Seventh Meeting, June 10th, 1898.
Dr Mackay in the Chair.

Permutations: Alternative Proofs of Elementary Formulas.

By R. F. Muiriead, M.A., B.Sc.

1. The number of the r-permutations of n things is the same as the number of ways of adding r things to a row which originally contains $n-r$ other things.

For suppose the n letters A, B, C . . . N to be placed in a row, then each permutation consisting of r letters may be indicated by placing below those r letters in the row, the digits $1,2,3 \ldots r$, to indicate the order they have in the permutation. We may suppose zeros placed below all the remaining $n-r$ letters. Thus it is clear that the number of the r-permutations of n things is the same as the number of ways in which r numbers can be added to a row originally containing $n-r$ zeros.
2. Hence we can prove the formula

$$
{ }_{n} \mathrm{P}_{r}=n(n-1)(n-2) \ldots(n-r+1) .
$$

For starting with $n-r$ zeros, we can put the first number at either end of the row, or in any of the $n-r-1$ places between two successive zeros, i.e., we can add the first number to the row in $n-r+1$ different ways. The next number can then be added in $n-r+2$ ways, giving a total of $(n-r+1) \cdot(n-r+2)$ ways of adding two things to the row. Proceeding thus, we see that the total number of ways of adding r things to the row which originally contained $n-r$ is $(n-r+1)(n-r+2) \ldots n$, which may also be written $n(n-1)(n-2) \cdots(n-r+1)$.

This then is also the number of the r-permutations of n letters, all different.
3. The number of ways in which two rows of things containing p and q things respectively, can be combined into a single row containing them all, the order of the things in each component set being unaltered, is $={ }_{p+q} C_{p}$. For it is clearly the same as the number of ways of choosing p out of $p+q$ places for the things of the first set. Of course it is also $={ }_{p+q} \mathrm{C}_{q}$.

Cor. The result is obviously the same as the number of ways of arranging p like things $\mathrm{A}, \mathrm{A} .$. in a row along with q like things B, B . . . ; for the order of the A's amongst one another and that of the B's amongst one another, being indistinguishable, it is the same as if they had a fixed order.
4. The number of ways in which p A's, q B's, r C's and t other different letters can be arranged in order is $\frac{(t+p+q+r+\ldots)!}{p!q!r!\ldots}$.

For first the t different ways can be arranged in t ! orders. Taking any one of these, the p A's can be added in ${ }_{p+t} \mathrm{C}_{p}$ or $\frac{(p+t)!}{t!p!}$ ways to this row. Hence the total number of ways of forming a row consisting of the p A's and the t other things is $t!\frac{(p+t)!}{t!p!}$. Adding next the $q B$'s and so on, we finally get at the result

$$
t!\cdot \frac{(t+p)!}{t!p!} \cdot \frac{(t+p+q)!}{(t+p)!q!} \cdot \frac{(t+p+q+r)!}{(t+p+q)!r!} \cdots
$$

which simplifies at once to

$$
\frac{(t+p+q+r+\ldots)!}{p!q!r!\ldots}, \quad \text { i.e. } \frac{n!}{p!q!r!\ldots}
$$

where n is the total number of the things.

