (λ

√
t)k

�(k/2 + 1)
, 0 < t � 1,

k

λ
√
πt
, t → +∞,

which, of course, coincides with (2.15) for k = 1 and ν = 1
2 . We can deduce that, while passing

from an exponential boundary to a gamma-distributed boundary makes a significant difference
for small t , this effect fades away for large t . Indeed, the rate of decrease to 0 for t → ∞ of
the crossing probability is exactly the same for any k ≥ 1.

Analogously, we can generalize the results of Theorem 2.3 by considering the crossing
probability of a gamma-distributed boundary for the elastic Brownian motion defined in (2.23).

Theorem 2.5. Let G be a gamma-distributed random boundary with parameters λ, k > 0.
Then the crossing probability ofG, or the random processBel

α (t)with transition density qel(s, t)

(given in (2.24)) for any λ, α > 0 is equal to

ψel
k,α(t) = Pr{Bel

α (t) < G} = 1 −
(
λ
√
t√

2

)k ∞∑
l=0

(
−α

√
t√

2

)l
Ek1/2,(l+k)/2+1

(
−λ

√
t√

2

)
, (2.51)

which in the particular case α = λ reduces to

ψel
k,λ(t) = Pr{Bel

λ (t) < G} = 1 −
(
λ
√
t√

2

)k
Ek+1

1/2,k/2+1

(
−λ

√
t√

2

)
. (2.52)

Proof. By following some steps similar to those in the proof of Theorem 2.3 we can write
the Laplace transform of ψel

k,α(t) as

L{ψel
k,α; η} =

∫ ∞

0
e−ηt dt

∫ ∞

0
[1 − FG(s)]qel

α (s, t) ds

= 2
∫ ∞

0
[1 − FG(s)]eαs ds

∫ +∞

s

e−(α+√
2η)w dw + 1

η

− 2

2η − α2 + 2α√
2η(2η − α2)

= 2

(
√

2η + α)
√

2η
− 2λ2

√
2ηk+1

(
√

2η + α)

∞∑
j=0

(
k + j − 1

j

)(
− λ√

2η

)j
+ α(

√
2η − α)

η(2η − α2)

= 2(
√

2η + λ)k − λk√
2η(

√
2η + α)(

√
2η + λ)k

+ α

η(
√

2η + α)

= 1

η
−

√
2λk√

η(
√

2η + α)(
√

2η + λ)k
. (2.53)
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We can invert (2.53) by again applying (2.31), i.e.

ψel
k,α(t) = 1 − √

2λkL

{
1

(
√

2η + α)

η−1/2

(
√

2η + λ)k
; t

}
= 1 −

(
λ√
2

)k ∫ t

0
(t − s)−1/2E1/2,1/2

(
−α

√
t − s√
2

)
sk/2−1/2

× Ek1/2,k/2+1/2

(
−λ

√
s√

2

)
ds

= 1 −
(
λ√
2

)k ∞∑
l=0

(−α/√2)l

�(l/2 + 1/2)

∞∑
j=0

(k + j − 1)! (−λ/√2)j

(k − 1)! j !�(j/2 + (k + 1)/2)

×
∫ t

0
(t − s)l/2−1/2s(k−1)/2+j/2 ds,

which, after some simplifications, coincides with (2.51). For α = λ, we can rewrite the latter as

ψel
k,α(t) = 1 −

(
λ
√
t√

2

)k ∞∑
l=0

∞∑
j=0

(k + j − 1)! (−λ√t/√2)j+l

(k − 1)! j !�(j/2 + (l + k)/2 + 1)

= 1 −
(
λ
√
t√

2

)k ∞∑
l=0

∞∑
m=l

(k +m− l − 1)! (−λ√t/√2)m

(k − 1)! (m− l)!�(m/2 + k/2 + 1)

= 1 −
(
λ
√
t√

2

)k ∞∑
m=0

(−λ√t/√2)m

�(m/2 + k/2 + 1)

m∑
l=0

(
k +m− l − 1

m− l

)

= 1 −
(
λ
√
t√

2

)k ∞∑
m=0

(−λ√t/√2)m

�(m/2 + k/2 + 1)

(
k +m

k

)
(by the identity proved in [5, p. 10])

= ψel
k,λ(t).

As a final check, we can ascertain that, for k = 1, (2.51) and (2.52) reduce to the corresponding
expressions given for the exponential case in (2.26) and (2.27), respectively; indeed, (2.51) can
be rewritten, for k = 1, as

ψel
1,α(t) = 1 +

∞∑
l=0

(
−α

√
t√

2

)l ∞∑
j=0

(−λ√t/√2)j+1

�((j + 1)/2 + l/2 + 1)

= 1 −
∞∑
l=0

(−α√
t/

√
2)l

�(l/2 + 1)
+

∞∑
l=0

(
−α

√
t√

2

)l ∞∑
m=0

(−λ√t/√2)m

�((m+ l)/2 + 1)

= 1 − E1/2,1

(
−α

√
t√

2

)
+

∞∑
l=0

(
−α

√
t√

2

)l ∞∑
k=l

(−λ√t/√2)k−l

�(k/2 + 1)

= 1 − E1/2,1

(
−α

√
t√

2

)
+

∞∑
k=0

(−λ√t/√2)k

�(k/2 + 1)

k∑
l=0

(
α

λ

)l
,

https://doi.org/10.1239/aap/1339878721 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1339878721


Fractional relaxation equations and Brownian crossing probabilities 497

which coincides with (2.26). Formula (2.52) immediately reduces to expression (2.32) for
k = 1.

Finally, puttingα = 0 and substituting λ/
√

2 with λ, (2.51) coincides with the corresponding
crossing probability (2.39), which was obtained in the case of free Brownian motion (with no
absorption).

The asymptotic behavior of ψel
k,λ for small t can be derived from (2.52) by again apply-

ing (2.49). Alternatively, we can use the Laplace transform (2.53), which can be approximated as

L{ψel
k,α; η} 
 1

η
− λk

2k/2ηk/2+1 for η → ∞.

In both methods we obtain the first line of the following formula:

ψel
k,λ(t) 


⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 −

(
λ
√
t√

2

)k 1

�(k/2 + 1)
, 0 < t � 1,

1 −
√

2

α
√
πt
, t → +∞.

(2.54)

The second line is obtained from (2.53), which can be rewritten as

L{ψel
k,α; η} = 1

η
−

√
2

√
η[∑k

j=0

(
k
j

)
(2η)j/2+1/2λ−j + α

∑k
j=0

(
k
j

)
(2η)j/2λ−j ] 
 1

η
−

√
2

α
√
η

as η → 0+. For k = 1, (2.54) coincides with (2.36), as expected. We finally note that,
also in this case, as for the Brownian motion, the leading term in the expression obtained for
t → ∞ does not depend on k and, thus, for large values of t , considering an exponential or
gamma-distributed boundary does not entail any consequence.

The fractional equations satisfied by the crossing probabilities obtained above can be derived
by properly rewriting the Laplace transform in (2.53), as the following theorem shows.

Theorem 2.6. The crossing probability ψel
k,α given in (2.51) satisfies, for any λ, α > 0, the

fractional equation

k∑
j=0

(
k

j

)(√
2

λ

)j dj/2+1/2

dtj/2+1/2ψ
el
k,α + α√

2

k∑
j=1

(
k

j

)(√
2

λ

)j dj/2

dtj/2
ψel
k,α

= α√
2
(1 − ψel

k,α)− ck√
πt
, (2.55)

where ck = 1 for odd k and ck = 0 for even k. The initial conditions are ψel
k,α(0) = 1 for any

k ≥ 1 and

dr

dt r
ψel
k,α(t)

∣∣∣∣
t=0

= 0, r = 1, . . . ,
k − 1

2
for odd k > 1, (2.56)

dr

dt r
ψel
k,α(t)

∣∣∣∣
t=0

= 0, r = 1, . . . ,
k

2
− 1 for even k > 1.
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Proof. We rewrite (2.53) as

L{ψel
k,α; η}η(

√
2η + α)

k∑
j=0

(
k

j

)
2j/2λk−j ηj/2

= (
√

2η + α)

k∑
j=0

(
k

j

)
2j/2λk−j ηj/2 − √

2ηλk,

so that we obtain

k∑
j=0

(
k

j

)(√
2

λ

)j
[ψ̃el
k,αη

j/2+1/2 − ηj/2−1/2] + α√
2

k∑
j=1

(
k

j

)(√
2

λ

)j
[ψ̃el
k,αη

j/2 − ηj/2−1]

= α√
2

[
1

η
− ψ̃el

k,α

]
− 1√

η
, (2.57)

where we have defined ψ̃el
k,α = L{ψel

k,α; η} for brevity. From the Laplace transform (2.57),
taking into account (2.33) and the initial conditions (2.56), we can obtain (2.55) with ck = 1.
For the initial conditions (2.56), we use an argument similar to that used in the proof of
Theorem 2.4, with the only additional caveat that, in the case of even k, the highest order
derivative, i.e. dk/2ψel

k,α/dt
k/2, does not vanish at t = 0, as can be ascertained by applying (2.44)

to (2.51); indeed, we obtain

dk/2

dtk/2
ψel
k,α(t)

∣∣∣∣
t=0

= −
(
λ√
2

)k ∞∑
l=0

(
− α√

2

)l
t l/2Ek1/2,l/2+1

(
−λ

√
t√

2

)∣∣∣∣
t=0

= −
(
λ√
2

)k
.

Therefore, (2.57), for even k, must be modified as

k−1∑
j=0

(
k

j

)(√
2

λ

)j
[ψ̃el
k,αη

j/2+1/2 − ηj/2−1/2]

+
(√

2

λ

)k[
ψ̃el
k,αη

k/2+1/2 − ηk/2−1/2 − 1√
η

dk/2

dtk/2
ψel
k,α(t)

∣∣∣∣
t=0

]

+ α√
2

k∑
j=1

(
k

j

)(√
2

λ

)j
[ψ̃el
k,αη

j/2 − ηj/2−1]

= α√
2

[
1

η
− ψ̃el

k,α

]
,

so that we obtain (2.55) with ck = 0.
As a further check, it is easy to see that, for k = 1, the latter reduces to (2.28).

3. Fractional relaxation equation of distributed order

We now consider an extension of the fractional relaxation equation (1.2), obtained by adding
the hypothesis that the fractional order ν is not a constant but a random variable with distribution
n(ν). Thus, we will study the distributed order fractional relaxation equation, defined as∫ 1

0

dνψ

dtν
n(ν) dν = −λψ, t ≥ 0, (3.1)
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where, by assumption,

n(ν) ≥ 0,
∫ 1

0
n(ν) dν = 1, ν ∈ (0, 1], (3.2)

subject to the initial conditionψ(0) = 1. As a special case, for n(ν) = δ(ν− ν̄) and a particular
value of ν̄ ∈ (0, 1), (3.1) reduces to (1.2).

We adopt here the following particular form for the density of the fractional order ν:

n(ν) = n1δ(ν − ν1)+ n2δ(ν − ν2), 0 < ν1 < ν2 ≤ 1, (3.3)

for n1, n2 ≥ 0 and such that n1 + n2 = 1 (the conditions in (3.2) are trivially fulfilled). The
density (3.3) has already been used in [8] and [17], in the analysis of the so-called double-
order time-fractional diffusion equation, and corresponds to the case of a subdiffusion with
retardation. Moreover, it was applied in [1] in the context of recursive equations of fractional
order, where the equation governing the Poisson process was extended by introducing two
fractional time derivatives.

Under assumption (3.3), (3.1) becomes

n1
dν1

dtν1
ψ + n2

dν2

dtν2
ψ = −λψ, t ≥ 0, (3.4)

and the corresponding solution ψν1,ν2 coincides with the so-called double-order fractional
relaxation studied by Mainardi et al. [19], who provided an integral expression and some
asymptotic representations for ψν1,ν2 . We present here an analytic form of the fundamental
solution to (3.4) in terms of GML functions as well as a probabilistic representation in terms
of crossing probabilities, in line with the results of the previous sections.

Theorem 3.1. The solution to (3.4) with the initial condition ψ(0) = 1 can be written as

ψν1,ν2(t) = 1 − λtν2

n2

∞∑
r=0

(
−n1t

ν2−ν1

n2

)r
Er+1
ν2,ν2+(ν2−ν1)r+1

(
−λt

ν2

n2

)
. (3.5)

Proof. By taking the Laplace transform of (3.4) we obtain

n1η
ν1L{ψν1,ν2; η} − n1η

ν1−1 + n2η
ν2L{ψν1,ν2; η} − n2η

ν2−1 = −λL{ψν1,ν2; η},
whose solution can be written as

L{ψν1,ν2; η} = n1η
ν1 + n2η

ν2

η(λ+ n1ην1 + n2ην2)

= 1

η
− λ

η

1

λ+ n2ην2

1

1 + n1ην1/(λ+ n2ην2)

= 1

η
− λ

η

1

λ+ n2ην2

∞∑
r=0

(
− n1η

ν1

λ+ n2ην2

)r
= 1

η
− λ

n2

∞∑
r=0

(
−n1

n2

)r
ην1r−1

(ην2 + λ/n2)r+1 .

By applying (2.31), we easily obtain (3.5). As a check, we can see that (3.5) reduces to (2.9)
for n1 = 0, n2 = 1, and ν2 = ν, since (3.4) becomes, in this case, the fractional relaxation
equation (1.2).
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Despite the apparent similarity between (3.5) and (2.51), they are deeply different: while
the sum is extended to the third (upper) parameter of the GML function for ψν1,ν2 , this is not
the case for ψel

k,α. This is also reflected in the asymptotic behavior of the fractional relaxation
of distributed order, which does not deviate from the usual relaxation behavior (unlike ψel

k,α).
We can study the limit directly from (3.5), by applying (2.37):

ψν1,ν2(t) = 1 − λ

n2

∞∑
r=0

(
−n1

n2

)r 1

2π i

∫ ∞

0
e−zt zν1r−1

[
e−iπν2−iπ(ν2−ν1)r

(zν2 + λe−iπν2/n2)r+1

− eiπν2+iπ(ν2−ν1)r

(zν2 + λeiπν2/n2)r+1

]
dz.

Thus, for t → 0, we obtain

ψν1,ν2(t) = 1 − λ

n2

∞∑
r=0

(
−n1t

ν2−ν1

n2

)r
tν2

2π i

∫ ∞

0
e−wwν1r−1

×
[

e−iπν2−iπ(ν2−ν1)r

(wν2 + λtν2 e−iπν2/n2)r+1 − eiπν2+iπ(ν2−ν1)r

(w + λtν2 eiπν2/n2)r+1

]
dw


 1 − λtν2

n2

∞∑
r=0

(
−n1t

ν2−ν1

n2

)r sin(−π(ν1r − ν2r − ν2))

π
�(ν1r − ν2r − ν2)

= 1 − λtν2

n2

∞∑
r=0

(
−n1t

ν2−ν1

n2

)r 1

�(1 + ν2r + ν2 − ν1r)

(by the reflection property of the gamma function)

= 1 − λtν2

n2

1

�(1 + ν2)
+ o(tν2), (3.6)

while, for t → ∞, we analogously obtain

ψν1,ν2(t) = 1 − λ

n2

∞∑
r=0

(
− n1

n2tν1

)r 1

2π i

∫ ∞

0
e−wwν1r−1

×
[

e−iπν2−iπ(ν2−ν1)r

((w/t)ν2 + λe−iπν2/n2)r+1 − eiπν2+iπ(ν2−ν1)r

((w/t)ν2 + λeiπν2/n2)r+1

]
dw


 1 −
∞∑
r=0

(
− n1

λtν1

)r sin(πν1r)

π
�(ν1r)

= 1 −
∞∑
r=0

(
− n1

λtν1

)r 1

�(1 − ν1r)

= n1

λtν1

1

�(1 − ν1)
+ o(t−ν1). (3.7)

The above expression coincides with Equation (4.13) of [19], which were obtained in a different
way, directly from the Laplace transform of ψν1,ν2 .

We now present a probabilistic form for the solution ψν1,ν2 , in line with the analysis carried
out so far, in terms of the crossing probability of a random boundary for a stochastic process,
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which will be denoted, in this case, by Tν1,ν2(t), t ≥ 0. To this end, we will compare (3.4) with
the equation governing the probabilities p̃k of the distributed order fractional Poisson process
Nν1,ν2(t), t ≥ 0, studied in [1], i.e.∫ 1

0

dνpk
dtν

n(ν) dν = −λ(pk − pk−1), k ≥ 0, p−1(t) = 0. (3.8)

Indeed, (3.1) can be considered a special case of (3.8) for k = 0 and, if we add assumption (3.3),
we obtain (3.4). Thus, we can use the results proved in [1] and write

ψν1,ν2(t) = p̃0(t) = Pr{Nν1,ν2(t) = 0} = Pr{N(Tν1,ν2(t)) = 0}, (3.9)

where N is the standard Poisson process (with intensity λ) and Tν1,ν2 is a random process
(independent from N ) with density

qν1,ν2(y, t) = n1

∫ t

0
p̄ν2(t − s; y)qν1(y, s) ds + n2

∫ t

0
p̄ν1(t − s; y)qν2(y, s) ds. (3.10)

In (3.10), p̄νj (·; z) denotes the density of a stable random variable Xνj of index νj ∈ (0, 1]
for j = 1, 2, with parameters β = 1, µ = 0, and σ = (nj |y| cos(πνj /2))1/νj , and qνj for
j = 1, 2 is defined in (2.5). Another form for the density qν1,ν2 is given by the following series
expression:

qν1,ν2(y, t) = n1

λtν1

∞∑
r=0

1

r!
(

−n2|y|
λtν2

)r
W−ν1,1−ν2r−ν1

(
−n1|y|
λtν1

)

+ n2

λtν2

∞∑
r=0

1

r!
(

−n1|y|
λtν1

)r
W−ν2,1−ν1r−ν2

(
−n2|y|
λtν2

)
.

From (3.9) we obtain

ψν1,ν2(t) =
∫ ∞

0
e−λyqν1,ν2(y, t) dy = Pr{Tν1,ν2(t) < U}.

It was also proved in [1] that the transition density qν1,ν2 coincides with the folded solution

qν1,ν2(y, t) =
{

2v(y, t), y ≥ 0,

0, y < 0,

of the fractional diffusion equation(
n1
∂ν1v

∂tν1
+ n2

∂ν2v

∂tν2

)2

= ∂2v

∂y2 , y ∈ R, t ≥ 0, n1, n2 > 0, (3.11)

for 0 < ν1 < ν2 ≤ 1, with initial conditions

v(y, 0) = δ(y) for 0 < ν1 < ν2 ≤ 1,

∂

∂t
v(y, t)

∣∣∣∣
t=0

= 0 for 1
2 < ν1 < ν2 ≤ 1.

(3.12)
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Alternatively to (3.11)–(3.12), it can be proved (as we will see below in a special case) that
qν1,ν2 also solves the other equation

n1
∂ν1v

∂tν1
+ n2

∂ν2v

∂tν2
= −∂v

∂y
, y, t ≥ 0, n1, n2 > 0, v(y, 0) = δ(y),

which is the distributed order analogue of (2.6). In order to obtain a more explicit expression
for the density qν1,ν2 , we consider the special, but relevant, case where ν1 = 1

2 and ν2 = 1.

Theorem 3.2. The solution to the fractional relaxation equation

n1
d1/2ψ

dt1/2
+ n2

dψ

dt
= −λψ, t ≥ 0,

with the initial condition ψ(0) = 1, can be expressed as

ψ1/2,1(t) = Pr{T1/2,1(t) < U}, (3.13)

where U is an exponential RV with parameter λ and the transition density of T1/2,1(t), t ≥ 0,
is given by

q1/2,1(y, t) = n1(t − n2y/2)√
π

e−n2
1y

2/4(t−n2y)√
(t − n2y)3

, t ≥ 0, 0 < y <
t

n2
, (3.14)

and satisfies the fractional equation

n1
∂1/2q

∂t1/2
+ n2

∂q

∂t
= −∂q

∂y
, q(y, 0) = δ(y). (3.15)

Proof. It has been proved in [1] that, for ν2 = 1 and ν1 = ν ∈ (0, 1), the density (3.10) can
be expressed as

qν,1(y, t) = n1I
ν( ¯̄pν(·; y))(t)+ n2 ¯̄pν(t; y), (3.16)

where I ν is the Riemann–Liouville fractional integral of order ν and ¯̄pν denotes a stable law of
index ν with parameters β = 1, µ = n2|y|, and σ = (n1|y| cos(πν/2))1/ν . If, moreover, we
set ν = 1

2 , we can recognize in ¯̄p1/2 the Lévy distribution, so that the density (3.16) becomes

q1/2,1(y, t) = n1√
π

∫ t

0
(t − s)−1/2 ¯̄p1/2(s; y) ds + n2 ¯̄p1/2(t; y)

= n2
1y

2π

∫ t

n2y

(t − s)−1/2 e−n2
1y

2/4(s−n2y)√
(s − n2y)3

ds + n1n2y

2π

e−n2
1y

2/4(t−n2y)√
(t − n2y)3

1{0<y<t/n2}

= n2
1y

2π

∫ t−n2y

0
(t − n2y − z)−1/2 e−n1y

2/4z

√
z3

dz

+ n1n2y

2π

e−n2
1y

2/4(t−n2y)√
(t − n2y)3

1{0<y<t/n2}

=
[
n1e−n2

1y
2/4(s−n2y)

√
π(t − n2y)

+ n1n2y

2π

e−n2
1y

2/4(t−n2y)√
(t − n2y)3

]
1{0<y<t/n2}

(by Equation (3.8) of [23]),
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which coincides with (3.14). In order to show that the latter satisfies the fractional relaxation
equation (3.15), we evaluate its Laplace transform:

L{q1/2,1(y, ·); η} =
∫ ∞

n2y

n1(t − n2y/2)√
π

e−n2
1y

2/4(t−n2y)−ηt√
(t − n2y)3

dt

= − n1√
π

∂

∂η

(∫ ∞

n2y

e−n2
1y

2/4(t−n2y)−ηt√
(t − n2y)3

dt

)

− n1n2y

2
√
π

∫ ∞

0
e−ηz−ηn2y

e−n2
1y

2/4z

√
z3

dz

= − ∂

∂η

(
2

y
e−ηn2y−√

ηn1y

)
− n2e−ηn2y−√

ηn1y

= (n2 + n1η
−1/2)e−(n2η+n1η

1/2)y . (3.17)

In (3.17) we applied the well-known formula for the Laplace transform of the first passage time
of a Brownian motion. It is easy to check that∫ ∞

0
e−λyL{q1/2,1(y, ·); η} dy = n2 + n1η

−1/2

n2η + n1η1/2 + λ
,

which is equal to the Laplace transform of ψν1,ν2 for ν1 = 1
2 and ν2 = 1 (given in Theorem 2.6

of [1]), thus proving result (3.13). If we now take the Fourier transform of (3.17), we obtain

F {L{q1/2,1; η};β} =
∫ ∞

0
eiβyL{q1/2,1(y, ·); η} dy

= (n2 + n1η
−1/2)

∫ ∞

0
eiβye−(n2η+n1η

1/2)y dy

= n2 + n1η
−1/2

n2η + n1η1/2 + iβ
, (3.18)

which coincides with the solution to (3.15) converted, via the Laplace–Fourier transform, into

(n1η
1/2 + n2η)L{q1/2,1(y, ·); η} − (n1η

−1/2 + n2)δ(y) = − ∂

∂y
L{q1/2,1(y, ·); η}

and
(n1η

1/2 + n2η + iβ)F {L{q1/2,1; η};β} = (n1η
−1/2 + n2).

From (3.18), it is evident that (3.14) is well defined and integrates to 1, since, for β = 0, we
obtain 1/η.

Remark 3.1. If we consider the two opposite special cases n2 = 0 and n1 = 0, the trajectories
of the process T1/2,1 can be considered as an ‘interpolation’ between those of a free reflecting
Brownian motion and the straight line y = t/n2. Indeed, in the first case the density (3.14)
becomes

q1/2,1(y, t) = n1e−n2
1y

2/4t

√
πt

, y, t ≥ 0,

while in the second case we can write (3.16) as q1/2,1(y, t) = n2 ¯̄p1/2(t; y) = n2δ(t − n2y),
since in this case σ = 0. It is evident from (3.14) that the trajectories of T1/2,1 for anyn1, n2 > 0
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Table 1: Limiting behaviors.

t → 0 t → ∞
ψ(t) 
 1 − λt ψ(t) 
 e−λt

ψν(t) 
 1 − λtν/�(1 + ν) ψν(t) 
 1/λtν�(1 − ν)

ψ+(t) 
 1 − λt/2 ψ+(t) 
 1/
√
λπt

ψT (t) 
 1 − √
2λt ψT (t) 
 e−√

2λt

ψγ (t) 
 1/(1 + 2λt)γ /2 ψγ (t) 
 1/(1 + 2λt)γ /2

ψel(t) 
 1 − λ
√

2t/
√
π ψel(t) 
 1 − √

2/α
√
πt

ψk1/2(t) 
 1 − (λ
√
t)k/�(k/2 + 1) ψk1/2(t) 
 k/λ

√
πt

ψel
k,α(t) 
 1 − (λ

√
t/2)k/�(k/2 + 1) ψel

k,α(t) 
 1 − √
2/α

√
πt

ψ1/2,1(t) 
 1 − λt/n2 ψ1/2,1(t) 
 n1/λ
√
πt

are forced under the line y = t/n2 and this is reflected in the asymptotic behavior of the crossing
probability ψ1/2,1, which can be deduced from (3.6) and (3.7), and summarized as

ψ1/2,1(t) 


⎧⎪⎪⎨⎪⎪⎩
1 − λt

n2
, 0 < t � 1,

n1

λ
√
πt
, t → ∞.

(3.19)

By comparing (3.19) with (2.15) we can conclude thatψ1/2,1 displays the same limiting behavior
as ψ1/2(t) = Pr{|B(t)| < U} for t → ∞. However, for t → 0, it behaves as the standard
relaxation (up to a constant) and, thus, tends to 1 much faster thanψ1/2,1. We recall that similar
limiting features were exhibited by the crossing probability ψ+ of the Brownian sojourn time
process (see (2.20)).

For the reader’s convenience, we summarize the limiting behavior of the crossing probabil-
ities analyzed in the previous sections in Table 1.
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