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Thermo-responsive hydrogels are a promising material for creating controllable actuators
for use in micro-scale devices, since they expand and contract significantly (absorbing
or expelling fluid) in response to relatively small temperature changes. Understanding
such systems can be difficult because of the spatially and temporally varying properties
of the gel, and the complex relationships between the fluid dynamics, elastic deformation
of the gel and chemical interaction between the polymer and fluid. We address this using
a poro-elastic model, considering the dynamics of a thermo-responsive spherical hydrogel
after a sudden change in the temperature that should result in substantial swelling or
shrinking. We focus on two model examples, with equilibrium parameters extracted from
data in the literature. We find a range of qualitatively different behaviours when swelling
and shrinking, including cases where swelling and shrinking happen smoothly from the
edge, and other situations that result in the formation of an inwards-travelling spherical
front that separates a core and shell with markedly different degrees of swelling. We
then characterise when each of these scenarios is expected to occur. An approximate
analytical form for the front dynamics is developed, with two levels of constant porosity,
that well-approximates the numerical solutions. This system can be evolved forward in
time, and is simpler to solve than the full numerics, allowing for more efficient predictions
to be made, such as when deciding dosing strategies for drug-laden hydrogels.

Key words: porous media, polymers, microfluidics

1. Introduction

Thermo-responsive hydrogels are polymers whose degree of swelling depends on the
ambient temperature. Hydrogels absorb and retain significant amounts of fluid, resulting
in swelling of the solid structure as the fluid fills the interstitial space between polymer
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PNIPAM SEM

10 µm

Swollen hydrogel

Heat

Deswollen hydrogel

(a) (b)

Figure 1. (a) A scanning electron microscope (SEM) image of the micro-structure of PNIPAM, reprinted
from Ju et al. (2006) with permission from IOP Publishing. (b) Schematic of a thermo-responsive hydrogel’s
structure – as the gel is heated, it loses its affinity for the fluid in the pore space, hence it contracts and expels
fluid.

chains (see figure 1). This swelling can be substantial, with the volume of some hydrogels
increasing several fold compared to their dry form (Tanaka 1978; Hirokawa & Tanaka
1984). Thermo-responsive hydrogels have a sharp decrease in their affinity for the fluid
when heated above a certain temperature, called the volume phase transition temperature,
resulting in expulsion of much of the interstitial fluid and significant shrinking of the gel.
Many other responsive gels have also been developed in recent years, with a variety of
different controlling external stimuli, such as pH, electric charge and light (Koetting et al.
2015; Erol et al. 2019). However, responsive hydrogels actuated by temperature are of
particular interest, especially gels such as poly(N-isopropylacrylamide) – or PNIPAM –
because they have a sharp transition in their degree of swelling at temperatures that are
easily obtainable experimentally, and often biomedically relevant (Haq, Su & Wang 2017).

Developing materials that change size in a controllable way gives a route to creating
controllable shape change. For example, having two (or more) materials joined together
that swell or shrink differently under a given stimulus can generate internal elastic stresses
that are relaxed by deforming; differential swelling can cause out-of-plane buckling, and
careful choice of the material properties and geometry during fabrication can allow for
a whole host of possible programmed transformations (Holmes 2019). Hydrogels with
controllable swelling are therefore a promising avenue for developing shape-changing
devices. This is particularly true at small scales, where recent technological advances
allow for micro-scale design and manufacture of gel structures through techniques such
as three-dimensional printing via two-photon polymerisation, otherwise known as 2PP
(Hippler et al. 2019; Ji et al. 2021), and halftone gel or stop flow lithography (Kim et al.
2012; Sharan et al. 2021). Such small devices have a wide range of physical applications
(Ionov 2014), for example as microfluidic valves (Harmon, Tang & Frank 2003; Richter
et al. 2003), as grippers that could be used by soft robots (Li et al. 2017), and as actuation
for swimming in microbots or artificial active matter (Masoud, Bingham & Alexeev
2012; Nikolov, Yeh & Alexeev 2015; Mourran et al. 2017; Montenegro-Johnson 2018;
Wischnewski & Kierfeld 2020).

There are many opportunities to exploit stimuli-responsive hydrogels in biomedical
settings (Klouda 2015; Sood et al. 2016). Controllable delivery of small quantities of
drugs to a specific site could improve patient outcomes by reducing the required dosage
necessary for a treatment; such dosing cannot be addressed by conventional drug delivery
methods (Li & Mooney 2016). Responsive hydrogels are an appropriate and flexible means
to achieve this targeted drug delivery (Peppas 1997; Qiu & Park 2001; Schmaljohann 2006;
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Swelling and shrinking of thermo-responsive hydrogels

Qureshi et al. 2019; Marques et al. 2021). The drug can be either embedded within the
microstructure of the gel itself and released as it contracts (Kulkarni & Biswanath 2007;
Bhattarai, Gunn & Zhang 2010), or encapsulated within a microscopic delivery device that
opens when actuated (Stoychev, Puretskiy & Ionov 2011; Fan et al. 2016), with the stimuli
either externally imposed or dependent on the immediate environment. Additional control
over the drug release can be obtained by combining multiple stimuli (Fu et al. 2018) or
through timed actuation, allowing multiple-dose strategies to be developed. Responsive
hydrogels also have applicability in other medically relevant scenarios, for example being
used as scaffolds in tissue engineering, as an aid for wound healing, and as components in
microtools for use in microsurgery (Sood et al. 2016; Erol et al. 2019).

To fully understand the shape-changing properties of responsive hydrogel devices, a
key first step is to understand how the size change occurs in a simple homogeneous
gel. In particular, the dynamics of the swelling or shrinking of such a gel will be an
important component in determining how a more complicated material behaves during
the swelling and shrinking process. Experiments on these thermo-responsive gels have
suggested that there is a difference between the behaviour of a homogeneous gel when
swelling, compared to when shrinking: dynamic swelling has been observed to equilibrate
exponentially, whereas the dynamics of a shrinking gel appears more complicated and
can exhibit an instability that forms lobe-like structures (Sato Matsuo & Tanaka 1988).
Temperature changes beyond transition have been observed to cause separation into
distinct swollen and shrunken states along the length of a cylinder, with an appearance
similar to the fluid-dynamical Rayleigh–Plateau instability (Matsuo & Tanaka 1992), as
well as through the appearance of surface blisters that can cause deformation of rods and
tori (Chang et al. 2018; Shen et al. 2019).

Since the size change of hydrogels is dependent on the movement of fluid into or out of
the polymer structure, the dynamics of swelling and shrinking are fundamentally problems
of fluid dynamics, coupled with solid mechanics and polymer physics. Some of the earliest
approaches to modelling such systems focused on the diffusion of the cross-linked polymer
network, whilst ignoring the fluid motion (Tanaka, Hocker & Benedek 1973; Tanaka &
Fillmore 1979). More recent work has incorporated all three physical building blocks into
continuum mechanical models of hydrogels (e.g. Hong et al. 2008; Doi 2009; Chester
& Anand 2011; Engelsberg & Barros 2013; Bertrand et al. 2016; Drozdov & Christiansen
2017). These models are typically poro-elastic, and are constructed via a model for the free
energy density of swelling, based on Flory–Rehner theory (Flory & Rehner 1943a,b), that
has three main components: mixing of the fluid and polymer, deformation of the polymer
structure, and work against the chemical potential or fluid pressure. The hydrogel can
undergo large deformations when swelling and shrinking, so the material is often taken to
be hyperelastic, for example using a neo-Hookean energy density. The fluid motion within
the hydrogel mixture is then modelled diffusively (Hong et al. 2008; Engelsberg & Barros
2013) or using Darcy flow (Doi 2009; Bertrand et al. 2016).

These models have been applied to a range of scenarios involving generic hydrogels,
including the evolution of gel filters (Doi 2009) and gel systems under load (Hong et al.
2008), and as a model system for plant transpiration (Etzold, Linden & Worster 2021).
Finite element simulations have been used to investigate the large deformation behaviour
of swelling hydrogels (Lucantonio, Nardinocchi & Teresi 2013). Other studies modelling
hydrogel spheres have also uncovered complex internal dynamics when swelling and
shrinking, such as core–shell behaviour and transient surface instabilities (Bertrand
et al. 2016; Curatolo et al. 2017). In addition, theoretical modelling of one-dimensional
hydrogels has isolated the physics of the swelling from the geometry, from which it is
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possible to investigate when and how phase separation into states with different degrees of
swelling occurs (Hennessy, Münch & Wagner 2020).

These theoretical models have also been applied specifically to thermo-responsive
hydrogels. Diffusive models of swelling and shrinking thermo-responsive gels suggest
that the time scale for swelling or shrinking scales with the square of the gel size, agreeing
with experimental observations (Tanaka et al. 1985), and have been used to predict the
dynamic swelling of spherical shells (Wahrmund et al. 2009). Following predictions
for the phase separation of thermo-responsive hydrogels based on their free energy
density (Sekimoto 1993), the dynamics of a one-dimensional hydrogel bar with regions of
different swelling was explored using a mechanical model that balances internal hydrogel
stresses with friction between polymer and fluid within the gel (Tomari & Doi 1994).
This modelling approach was developed further to investigate the dynamics of spherical
thermo-responsive hydrogels close to the transition temperature (Tomari & Doi 1995).
This work reproduced theoretically the experimental observations of two-stage swelling
and shrinking dynamics, and predicted the occurrence of transient phase separation into
concentric swollen and collapsed states close to the volume phase transition, similar to the
previously mentioned core–shell behaviour observed in other hydrogel systems, which
has since been enforced by other studies (Doi 2009). In recent years, several studies
have focused on applying large deformation mechanics to thermo-responsive hydrogel
problems, which has resulted in finite element simulations for the swelling of cubes, discs
and more complex geometries (Chester & Anand 2011; Drozdov & Christiansen 2017).
These methods are excellent for specific applications; however, there is still room for more
fundamental studies of the generic swelling behaviour of hydrogels in simplified systems.

In this work, we apply the poro-elastic model of Bertrand et al. (2016) – which
was used to study the swelling of a dry spherical gel bead immersed in water and the
subsequent drying by evaporation – to investigate the dynamic swelling and shrinking of
a thermo-responsive hydrogel sphere in a quiescent fluid bath. In particular, we consider
the evolution of a thermo-responsive hydrogel sphere after a sudden temperature change
for two different model systems that have been observed experimentally, and consider
their behaviour during both swelling and shrinking. The temperature change is taken
as instantaneous since diffusion of heat occurs much faster than hydrogel swelling.
We aim to extend the work of Tomari & Doi (1995) in a few key ways. First, we
note that Tomari & Doi (1995) focused on the dynamics for temperatures close to the
transition between swollen and shrunken states, whereas we will consider characterising
the behaviours for more significant temperature changes. In addition, we use a fully
poro-elastic model that includes explicitly the fluid flow within the mixture, which Tomari
& Doi (1995) account for using a viscous dissipation term. This additional component
makes an important contribution to the physics of the system, which can result in a
significant difference to resultant behaviours (Hui & Muralidharan 2005). Moreover, we
will investigate an approximate analytic solution that encapsulates the key physics of the
core–shell shrinking dynamics, which is simple enough to be used in applications such
as designing drug-dosing strategies. We will comment on any similarities and differences
between our results and those of Tomari & Doi (1995) as they arise.

We begin in § 2 by introducing the equilibrium model for the thermo-responsive
hydrogel, before outlining the dynamic model in § 3. The poro-elastic equations for the
evolution of the hydrogel sphere are then solved numerically, with example results for
swelling and shrinking of each of the two model systems presented in § 4. We observe
a range of different behaviours in the swelling and shrinking dynamics in both cases,
such as swelling occurring smoothly inwards from the edge upon cooling, but reheating
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Heat

Cool

Figure 2. A thermo-responsive hydrogel sphere shrinks as it is heated and swells as it is cooled. Colour denotes
porosity (or degree of swelling). Swelling occurs smoothly from the edge, whereas for shrinking, a sharp
inwards-propagating front is formed between two (nearly) uniform porosity regions. These illustrations are
results from our study (see figures 5 and 6), presented here to orient the reader with the discussions that follow.

resulting in a sharp front between a swollen core and shrunken shell (see schematic in
figure 2). Other distinct behaviours are also seen, and we provide an overview of when
each is expected to occur. The dynamics of the shrinking gel is often characterised by an
inwards-travelling front, which we investigate further in § 5 using an approximate analytic
solution. We show that this solution can be evolved forwards in time, and investigate
a potential application in calculating drug-dosage strategies. Finally, we summarise our
results in § 6.

2. Equilibrium swelling of a hydrogel

2.1. Free energy density of the hydrogel
We consider a hydrogel in a quiescent bath of fluid that has absorbed fluid and deformed.
Both of these processes have energy costs associated with them: a chemical contribution
from the mixing of fluid molecules and polymer chains, and a physical contribution from
the elastic deformation of the polymer. The nominal free energy density of the hydrogel
in such a state can then be written as the sum of these two contributions (Flory & Rehner
1943a,b)

W̃ = W̃elast + W̃mix, (2.1)

where W̃elast represents the elastic energy density and W̃mix is the mixing energy density.
Here, W̃ is the Helmholtz free energy of the mixture per unit volume of the undeformed
dry polymer. Throughout this work, we use tildes, ·̃, to denote dimensional quantities.

We consider a gel deformation from a reference state, resulting in a local factor increase
in volume of the body, J, relative to this reference state (at which J = 1). The principal
stretches λi for i ∈ {1, 2, 3} are the factor increase in lengths from the reference state in
each direction; they are the major and minor axes of an ellipsoid that results from the
deformation (locally) of a unit sphere in the reference state. The local volume change J is
therefore the product of the stretches, J = λ1λ2λ3.

Such a deformation has an energetic cost to stretching (or compressing) the polymer
chains. We consider a neo-Hookean model for the elastic energy density:

W̃elast = G̃
2

[
λ2

1 + λ2
2 + λ2

3 − 3 − 2 log J
]
, (2.2)

where G̃ is the shear modulus of the gel. Commonly, the shear modulus is found to follow
a linear behaviour with temperature, G̃ = k̃BT̃/Ω̃p, where T̃ is the temperature (in kelvin),
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k̃B is the Boltzmann constant, and Ω̃p is the volume of polymer per polymer molecule
in the reference state. (Note that often this is written as G̃ = Ñk̃BT̃ , with Ñ the number
density of polymer chains in the reference state, but Ñ and Ω̃p are related simply through
Ñ = 1/Ω̃p.)

For the mixing contribution to the free energy density, we use the Flory–Huggins
polymer theory (Flory 1942; Huggins 1942; Flory & Rehner 1943b) to get the mixing
energy density

W̃mix = k̃BT̃

Ω̃f
J
[
φ log φ + χφ(1 − φ)

]
. (2.3)

Here, φ is the porosity (i.e. the local proportion of fluid per unit mixture volume), and Ω̃f
is the volume of fluid per fluid molecule in the unmixed state. Note that in (2.3), there
is a factor J to account for the local volume change relative to the reference state, due to
deformation of the gel.

The term χ in (2.3) is the (Flory) mixing parameter, and gives the degree to which
the polymer and fluid like to mix; in general, this mixing parameter can depend on
both temperature and mixture composition, χ = χ(T̃, φ). It has been suggested that
both components are required to reproduce experimental data accurately (Lopez-Leon
& Fernandez-Nieves 2007). There are many possible options for this function, but for
simplicity, we focus on a relationship that is linear in both the temperature and the polymer
fraction:

χ(T̃, φ) = χ0(T̃) + χ1(T̃) (1 − φ),

χ0(T̃) = A0 + B0T̃, χ1(T̃) = A1 + B1T̃,

}
(2.4)

where A, B are constants, as modelled by Cai & Suo (2011). We note, however, that
many other models for this mixing parameter exist: constant (Hong et al. 2008; Bertrand
et al. 2016; Hennessy et al. 2020), dependent only on the temperature (Tomari & Doi
1995; Chester & Anand 2011), or with more complicated behaviours, such as including
terms inversely proportional to temperature (Tanaka 1978; Quesada-Pérez et al. 2011) or
quadratic powers (Drozdov & Christiansen 2017). We have chosen to use the linear relation
(2.4) because it is simple, yet still includes the important local composition dependence.
Despite this simplicity, different choices of the constants can give a range of different
behaviours, both quantitatively and qualitatively.

To relate the polymer fraction and J, we must define the reference state, where J = 1
everywhere. For simplicity, and in line with many other works on hydrogel swelling (Doi
2009; Bertrand et al. 2016; Hennessy et al. 2020), we consider the reference state to be the
dry state, where the polymer is a solid block with φ = 0; we note, however, that there is
some debate as to what an appropriate reference state is, and whether such a completely
dry state is indeed physical (Quesada-Pérez et al. 2011). Treating the polymer chains as
incompressible and the mixture as ideal, the relation between the volume change and solid
fraction is then given simply by

J = 1
1 − φ

. (2.5)

2.2. Free-swelling equilibria
We now turn to consider the equilibrium swelling of a hydrogel. Under free-swelling
conditions, where no external stresses are applied to the hydrogel, and the background
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fluid in the surrounding environment is static, the stretches in each direction must be equal,
λi = λ with J = λ3. The free energy density can therefore be rewritten as a function of λ
only:

W̃(λ) = 3G̃
2

[
λ2 − 1 − 2 log λ

]
+ k̃BT̃

Ω̃f

[
(λ3 − 1) log

(
1 − 1
λ3

)
+ χ

(
1 − 1
λ3

)]
,

(2.6)

with χ = χ0(T̃) + χ1(T̃)/λ3.
Equilibria are found by minimising the free energy density so that dW̃(λ)/dλ = 0; the

equilibrium stretch λ must therefore satisfy the equation

λ2 − 1
λ3 + Ω

[
log

(
1 − 1
λ3

)
+ 1
λ3 + χ0 − χ1

λ6 + 2χ1

λ9

]
= 0. (2.7)

Given the mixing parameter χ(T̃, φ), the equilibrium solutions λ = λ(T̃;Ω) can then
be calculated as a function of temperature with a single parameter, Ω = Ω̃p/Ω̃f . This
parameter encodes the relative importance of the mixing and elastic energies, but it is also
the ratio of volume per polymer chain compared to a fluid molecule (or, alternatively, a
ratio of their densities) and is in general expected to be large. The value of this parameter
may vary depending on factors such as the gel composition and curing conditions (since
these affect the stiffness of the gel), and can take values from tens (Quesada-Pérez et al.
2011; Drozdov 2014) to hundreds (Tanaka 1978; Cai & Suo 2011) and above (Bertrand
et al. 2016).

To complete the calculation of the equilibrium swelling, it therefore remains to define
the functions χ0 and χ1, i.e. choose values for the constants A and B in (2.4). Even after
restricting the equilibrium swelling to certain qualitative behaviour (such as being more
swollen at low temperatures, with a swelling transition within a certain temperature range),
there remains a wide range of possible choices for these parameters; we consider two
possibilities using equilibrium data extracted from the literature.

In the first case, we take the values used previously by Cai & Suo (2011) in modelling
the mechanics of a thermo-responsive hydrogel:

Ω = 100,

A0 = −12.947, A1 = 17.92,

B0 = 0.04496 K−1, B1 = −0.0569 K−1.

⎫⎪⎬
⎪⎭ (2.8)

The values of A and B given here were determined by Afroze, Nies & Berghmans (2000)
from a prepared sample of PNIPAM. In this case, the equilibrium curve is multi-valued,
taking a characteristic S-shape as shown in figure 3(a). We will refer to this as the
Afroze–Nies–Berghmans (ANB) solution. Small changes in temperature can result in a
large (discontinuous) jump in the level of equilibrium swelling. This equilibrium behaviour
has been observed experimentally in some thermo-responsive hydrogels (e.g. Tanaka 1978;
Hirokawa & Tanaka 1984; Sato Matsuo & Tanaka 1988). The volume phase transition
temperature for shrinking in this example is T̃c ≈ 305.8 K, and we expect a large degree
of shrinking when the temperature is increased above this. However, we note that there is
a small range of temperatures over which there are multiple possible equilibrium solutions
(the system exhibits hysteresis); when decreasing the temperature from an originally
deswollen state, the hydrogel will swell significantly only once below the volume phase
transition for swelling, T̃c ≈ 304.7 K, which is lower than that for the shrinking transition.
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Figure 3. Equilibrium swelling of thermo-responsive hydrogels under free-swelling conditions (solid curves)
for (a) the ANB parameters (2.8), and (b) the HHT parameters (2.9). The stretch (or factor increase in lengths
compared to the dry state) λ is calculated as a function of temperature T̃ using (2.7). The dashed lines show the
spinodal curves, where ∂2W̃/∂λ2

i = 0, with the spinodal regions being the darker shaded areas, ∂2W̃/∂λ2
i < 0.

The lighter shaded regions are where the isotropically-stretched state can coexist alongside another with a
discontinuous normal stretch across the interface. In (b), the fitted curve is compared to (rescaled) data from
Hirotsu et al. (1987), and the inset shows a zoom of the region close to the swelling transition.

We also consider an example that is found by fitting (2.7) to data captured from
figure 3 of Hirotsu, Hirokawa & Tanaka (1987) for another sample of PNIPAM. To do
this, we rearrange (2.7) to T̃ = T̃(λ), and fit the appropriate six parameters, which are
Ω, A0, B0, A1, B1 and the scaling between their gel radius and the stretch (i.e. determine
the radius at which λ = 1, since this is unknown in the experiment). This fitting was
implemented using the MATLAB least-squares fitting nonlinlsq from the Optimization
Toolbox, running the fitting a large number of times to remove any local minima that were
found. The best-fit parameters are found to be

Ω = 720,

A0 = −62.22, A1 = −58.28,

B0 = 0.20470 K−1, B1 = 0.19044 K−1,

⎫⎪⎬
⎪⎭ (2.9)

with the scaling between the data and the equilibrium stretch found to be 0.4127. These
parameters are noticeably different from those in (2.8), with each changing by at least
several fold between the two examples, but this is not particularly unexpected considering
Ω has a wide range of reported values in the literature, depending on the choice of
monomer and cross-linker and how the hydrogel is prepared.

The equilibrium curve that is calculated from these parameters is shown in figure 3(b),
with the comparison between the fitting and the data also illustrated. There is a sharp
transition in the equilibrium degree of swelling close to T̃c ≈ 307.6 K (when both
swelling and shrinking). The fitted equilibrium solutions are again multi-valued around
the transition, but over a much smaller region (approximately 0.01 K wide) that would
certainly not be detectable experimentally, as can be seen in the inset to figure 3(b).
This solution and parameter set will be referred to as the Hirotsu–Hirokawa–Tanaka (HHT)
solution, to distinguish it from the ANB case (2.8).
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2.3. Coexistence and spinodal curves
In addition to the equilibrium curves in figure 3, we have also plotted two shaded regions
for each model hydrogel. To understand these, we first note that the free energy density
can be written as a function of the principal stretches only, W̃ = W̃(λ1, λ2, λ3), since J =
λ1λ2λ3 = 1/(1 − φ). The darker shaded region is bounded by the dashed curve

∂2W̃

∂λ2
i

(λ1 = λ2 = λ3 = λ; T̃) = 0. (2.10)

Inside the darker shaded region, a uniformly swollen hydrogel is linearly unstable to
uniaxial perturbations. We call this region the spinodal region, and the curve the spinodal
curve.

We also consider when an isotropically swollen state, with stretch λ, can be in local
equilibrium with an adjoining gel state with a different degree of swelling, with a sharp
interface between them. The two stretches in directions tangential to the interface must
vary continuously across the interface, λt = λ, but the stretch in the normal direction can
be discontinuous, λn = λnew /= λ, and can be either more or less swollen than the isotropic
state. At the interface, the following balance condition must be satisfied (Sekimoto &
Kawasaki 1989; Sekimoto 1993; Tomari & Doi 1995):

∂W̃
∂λn

(λ, λ; T̃) = ∂W̃
∂λn

(λnew, λ; T̃) = W̃(λnew, λ; T̃) − W̃(λ, λ; T̃)

λnew − λ , (2.11)

where, for simplicity, we here write the arguments of the free energy density as W̃ =
W̃(λn, λt; T̃). As we will see later when defining the stress, the first equality here is
enforcing a mechanical stress balance across the interface so that the normal stress is
continuous. The second equality ensures that the two sides are in chemical equilibrium,
so the gradient ∂W̃/∂λn is well-defined at the interface. At a given temperature T̃ , (2.11)
therefore gives two equations in two unknowns, λ and λnew, which can be solved and
plotted in (T̃, λ)-space; we instead choose values of λ and solve for both T̃ and λnew. Since
the free energy density is symmetric in the principal stretches (i.e. λ1, λ2, λ3), we can solve
(2.11) by taking derivatives with respect to any principal stretch as the normal direction,
so that, for example, λn = λ1 without loss of generality, and plot the solution as the dotted
line in figure 3, called the coexistence curve. In the lighter shaded region, bounded by this
curve, the described coexistence between the neighbouring isotropic and anisotropic states
can still occur mechanically, but the latter is energetically favourable and will be expected
to invade the domain.

Considering a hydrogel that is initially isotropically swollen with stretch λ at
temperature T̃ , we may expect to observe different dynamic behaviours depending upon
which region of (T̃, λ)-space the hydrogel starts in. In the spinodal region, the initial
state is unstable, so we might see spontaneous swelling or shrinkage within the interior
of the hydrogel due to the growth of any small perturbations – spinodal decomposition.
If, instead, the initial state is within the coexistence region, then there is an energetically
favourable alternative state. However, the gel must be stimulated at some specific location
to overcome the energy barrier required to generate this alternative state, which can then
invade the domain – this is nucleation and growth. Therefore, when starting in these two
regions, we expect to see phase separation in the hydrogel. The behaviours of gels in the
non-shaded regions of figure 3 are slightly more complicated to predict, since as a gel
swells or shrinks, it is generally no longer isotropically swollen, thus phase separation
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could occur after a delay, or not at all. We will turn to investigate some of these behaviours
in a spherical thermo-responsive hydrogel, but first we introduce a model for the dynamics
of such a gel.

3. Poro-mechanics of a swelling spherical gel

We now turn to focus on the dynamics of a spherical hydrogel, based on the poro-elastic
model of Bertrand et al. (2016) that was used to investigate gel swelling from a dry
state and subsequent drying by evaporation. The main point of difference in this study
is the inclusion of the effect of temperature and composition dependence in the mixing
parameter χ(T̃, φ), to enable modelling of the thermo-responsive physics, as well as the
removal of the external forcing due to the chemical potential of the surrounding fluid
bath and a small difference in the form of the mixing energy density (2.3), since we do
not include any term of the form (1 − φ) log(1 − φ) because its prefactor is negligible
(Engelsberg & Barros 2013). We repeat some key points of the mechanical model here for
completeness.

3.1. Strains
For a sphere undergoing a spherically symmetric deformation with a radial displacement
ũ(r̃, t̃), the principal stretches are (Bertrand et al. 2016)

λr =
(

1 − ∂ ũ
∂ r̃

)−1

, λθ = λϕ =
(

1 − ũ
r̃

)−1

, (3.1a,b)

where r̃ is the radial coordinate from the centre of the sphere, θ and ϕ are the spherical
angle coordinates, and t̃ is time. This can be seen by considering a small piece of the gel
that is initially at radial distance r̃0 in the undeformed reference state; once deformed, it
is stretched locally by an amount ∂ r̃/∂ r̃0 in the radial direction and r̃/r̃0 in the angular
directions, and we have that ũ = r̃ − r̃0.

We can then relate the stretches to the porosity through the local volume change J,
since we have J = λrλ

2
θ , but also (2.5) holds (since the reference volume is taken to

be the dry state with φ = 0). Combining these relations for J, we find a first-order
differential equation in r̃ for the displacement ũ. This can be integrated once to determine
the displacement in terms of the porosity:

ũ(r̃, t̃) = r̃ −
(

r̃3 − 3
∫ r̃

0
x2 φ(x, t̃) dx

)1/3

, (3.2)

with ũ(0, t̃) = 0 at the centre of the sphere, and ũ(ã, t̃) = ã − ãd at the sphere edge.
Therefore, given the porosity φ(r̃, t̃) in the gel sphere, we can calculate the radial

displacements ũ(r̃, t̃) and hence the stretches λi(r̃, t̃).

3.2. Stresses
Having determined the strains in the sphere, it remains to calculate the stresses. The
mechanical stresses σ̃ acting on the gel can be written in terms of gradients of the
free energy density W̃, given in (2.1)–(2.3). We decompose the stress components into
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contributions from the elastic deformation and the chemical mixing:

σ̃i = σ̃ ′
i − p̃, (3.3)

where σ̃i are the principal Cauchy stresses within the mixture. The Terzaghi effective stress
(which is the elastic contribution) is defined by

σ̃ ′
i = λi

J
∂W̃elast

∂λi
= G

λ2
i − 1

J
. (3.4)

The pressure is split into an osmotic pressure Π̃ due to the interaction of the fluid and
polymer, and the chemical potential μ̃:

p̃ = Π̃ + μ̃

Ω̃f
, (3.5)

where the osmotic pressure is given by

Π̃ = −dW̃mix

dJ
= − k̃BT̃

Ω̃f

[
log

(
1 − 1

J

)
+ 1

J
+ χ0 − χ1

J2 + 2χ1

J3

]
. (3.6)

The justification for the elastic stress and osmotic pressure being written in terms of
derivatives of the free energy density can be found by considering the work done when
changing the hydrogel mixture by a small volume locally (see (4) and (5) of Bertrand et al.
2016). More generally, the stress tensor can be written in terms of derivatives of the free
energy density with respect to the deformation tensor (e.g. Doi 2009; Tadmor, Miller &
Elliott 2012), but we stick to the simpler spherically symmetric model outlined above.

The term μ̃/Ω̃f in (3.5) arises to account for the work required to move fluid into the
mixture. An alternative view of this term is that it is the pervadic pressure of the fluid in
the mixture – a connected fluid-only bath in local equilibrium with the fluid in the mixture
would be at this pressure (Peppin, Elliott & Worster 2005; Etzold et al. 2021).

Note that the precise value of the chemical potential does not affect the equilibrium
calculations, since it must be uniform and equal to the ambient value in the surrounding
fluid. As we will see, only gradients in the chemical potential alter the dynamics. In reality,
the value of the ambient chemical potential should differ at each temperature, but this will
turn out to be unimportant for our simulations as we consider only dynamics at a fixed
temperature. More care may be needed in more complex scenarios, but note that adding a
uniform amount to the chemical potential results in only a uniform increase in the stress,
with otherwise no effect on our results.

3.3. Poro-elastic flow
To resolve the dynamic behaviour of the swelling and shrinking hydrogel sphere, we need
to understand the fluid flow within the gel pore space. The fluid velocity ṽf , relative to the
motion of the gel ṽp, is driven by the chemical potential gradient (Darcy flow):

φ(ṽf − ṽp) = − k̃(φ)

η̃

∂

∂ r̃

(
μ̃

Ω̃f

)
, (3.7)

where η̃ is the fluid viscosity and k̃ is the permeability of the hydrogel. Note that the Darcy
flow here is driven only by the chemical potential because, as mentioned previously, it is
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equivalent to the pressure of the fluid within the mixture by itself (Peppin et al. 2005).
This Darcy flow is what makes the dynamic modelling different from that of Tomari &
Doi (1995), since here we account explicitly for the interstitial fluid flow relative to the
solid matrix, rather than accounting for it through an energy dissipation via friction.

We take the permeability to be isotropic and a function of the porosity k̃(φ). For
simplicity, we will present results with a constant permeability k̃0, but keep a general form
in our equations. We discuss an alternative permeability model used by Bertrand et al.
(2016) in Appendix C.

As the hydrogel swells or shrinks, any deformation of the solid structures must be
accompanied by a corresponding displacement of fluid; in this manner, conservation of
solid volume dictates that the porosity must obey

∂

∂ t̃
(1 − φ) + 1

r̃2
∂

∂ r̃
[r̃2(1 − φ)ṽp] = 0, (3.8)

and a similar equation holds for the fluid velocity ṽf , with φ replacing 1 − φ. Combining
these two relations gives a simple relation of no net flux in any cross-section:

φṽf + (1 − φ)ṽp = 0. (3.9)

Combining (3.7)–(3.9), we find a partial differential equation for the evolution of the
porosity in terms of the gradient of the chemical potential:

∂φ

∂ t̃
= 1

r̃2
∂

∂ r̃

[
r̃2(1 − φ)

k̃(φ)

η̃Ω̃f

∂μ̃

∂ r̃

]
. (3.10)

Note that this is a Reynolds equation of the form ∂φ/∂ t̃ + ∇ · Q = 0, with radial flux
Q = −[(1 − φ) k̃(φ)/(η̃Ω̃f )] × ∂μ̃/∂ r̃. Conservation of fluid volume then means that the
sphere radius changes due to the outward radial flux at the sphere edge:

dã
dt̃

= k̃(φ)

η̃Ω̃f

∂μ̃

∂ r̃
at r̃ = ã. (3.11)

A stress balance in the solid enforces ∇ · σ̃ = 0; considering the radial component of
this, we can determine the chemical potential gradient in terms of the Terzaghi stresses
and osmotic pressure via

Ω̃−1
f

∂μ̃

∂ r̃
= ∂σ̃ ′

r

∂ r̃
+ 2

σ̃ ′
r − σ̃ ′

θ

r̃
− ∂Π̃

∂ r̃
. (3.12)

3.4. Non-dimensionalisation
We rescale the governing equations using the dry sphere radius ãd, the permeability scale
k̃0, the stress scale k̃BT̃end/Ω̃p (for a final temperature T̃end), the chemical potential scale
k̃BT̃endΩ̃f /Ω̃p, and the time scale

τ̃ = η̃Ω̃pã2
d

k̃0k̃BT̃end
. (3.13)

Note that the time scale here is proportional to the square of the size of the gel sphere,
τ̃ ∝ ã2

d, just as was found for the swelling of gels by Tanaka & Fillmore (1979); here,
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the effective diffusivity is D̃ ∼ (k̃0k̃BT̃end)/(η̃Ω̃p). In general, we expect this time scale
to be much longer than that for thermal diffusion: Tanaka & Fillmore (1979) reported
a diffusivity of 3 × 10−7 cm2 s−1, which is 104 times smaller than a typical thermal
diffusivity for water, suggesting that typically, swelling takes 100 times longer than the
diffusion of heat. We obtain a similar effective diffusivity for our swelling gel model
when η̃ = 10−3 Pa s, Ω̃p = 3 × 10−25 m3 and k̃0 = 8 × 10−20 m3 (Bertrand et al. 2016).
We therefore model temperature changes as being effectively instantaneous and uniform
over the whole system.

We also note that, in general, the fluid viscosity η̃ may be temperature-dependent. Since
this viscosity appears in the dimensionless model only through the time scale τ̃ , defined
in (3.13), and all simulations are to be conducted at fixed temperature, this does not affect
any of our dimensionless results. However, there will be a quantitative effect that must
be accounted for when considering the real dimensional dynamic swelling and shrinking
times.

From this point onwards, we write all equations and results in dimensionless terms,
removing the tildes used in earlier equations that denote the dimensional forms of
variables. The only remaining dimensional quantity is the temperature T̃ , since its
dimensional value matters, although in all of our equations it will be non-dimensionalised
by multiplying by B0 or B1 in χ .

The dimensionless partial differential equation for the evolution of the porosity is

∂φ

∂t
= 1

r2
∂

∂r

[
r2(1 − φ) k(φ)

∂μ

∂r

]
, (3.14)

for a dimensionless permeability k(φ) (which we take to be k = 1). The chemical potential
gradient is given in terms of the stresses:

∂μ

∂r
= ∂σ ′

r

∂r
+ 2

σ ′
r − σ ′

θ

r
− ∂Π

∂r
. (3.15)

These stresses are defined in terms of the strains through

σ ′
i = λ

2
i − 1

J
, (3.16)

and similarly for the osmotic pressure

Π = −Ω

[
log

(
1 − 1

J

)
+ 1

J
+ χ0 − χ1

J2 + 2χ1

J3

]
, (3.17)

where Ω = Ω̃p/Ω̃f is the parameter mentioned previously that relates the relative
importance of the mixing and elastic energies.

The strains can be calculated directly from the porosity φ(r, t) by first determining the
radial displacement

u = r −
(

r3 − 3
∫ r

0
x2φ dx

)1/3

. (3.18)

The stretches and volume change are then

J = 1
1 − φ

, λθ = 1
1 − u/r

, λr = J

λ2
θ

. (3.19a–c)
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The sphere edge moves according to the chemical potential gradient there:

da
dt

= k(φ)
∂μ

∂r
at r = a. (3.20)

Note that at the sphere edge, the displacement is u = a − 1 and λθ = a. We also
enforce chemical equilibrium, μ = μ0, and a radial stress balance, σr = −μ0, at the sphere
boundary, where μ0 is the chemical potential of the surrounding background fluid. Note
that the radial stress just inside the sphere is not zero because it must balance the external
fluid pressure (cf. pervadic pressure). Combining these two conditions enforces σ ′

r = Π ,
which gives a nonlinear equation for J at the sphere edge:

J
a4 − 1

J
+ Ω

[
log

(
1 − 1

J

)
+ 1

J
+ χ0 − χ1

J2 + 2χ1

J3

]
= 0. (3.21)

Note that these boundary conditions mean that the hydrogel dynamics has no dependence
on the external chemical potential μ0. This differs from the model of Bertrand et al. (2016),
where there is a stress discontinuity at the sphere edge, but does align with other models
(e.g. Hennessy et al. 2020).

Further, we are neglecting any mechanical feedback from the subsequent external
fluid flow. We expect the outside flow to be unimportant to the swelling dynamics
because the polymer’s incompressibility means that any fluid flux through the boundary
must be compensated for exactly by the boundary motion itself (except for, perhaps,
some inhomogeneity at the pore scale). Some recent studies have shown that responsive
hydrogels are able to generate substantial bulk fluid motions, such as cyclic swelling of
bilayer ribbons causing net swimming (Tanasijević et al. 2022), but in this reported case,
this was possible because of some significant asymmetry in the material composition of
the particle due to impermeable sections of the boundary, which caused shape change and
asymmetric fluid flow across the boundary.

In summary, our model comprises a neo-Hookean free energy density for deformation
(2.2), the Flory–Huggins free energy density of mixing for a non-ionic gel (2.3), a
particular form for the temperature and composition dependence of the mixing parameter
(2.4), and poro-elastic dynamics with fluid motion given by Darcy flow (3.7). This
combination results in the dimensionless governing equations for the evolution of the
swelling or shrinking thermo-responsive gel, given in (3.14)–(3.21).

3.5. Numerical scheme
We solve these equations numerically using a spatial grid in the range N = 200−400
points and time step Δt = 10−7−10−8, with results recorded every t = 10−4. Such a small
time step was used to maintain numerical stability with high spatial resolution for this
simple numerical scheme. Details of the scheme are given in Appendix A.

4. Dynamics of a swelling or shrinking sphere

To investigate the dynamics of a thermo-responsive hydrogel sphere, we consider scenarios
where the sphere is initially in equilibrium at temperature T̃ = T̃start, before applying
an instantaneous change in the temperature to T̃ = T̃end. In particular, we consider
temperature changes across the volume phase transition temperature. These are considered
for both of the example gels introduced in § 2; we begin by considering the results for the
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Figure 4. An illustration of the dynamic trajectories that are simulated for the two model hydrogels: (a) ANB,
and (b) HHT. The paths labelled (i)–(iii) correspond to the results presented in the main text (in the order in
which they occur). Immediately after the instantaneous temperature change, the hydrogels are at the points
labelled by crosses, and subsequently they evolve towards equilibrium at a fixed temperature. The inset shows a
zoom close to the volume phase transition, along with path (iii). Note that during the dynamics, the stretches in
the radial and angular directions will vary, so the true paths do not remain on this diagram of isotropic stretch,
which is merely illustrative.

Cai & Suo (2011) parameters (ANB), before looking at the results from the parameter
fitting to the Hirotsu et al. (1987) data (HHT) in § 4.2.

4.1. Results for the ANB parameter set
Taking the ANB parameters (2.8), we obtain the multi-valued equilibrium curve shown
in blue in figure 4(a), with a characteristic S-shape. We will consider the three dynamic
trajectories illustrated in figure 4(a). We first consider the swelling dynamics: starting
at higher temperatures, with a gel at equilibrium on the lower branch of the curve, the
temperature is decreased instantaneously below T̃c ≈ 304.7 K (the volume phase transition
temperature for swelling). The gel sphere swells significantly, evolving according to the
equations presented in § 3.

Results for the dynamic swelling of a gel from an initial temperature T̃start = 308 K to a
final temperature T̃end = 302 K (trajectory (i) in figure 4) are shown in figure 5. The sphere
swells from an initial state with radius a = 1.11 and uniform porosity φ = 0.27 towards
an equilibrium that is over twice as big, with radius a = 2.29 and porosity φ = 0.92. The
swelling initiates at the edge of the sphere and propagates smoothly inwards, towards the
centre, with the system getting close to equilibrium after a dimensionless time t = 1.

When the opposite scenario is considered, with the temperature increasing from
T̃start = 302 to T̃end = 308 K to promote shrinking of the gel (see the trajectory (ii) in
figure 4), the dynamics is starkly different. In this case, the temperature is increased
above T̃c ≈ 305.8 K (the volume phase transition temperature for shrinking), resulting in
significant shrinking. In figure 6, we show the evolution of the sphere after this instant
heating.

Similar to the swelling dynamics, the shrinking begins from the edge and propagates
inwards. However, in this case, the sphere separates into a swollen core and shrunken shell
with a sharp boundary between them; we call this sharp transition in porosity/swelling a
‘front’. This front (whose location is illustrated in red in figure 6a) forms close to the edge,
and moves inwards towards the centre, driving the dynamics of the shrinking.
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Figure 5. Swelling of a hydrogel for the ANB equilibrium curve. The temperature is decreased from
T̃start = 308 K to T̃end = 302 K. (a) Colour map showing porosity as a function of space and time. (b) Porosity
profiles plotted at fixed times from t = 0 to t = 0.2 in intervals of t = 0.02, alongside the expected final
equilibrium profile (dashed line). The dotted profiles are to illustrate the late-time dynamics, and are plotted at
times t = 0.4, 0.6, 0.8, 1.
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Figure 6. Shrinking of a hydrogel for the ANB equilibrium curve. The temperature is increased from
T̃start = 302 K to T̃end = 308 K. (a) Colour map showing porosity as a function of space and time. (b) Porosity
profiles plotted at fixed times from t = 0 to t = 0.3 in intervals of t = 0.05, alongside the expected final
equilibrium profile (dashed line).

Looking at the paths in (T̃, λ)-space shown in figure 4(a), we see that a key difference
between the swelling and shrinking is that, after the instantaneous temperature change
when shrinking, the initial homogeneous state is transported to the coexistence region in
the equilibrium diagram, illustrated by the lighter shaded area. After this, a shrunken state
forms quickly at the sphere edge that is separated from the swollen core by a sharp front;
this shrunken phase is energetically favourable and invades the domain.

We can also see in figure 3(a) that the coexistence and spinodal regions extend a small
amount to the left of the S-bends of the equilibrium curve. From an initially deswollen
equilibrium state, although it is not possible to move directly to the coexistence region, it
may be possible that a decrease in the temperature just past the volume phase transition
for swelling could result in the gel being affected in a similar manner as it swells. The
question is then: is this phase separation behaviour seen for these swelling cases?

To test this, we calculated the evolution of the hydrogel sphere from an initial
temperature T̃start = 308 K to a final temperature T̃end = 304 K (just below T̃c ≈ 304.7 K
shown by path (iii) in figure 4). The results are shown in figure 7. Largely, the profiles look
similar to those in figure 5, but the profiles of φ at given times shown in figure 7(b) now do
have a sharp jump in porosity. A sharp front has formed in the interior of the gel, joining
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Figure 7. Swelling of a hydrogel for the ANB equilibrium curve. The temperature is decreased from
T̃start = 308 K to T̃end = 304 K. (a) Colour map showing porosity as a function of space and time. (b) Porosity
profiles plotted at fixed times from t = 0 to t = 0.5 in intervals of t = 0.05, alongside the expected final
equilibrium profile (dashed line). The dotted profiles are to illustrate the early- and late-time dynamics, and
are plotted at times t = 0.001, 0.01 and t = 1.
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Figure 8. Swelling of a hydrogel for the HHT equilibrium curve. The temperature is decreased from
T̃start = 308 K to T̃end = 304 K. (a) Colour map showing porosity as a function of space and time. (b) Porosity
profiles plotted at fixed times from t = 0 to t = 0.05 in intervals of t = 0.005, alongside the expected final
equilibrium profile (dashed line). The dotted profiles are to illustrate the early- and late-time dynamics, and are
plotted at times t = 0.0001, 0.0005, 0.001, 0.0025 and t = 0.1, 0.2, 0.5.

two smoothly varying profiles together with a porosity jump of around Δφ ≈ 0.1−0.2,
although it is noticeably less pronounced than the front in figure 6.

4.2. Results for the HHT parameter set
We also consider the swelling and shrinking of the hydrogel from the HHT data. As
discussed in § 2, we take the parameters (2.9) that are fitted from the data of Hirotsu et al.
(1987), which results in the red solid curve plotted in figure 4(b), alongside the dynamic
paths that we consider.

For these parameters, we again first consider the swelling dynamics. In figure 8, we
plot the porosity as a function of space and time following a temperature decrease from
T̃start = 308 to T̃end = 304 K, where we expect to see a swelling of the hydrogel from an
initial porosity φ = 0.36 and radius a = 1.16 to a final porosity φ = 0.95 and radius a =
2.67 (trajectory (i) in figure 4b). The dynamics of swelling appears qualitatively similar to
the swelling seen in § 4.1, although it occurs much faster. Note, however, that in contrast
to the ANB case, the spinodal and coexistence regions do not cross the equilibrium curve.
As such, there is no opportunity to find a swelling solution in which a front develops.
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Figure 9. Shrinking of a hydrogel for the HHT equilibrium curve. The temperature is increased from
T̃start = 304 K to T̃end = 308 K. (a) Colour map showing porosity as a function of space and time. (b) Porosity
profiles plotted at fixed times from t = 0 to t = 0.4 in intervals of t = 0.05, alongside the expected final
equilibrium profile (dashed line).
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Figure 10. Shrinking of a hydrogel for the HHT equilibrium curve. The temperature is increased from
T̃start = 304 K to T̃end = 307.6 K. (a) Colour map showing porosity as a function of space and time. (b)
Porosity profiles plotted at fixed times from t = 0 to t = 6 in intervals of t = 0.5, alongside the expected
final equilibrium profile (dashed line). The dotted profiles are to illustrate the faster dynamics at later times,
and are plotted at times t = 5.25, 5.75.

Reversing the temperature change, so that T̃ increases from 304 to 308 K (path (ii) in
figure 4), we obtain the results shown in figure 9. The dynamics of shrinking appears to
again be dominated by the formation of a sharp front that travels radially inwards.

For this gel, however, we note that it is now possible to shrink by increasing the
temperature past the volume phase transition temperature without entering, or at least
lingering, in either the coexistence or spinodal regions (see path (iii) and inset to figure 4).
When considering a smaller temperature increase from T̃start = 304 to T̃end = 307.6 K,
shown in figure 10, we no longer find that a front is formed; the gel shrinks smoothly
over a dimensionless time of order t = 6. In this case, although the gel still undergoes a
significant shrinkage from a = 2.67 to a = 1.41, its path in the (T̃, λ)-space of figure 3(b)
does not pass through the coexistence or spinodal regions, and phase separation does not
occur.

We note, however, that the shrinking here occurs in two stages with different time scales.
We believe that in this specific case, it is because the temperature is only just above the
volume phase temperature: the dynamics is ‘close to equilibrium’ as the dynamic path
passes close to the fold in the equilibrium curve, since it is near a swollen equilibrium
that that exists at marginally smaller temperatures. This slowing down behaviour near a
bifurcation is well-known, often referred to as ‘critical slowing down’ or a ‘bottleneck’
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Swelling and shrinking of thermo-responsive hydrogels

due to the ‘ghost’ of a nearby equilibrium (Virgin 1986; Tredicce et al. 2004; Gomez,
Moulton & Vella 2017).

4.3. Comparison of results
In both model systems, we have seen a range of different dynamic behaviours. Both cases
exhibited swelling that progressed smoothly inwards, and shrinking that resulted in a sharp
travelling front between a swollen core and shrunken shell. In each model gel, we were also
able to find an example of the opposite behaviour.

The occurrence of front formation during shrinking seems to align with whether
the initial homogeneous state is within the bounds of the coexistence regions that are
illustrated in figure 3. When starting there, the gel initially phase separates close to the
boundary, forming two regions with different degrees of swelling; the newly created
shrunken state then spreads inwards, replacing the swollen core.

Similar behaviour for shrinking gels was also found by Tomari & Doi (1995). They
showed that (for their model hydrogel) there are equilibria that appear linearly stable
but exist within the coexistence region and so are thermodynamically unstable, and
calculated the intersection between the coexistence and equilibrium curves. Their dynamic
simulations revealed an inwards-propagating front, similar to ours, but with an an
overshoot in the amount of shrinking behind (outside) the front that we do not observe.
It is not clear whether this difference is a numerical artefact or related to the change in the
dynamic model to incorporate Darcy flow.

We also found that phase separation, although apparently common in the phase space of
our shrinking hydrogel examples, does not always occur when heating a thermo-responsive
hydrogel. For small temperature changes above the transition, one of our model hydrogels
(see figure 10) shrank smoothly with no front formation.

Swelling of the hydrogel generally occurs smoothly towards the ultimate equilibrium
state, since the dynamics is often not affected by the phase separation mechanisms seen
in the shrinking dynamics; the coexistence and spinodal regions are mostly at higher
temperatures. However, we did find that phase separation could occur when swelling in
some cases, with the formation of a small but sharp front in one of our examples (figure 7).
Here, the initial condition was not in the coexistence region, so no front immediately
formed, but as the solution evolved, some (now anisotropic) part of the hydrogel passed
its coexistence limit and a small inwards-travelling front formed between a swollen shell
and a shrunken core. (Recall that the coexistence curve given by (2.11) was calculated for
an isotropic hydrogel; a similar equation holds for hydrogels in an anisotropic state but
with normal and tangential stretches that differ from one another.) Similar behaviour may
explain the two-stage dynamics observed in the experiments of Sato Matsuo & Tanaka
(1988) for a swelling thermo-responsive hydrogel just above the transition temperature.

Although the shaded coexistence and spinodal regions illustrated in figure 3 are valid
only for an isotropically swollen hydrogel, and as the hydrogel swells or shrinks it will
in general not remain isotropically swollen, they are still useful in determining when this
delayed front formation may occur. This is because, in this enforced spherical symmetry,
the centre of the sphere must always remain isotropically stretched – the radial and angular
stretches converge near the centre, λr − λθ → 0 as r → 0, since the stretches are given
by (3.19a–c) and u/r → ∂u/∂r as r → 0 (consider a Taylor expansion close to r = 0
with u(r = 0) = 0). As such, any trajectory (see figure 4) at fixed temperature that begins
outside the coexistence region and passes through the coexistence curve will be expected
to undergo (delayed) phase separation. For example, shrinking the ANB hydrogel from
302 to 306 K resulted in delayed front formation (see Appendix B).
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Beyond this, we have not presented any results that started in the spinodal region.
Simulations in this case exhibit spontaneous phase separation, with shrunken regions
appearing in the interior of the hydrogel (see Appendix B). Similar dynamics has been
observed in one-dimensional hydrogels (Hennessy et al. 2020). However, we do not
explore this more fully because the spherically symmetric constraint of our model causes
unrealistic results: the internal phase separation observed is not likely to occur at a given
radius all at once to form shrunken concentric spherical shells, but instead occurs in small
localised regions across the whole hydrogel that break the spherical symmetry.

We have therefore characterised and classified a range of different dynamic behaviours
at fixed temperature using the coexistence and spinodal regions shown in figure 3. The
importance of the coexistence and spinodal conditions has been highlighted previously
in thermo-responsive hydrogels (e.g. Sekimoto 1993), and our results are an extension of
the predictions of Tomari & Doi (1995), who found phase separation behaviour inside
the coexistence region that caused a small range of apparently stable equilibrium states
close to the transition to be effectively unstable in practice. We have demonstrated that
this dynamic behaviour extends beyond the transition region, and found where it occurs.

The results from our two model hydrogels suggest that phase separation is much
common for shrinking hydrogels than those that are swelling. In many scenarios, such
as during the expulsion phase of a drug-laden hydrogel, it is particularly important to
understand the shrinking behaviour and dynamics of these thermo-responsive hydrogels,
and we have seen that front propagation is a key feature of shrinking gels. We therefore
turn to investigate the dynamics of the front in more detail now.

5. Core–shell shrinking front dynamics

When the gel is heated to shrink significantly, simulations suggest that a travelling front
can form, which separates a swollen core from a shrunken shell. This front travels inwards,
and its speed appears to have a dependence on its position since it does not follow a
straight line in either figure 6(a) or figure 9(a). This behaviour may be difficult to observe
experimentally, since it occurs within the gel body, so a theoretical solution would be
helpful in understanding the key features. Therefore, we turn to investigate an approximate
solution for the front shape, with the aim of understanding its behaviour and motion.

5.1. Step function approximation
Solutions that begin in the coexistence region form a sharp front on short time scales.
Once the front has formed, profiles of the porosity suggest that it is very close to being
uniform in space on either side of the front (see figures 6 and 9). In figure 11(a), we plot the
porosity as a function of radius at an arbitrarily chosen time, t = 0.2, from the simulation
for figure 6. We see that this solution looks like a step function, and similar profiles are
seen at other times and in the other shrinking front solutions.

To justify the formation of this step function porosity profile, we note that in our system,
the parameter relating the relative importance of the mixing and elastic contributions is
large: Ω � 1. This means that in general, the osmotic pressure, given by (3.17), dominates
the total stress in the mixture. However, we note that the osmotic pressure is simply a
function of the porosity multiplied by the large factor Ω , i.e. we can write Π = Ω P(φ)

for a function P. Therefore, any O(1) gradients in the porosity will be expected to result
in O(Ω) gradients in the osmotic pressure, and hence also in the total radial stress and
chemical potential gradients due to the stress balance, (3.15). These large stresses will be
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Figure 11. (a) Porosity for the ANB shrinking front of figure 6 at time t = 0.2, compared to a step function
approximation that has levels matched to the initial equilibrium value at the centre and so that the leading-order
osmotic pressure is zero towards the edge. (b) The perturbation in porosity from the step function in the
numerical solution (solid curves) compared to the calculated values of φ

(1)
± from solving (5.14) (dashed), also

at time t = 0.2. The position of the front is denoted by a vertical dotted line.

relaxed on a fast time scale of O(Ω−1), so on an O(1) time scale, we expect to see solutions
with constant osmotic pressure and porosity.

Based on this observation, we look for solutions to the poro-elastic model with a front
at r = Rf using an expansion in terms of the small parameter Ω−1 	 1:

φ(r, t) =
{

φ
(0)
− +Ω−1 φ

(1)
− (r, t) + O(Ω−2) for 0 ≤ r < Rf ,

φ
(0)
+ +Ω−1 φ

(1)
+ (r, t) + O(Ω−2) for Rf < r ≤ a,

(5.1)

where the − terms refer to the solution inside the front, and the + terms to solutions
outside the front.

For the leading-order porosity, we take the inner value as the initial equilibrium,
φ

(0)
− = φ(r = 0, t = 0), as we assume that the inner region has not been able to expel

any fluid during the initial stages of front formation. For the porosity in the outer shell, we
expect a uniform value that satisfies the no-radial-stress boundary condition at the edge.
Since the osmotic pressure is dominant, this would mean that the porosity is such that the
leading-order osmotic pressure vanishes in the entire region, P(φ

(0)
+ ) = 0. We therefore

have a shrunken shell where the leading-order osmotic pressure vanishes. A step function
with these two levels is plotted in figure 11(a) against the numerical solution, and we
see good agreement. The solid line in figure 11(b) shows that the difference between the
numerical result and this step function approximation is only a few per cent.

We now calculate the leading-order contribution to the strains and stresses in the
hydrogel. In each region, the local volume change (relative to the dry reference state) is
found from expanding (2.5) to give

J = 1

1 − φ
(0)
±

+ O(Ω−1), (5.2)

and the radial displacement, calculated using (3.18), is

u =

⎧⎪⎨
⎪⎩
[

1 −
(

1 − φ
(0)
−
)1/3

]
r + O(Ω−1) for 0 ≤ r < Rf ,[

1 − f
]

r + O(Ω−1) for Rf < r ≤ a.

(5.3)
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Here, we have defined the function

f (r) =
[(

1 − φ
(0)
+
)

+
(
φ

(0)
+ −φ

(0)
−
)(Rf

r

)3
]1/3

(5.4)

for Rf ≤ r ≤ a, which takes the values f (Rf ) = (1 − φ
(0)
− )1/3 and f (a) = 1/a. Note that

(4πr3/3) × f (r)3 is equal to the total volume of solid material inside r (when r > Rf ), so
f 3 could be viewed as the average solid fraction within a sphere of radius r once the front
has formed.

We then use the displacements to calculate the stretches λ from (3.19a–c), which are

λθ =
⎧⎨
⎩
(

1 − φ
(0)
−
)−1/3 + O(Ω−1) for 0 ≤ r < Rf ,

f −1 + O(Ω−1) for Rf < r ≤ a,
(5.5)

λr =

⎧⎪⎪⎨
⎪⎪⎩
(

1 − φ
(0)
−
)−1/3 + O(Ω−1) for 0 ≤ r < Rf ,

f 2

1 − φ
(0)
+

+ O(Ω−1) for Rf < r ≤ a.
(5.6)

The Terzaghi stresses are calculated from the strains using (3.16), giving

σ ′
θ =

⎧⎪⎨
⎪⎩
(

1 − φ
(0)
−
)1/3 − (1 − φ

(0)
− ) + O(Ω−1) for 0 ≤ r < Rf ,(

1 − φ
(0)
+
) (

f −2 − 1
)+ O(Ω−1) for Rf < r ≤ a,

(5.7)

σ ′
r =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 − φ

(0)
−
)1/3 − (1 − φ

(0)
− ) + O(Ω−1) for 0 ≤ r < Rf ,

f 4 −
(

1 − φ
(0)
+
)2

1 − φ
(0)
+

+ O(Ω−1) for Rf < r ≤ a.

(5.8)

The (dominant) osmotic pressure, given in (3.17), can be expanded in powers of Ω−1 to
get

Π = Ω P
(
φ

(0)
±
)

+ P′
(
φ

(0)
±
)

φ
(1)
± +O(Ω−1), (5.9)

where we recall that φ
(0)
+ satisfies P(φ

(0)
+ ) = 0, and note that the function P and its first

derivative are given by

P(φ) = − log φ − (1 − φ) − (χ0 − χ1)(1 − φ)2 − 2χ1(1 − φ)3, (5.10)

P′(φ) = − 1
φ

+ 1 + 2(χ0 − χ1)(1 − φ) + 6χ1(1 − φ)2. (5.11)

The leading-order contribution to the chemical potential is then calculated using (3.15) –
noting that f ′(r) = −(φ

(0)
+ − φ

(0)
− )R3

f /r4f 2 and simplifying – to obtain

∂μ

∂r
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−P′
(
φ

(0)
−
) ∂φ

(1)
−

∂r
+ O(Ω−1) for 0 ≤ r < Rf ,

−2
(
φ

(0)
+ −φ

(0)
−
)2

R6
f(

1 − φ
(0)
+
)

f 2r7
− P′

(
φ

(0)
+
) ∂φ

(1)
+

∂r
+ O(Ω−1) for Rf < r ≤ a.

(5.12)
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To sustain a profile that has uniform porosity on either side of a travelling front, we
expect the total fluid flux to be uniform in space at any given time, so that the fluid pushed
outwards by the front moving inwards (causing the gel to contract locally as the front
passes by) is equal to the amount of fluid expelled from the boundary. For this to be the
case, r2 ∂μ/∂r must be uniform in each region. Since ∂μ/∂r = 0 at the centre of the
sphere, the section of swollen core in our solution must therefore have no flux, and the
chemical potential should be of the form

∂μ

∂r
=
{

0 for 0 ≤ r < Rf ,

A/r2 for Rf < r ≤ a,
(5.13)

for some A that we wish to determine – its value quantifies the total (inward) fluid flux
from the gel sphere. Note that A is independent of r but may vary in time, A = A(t).

Equating (5.12) and (5.13), we find a differential equation for the porosity perturbation
in the shrunken shell of the gel, φ

(1)
+ , which is valid for Rf < r < a:

P′
(
φ

(0)
+
) ∂φ

(1)
+

∂r
=

−2
(
φ

(0)
+ − φ

(0)
−
)2

R6
f(

1 − φ
(0)
+
)

f (r)2r7
− A

r2 . (5.14)

At each point in time, this is a first order differential equation in r for φ
(1)
+ (r, t) with one

unknown constant, so we require two boundary conditions.
The first of these is simply the radial stress balance at the outer boundary: σr = −μ0

(i.e. σ ′
r = Π ) at r = a. This gives one condition on φ

(1)
+ at the sphere edge, namely

P′
(
φ

(0)
+
)

φ
(1)
+ = 1

a4
(

1 − φ
(0)
+
) −

(
1 − φ

(0)
+
)

at r = a. (5.15)

The second condition imposes that the radial stress is continuous across r = Rf : [σr]+− =
0. Enforcing that the chemical potential is continuous across the front (i.e. [μ]+− = 0), we
then find a condition for the porosity perturbation at the front:

P′
(
φ

(0)
+
)

φ
(1)
+ =

(
1 − φ

(0)
−
)4/3

[
1

1 − φ
(0)
+

− 1

1 − φ
(0)
−

]

+
(
φ

(0)
+ − φ

(0)
−
)

+ P
(
φ

(0)
−
)

at r = Rf . (5.16)

Given a sphere radius a, front position Rf , and uniform porosities φ
(0)
± , at any point in

time, we can therefore solve the boundary value problem given by the differential equation
(5.14) and boundary conditions (5.15) and (5.16), to determine the porosity perturbation
φ

(1)
+ and (perhaps more importantly) the value of A; hence we can calculate the radial

fluid flux. Note that the differential equation (5.14) could be integrated to determine φ
(1)
+

analytically and give a transcendental equation for A, but we choose instead to solve (5.14)
numerically using MATLAB’s in-built boundary value problem solver bvp4c.

5.2. Comparison to the numerical solution
Taking the values for the porosity and sphere radius used in figure 11(a) at time
t = 0.2, we now plot the leading-order strains and stresses, calculated from (5.5)–(5.8), in
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Figure 12. Comparison of the step function approximation and the numerical solutions for (a) the stretches,
(b) the Terzaghi (elastic) stresses, and (c) the chemical potential gradient after a front has formed. Here,
solid curves show the full numerical results for the multi-valued shrinking front, as presented in figure 6,
at a dimensionless time t = 0.2. The approximate solutions – calculated after measuring the front position
and the sphere radius – are shown as dashed curves. In (a,b), the orange (lower) solid curves denote the
radial stretches and Terzaghi stresses, whereas the blue (upper) solid curves represent the angular stretches
and Terzaghi stresses.

figures 12(a,b). Again, we find good agreement between the step function approximation
and the numerical solutions.

We can also consider calculating the chemical potential gradient ∂μ/∂r given in (5.13)
by solving the boundary value problem (5.14) for A and φ

(1)
+ . Using the same parameters as

in figures 11(a) and 12(a,b), we determine A = −3.25, and obtain the chemical potential
gradient shown in figure 12(c). We see here that the corrected solution for the chemical
potential with a constant fluid flux approximates the numerical solution well.

In solving (5.14), we also determine φ
(1)
+ , and in figure 11(b) we plot the calculated φ

(1)
±

alongside the values of φ(r) − φ
(0)
+ obtained from the full numerical solution. We find

good agreement between the two, suggesting that our analytic solution is indeed capturing
the key features of this shrinking gel. (There is a visible discrepancy just ahead of the front
in figures 11(b) and 12(c), but we attribute this to errors arising from calculating gradients
numerically close to a sharp front.)

5.3. Dynamics of the front
We have seen that at a given time, we can well-reproduce the stresses, strains and chemical
potential gradient after observing the porosity at the centre, the sphere radius and the
front position. We should therefore be able to evolve numerically the front solution
forwards in time, since we can calculate the fluid flux at each time point after solving
the boundary value problem (5.14)–(5.16). The sphere radius evolves according to (3.20),
and conservation of solid in the sphere gives the evolution of the front by

Ṙf = −
(

1 − φ
(0)
+
)

a2ȧ(
φ

(0)
+ − φ

(0)
−
)

R2
f

= −
(

1 − φ
(0)
+
)

k
(
φ

(0)
+
)

(
φ

(0)
+ − φ

(0)
−
) A(t)

Rf (t)2 . (5.17)

In figure 13(a), we show the full numerical results for the evolution of the front position
and sphere radius against the evolved step function solution, using the same parameters as
in figure 6. The evolution of this solution was initiated after observing the sphere radius
and front position from the numerical solution at time t = 0.001; the equations are valid
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Figure 13. Dynamics of a shrinking hydrogel once a front has formed, comparing the full numerical solution
(solid curves) with the step function approximation (dashed curves) for (a) the ANB shrinking front of figure 6,
and (b) the HHT shrinking front of figure 9. For the numerical solution, the hydrogel sphere radius is shown
in blue, whilst the front position is plotted in orange. In (a), the step function solution is initiated from the
numerics at a time t = 0.001; in (b), it is at t = 0.01. The dotted lines illustrate the radius and predicted time at
which 80 % of the fluid has been expelled, as described in the drug delivery application of § 5.4.

only once the front has formed, so it is not possible to initiate the simulation from t = 0
(we require Rf < a to solve the boundary value problem (5.14)). Similarly, figure 13(b)
shows the evolution of the analytic solutions compared to the results of figure 9, started at
time t = 0.01.

The evolution of the front and sphere edge appears to be reasonably well approximated
by the step function solution. The shapes of the curves are matched well, suggesting that
this observed core–shell behaviour in the porosity is indeed dominating the dynamics.
However, we note that the step function approximation slightly miscalculates the time scale
for the front to reach the centre of the sphere, particularly in figure 13(b); calculating the
next order correction to the solution using the solution for φ

(1)
+ may improve the accuracy

of this approximation and reduce the discrepancy.

5.4. Application: predicting multi-dose strategies for targeted drug delivery
A potential use for this simplified step function solution is in determining dosage strategies
for targeted drug delivery. In this scenario, we consider a swollen hydrogel sphere that
contains a given quantity of a drug within its interstitial pore space. Upon heating, the
hydrogel contracts and expels its previously absorbed fluid, thereby releasing its load of
drugs. As we have seen, in many situations we can expect this temperature change to
result in front formation and propagation that dominates the dynamics. If we know the
equilibrium behaviour of our hydrogel, and therefore the parameters Ω , Ai and Bi, then
we can then use our simplified step function front solution to quickly evolve our model
system to calculate the (dimensionless) time required for expulsion of a dosage. If any of
the inputs change (e.g. starting or final temperature, or gel sphere size), this model can be
updated and new results found in realistic time scales for clinical practice.

This could be extended to develop multi-dose strategies: a drug-laden hydrogel sphere
could be actuated on more than one occasion to release specific doses at given times, as
illustrated in figure 14. Upon each actuation, we want to release a specified amount of
the drug. The question is then: how long do we have to apply the temperature stimulus to
achieve the required dosage?

For an incompressible solid (as was assumed for the polymer in our model), the volume
of polymer within the boundary of the sphere remains constant, and any change in total
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First dose

Heat HeatCool

Second dose

Figure 14. Illustration of a multi-dose drug strategy. A swollen drug-laden hydrogel is heated, causing it to
shrink and expel its load. The heat source is removed before all of the drug is released, allowing for a second
dose to be administered at a later time. To release a given dosage at each stage, the actuation time of the heating
must be controlled carefully.

volume must be due to expulsion or absorption of fluid into the pore space. The expelled
volume of fluid when the sphere changes from an initial radius a(0) to the current radius
a(t), regardless of the spatial arrangement of fluid and solid within the hydrogel sphere in
each state, can then be calculated simply as

ΔV = 4π

3

[
a(0)3 − a(t)3

]
, (5.18)

where the dimensionless expelled volume here is ΔV = ΔṼ/ã3
d, for a dimensional

expelled volume ΔṼ .
We consider a situation where we are given a hydrogel with known properties (i.e. we

know its equilibrium parameters, permeability, etc.) and are changing between two set
temperatures, T̃start and T̃end, and we wish to expel a dosage volume ṽ that is less than
the total fluid volume within the swollen hydrogel. Using the following procedure, we can
calculate the required actuation time:

(i) Find the initial equilibrium stretch λ by solving the energy minimisation equation
(2.7) at the initial temperature T̃start. This is the initial dimensionless sphere radius
a(0) = λ.

(ii) Evolve the analytic step function solution forward in time until the front reaches the
sphere centre.

(iii) Calculate the appropriate final radius using (5.18):

a(t) =
[

a(0)3 − ṽ

4πã3
d/3

]1/3

. (5.19)

(iv) From the equivalent to figure 13, read off the dimensionless time at which this
dimensionless sphere radius is attained.

The dimensional time can then be calculated simply by multiplying by the time scale τ̃

defined in (3.13).
For example, if we were considering the ANB hydrogel with a temperature change from

T̃start = 302 to T̃end = 308, then we would obtain figure 13(a). To expel 80 % of the stored
fluid volume, which is equivalent to a dosage volume ṽ = (4πã3

d/3) × (0.2 a(0)3 + 0.8),
we find that we must shrink from an initial radius a = 2.29 to a final radius a = 1.47
(larger than the final equilibrium radius a = 1.11). From figure 13(a), we then see that
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we require a dimensionless time t = 0.092 from our approximate front solution; our
numerics suggest that this should instead be t = 0.089, which results in a difference in
the expelled fluid volume of approximately 1 %. For the same volumes with the HHT
hydrogel, the shrinking must occur from an initial radius a = 2.67 to a radius a = 1.67; the
approximate solution suggests a time t = 0.123 compared to t = 0.137 for the numerics.
While this error in the timing appears significant, the resulting dosage volume is out by less
than 5 %.

6. Conclusions

In this paper, we have considered the evolution of a thermo-responsive hydrogel after
an instantaneous temperature change that causes it to swell or shrink significantly. By
adapting the poro-elastic model of Bertrand et al. (2016) for a spherically symmetric
hydrogel bead, we considered the swelling and shrinking of two model systems, whose
equilibrium parameters were extracted from the literature.

Through our numerical simulations, we observed a range of different dynamic
behaviours. In some cases, the evolution occurred smoothly, whereas in others, there
were sharp gradients and phase separation. The occurrence of these qualitative dynamic
behaviours appears to be well-captured by two key regions in the equilibrium curve space:
the coexistence and spinodal regions (see e.g. figure 3). When starting in these regions,
the hydrogel soon undergoes phase separation. In the coexistence region, a sharp front
forms that propagates inwards and invades the domain (akin to nucleation and growth).
This core–shell behaviour has also been observed in other similar hydrogel systems (e.g.
Doi 2009; Bertrand et al. 2016). Starting close to the coexistence region can also result in
delayed front formation in the interior to the hydrogel. At a fixed temperature, we expect
this to occur if the coexistence region lies between the start and end of the trajectories
in (T̃, λ)-space, such as those shown in figure 4. Meanwhile, dynamics starting in the
spinodal region exhibit spontaneous localised phase separation (spinodal decomposition),
but our model is not well suited to investigating these dynamics properly due to the
enforced spherical symmetry, so this is left for further future study.

In general, we found that the dynamics of swelling was qualitatively different from
the dynamics of shrinking in our two example hydrogels. Phase separation seems to be
common when shrinking past the volume phase transition, and relatively rare for swelling,
as can be seen from the location of the shaded regions in figure 3. However, only one
of our theoretical gels exhibited smooth shrinking, and the other had a small range of
temperatures just below the volume phase transition that showed front formation when
shrinking (which could help to explain the two-stage dynamics of swelling seen around
these temperatures in the experiments of Sato Matsuo & Tanaka 1988). A more thorough
future investigation of different thermo-responsive hydrogels may reveal which of these
behaviours is more prevalent, and if any others are seen in different thermo-responsive
hydrogels. In particular, we would be interested to see future experimental observations
of the internal structure of swelling and shrinking hydrogels, perhaps using MRI to image
the phase separation within small hydrogel beads.

Our results extend those of Tomari & Doi (1995), who investigated the dynamics and
phase separation using a theoretical model of a particular thermo-responsive hydrogel
close to the volume phase transition. Despite some differences in our modelling approach,
we saw many similar results, such as phase separation and front formation, as well
as two-stage dynamics with a delayed front formation. Their results showed that this
core–shell dynamics can occur in both swelling and shrinking hydrogels. However, our
results suggest that the (qualitative) symmetry between these breaks down as temperatures
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are changed beyond the volume phase transition: phase separation appears to be more
common amongst shrinking gels in our example systems.

We investigated the propagation of the shrinking front in more detail by considering
a step function approximation for the porosity that is based upon having two regions
of uniform porosity on either side of the front. The formation of this step function is
explained by the dominance of the osmotic pressure in the stress, which must be relaxed in
the outer region due to stress-free boundary conditions. We determined the leading-order
solutions for the stresses and strains, and showed that these matched well to the solutions
found by integrating numerically the full poro-elastic equations. More careful calculation
was required for the approximated chemical potential gradient and fluid flux, because the
osmotic pressure is sensitive to small changes in the porosity due to the presence of a large
parameter. Evolving this step function approximation forwards in time, we were able to
well-reproduce the front propagation and evolution of the sphere size. Being able to solve
this simpler approximated system is useful because evolving the full numerical system
required high temporal resolution, and hence took much longer to run; the approximate
system can be solved in tens of seconds on a laptop, compared to approximately half a
day for the full numerics. We then demonstrated how this step function solution could
be used to determine actuation times for expelling a specified volume of fluid, for use in
applications such as targeted drug delivery applications.

From this asymptotic solution for a shrinking front we are able to glean some insight
into the front evolution: in a gel with a dominant osmotic pressure (i.e. large parameter Ω),
once phase separation has been instigated at the edge by the sudden change in temperature,
the outer shrunken shell must relax the osmotic pressure and maintain a constant outward
fluid flux, which constrains the resulting dynamics. Applying a full Maxwell construction
at the interface may help to expand this analytic solution to more examples, such as the
delayed and swelling fronts observed in the numerics. In addition, we note that although
this solution was found for thermo-responsive hydrogels, the key physics should also work
for other swelling and shrinking hydrogel systems, and it would be interesting to see how
well this analysis carries across to other response modes.

Our study of the swelling and shrinking of a spherical thermo-responsive hydrogel has
highlighted many interesting features that may be observed in such a system. However,
there are some details omitted from our work that could be important in real systems
and deserve further study. For example, the model enforced a spherical symmetry on the
gel that may not be realistic, and precludes dynamics such as spinodal decomposition.
These spinodal dynamics may be the cause of the experimentally observed blistering
instabilities that have been found to cause shape change in gel tori and rods (Chang et al.
2018; Shen et al. 2019). In addition, spherical (non-thermo-responsive) gel beads have
been observed to form lobes or wrinkles as they swell (Doi 2009; Bertrand et al. 2016),
while thermo-responsive gels can exhibit a similar instability as they shrink (Sato Matsuo
& Tanaka 1988). While this wrinkling cannot be reproduced with a spherically symmetric
system, we note that our step function solution has a discontinuous jump in the hoop
stresses at the front, which could be relaxed by deforming this interface in a non-radially
symmetric manner. Therefore, the front formation observed in our solution could be the
origin of the lobe-like instability seen by Sato Matsuo & Tanaka (1988); further study is
required to investigate this.

For our results, we have also assumed that the background fluid is quiescent and the
boundary of the hydrogel experiences stresses only from the external fluid pressure. This
is often not true in practice; in real-life applications, a hydrogel structure will often
be present in a background fluid flow, with a range of other external forces applied.
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Fluid injection into a gel has been shown to induce phase separation behaviour in swelling
and shrinking hydrogels in other scenarios (Hennessy et al. 2020), so we should expect
these aspects to modify the results presented here. Our results should remain valid
provided that any external stresses are small compared to the stress scale k̃BT̃end/Ω̃p and
the background fluid flow is small compared to the velocity scale ãd/τ̃ .

As the biomedical and engineering potential of hydrogels becomes increasingly
achievable with the development of new manufacturing techniques, we hope that further
theoretical studies will provide opportunities to analyse and understand the wealth of rich
dynamics of thermo-responsive hydrogels, as well as helping to inspire new applications,
such as novel treatment strategies.
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Appendix A. Numerical scheme

To evolve numerically the free-boundary problem defined in (3.14)–(3.21), we first rescale
the equations onto a fixed domain using the radial coordinate scaling R = r/a(t), so that
the moving sphere boundary remains fixed at R = 1 throughout. Taking account of the
chain rule, we find that the porosity satisfies a (different) Reynolds equation of the form

∂(a3φ)

∂t
= 1

R2
∂(R2Q)

∂R
, (A1)

where the (inward) flux Q is given by

Q = a(1 − φ) k(φ)
∂μ

∂R
+ Rφ

a
da
dt

. (A2)

The system is discretised onto a staggered radial grid with grid points Ri = (i − 1/2)/n
for i = 1, 2, . . . , n, designed to conserve volumes accurately. At each time step, the
porosity at each grid point, φi, and the sphere radius, a, are both known initially, and
the following procedure is used.

(i) The stresses and strains (i.e. σ ′, Π , λ and J) are calculated at each grid point Ri,
from the known porosities φi, using (3.16)–(3.19a–c).

(ii) The local volume change J is calculated at the boundary R = 1 by solving the
nonlinear equation (3.21), and the result is used to find the boundary porosity, strains
and stresses.

(iii) The chemical potential (∂μ/∂r)i+1/2 is calculated at midpoints (Ri+1/2 = i/n) using
(3.15) with central differences for the derivatives, and averages for stresses evaluated
at midpoints.

(iv) The chemical potential is also calculated at the boundary R = 1, using a one-sided
(inward) derivative.

(v) The flux Qi+1/2 is calculated at midpoints and the boundary using (A2), with Q = 0
enforced at R = 0 (no flux at the centre of the sphere).
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Figure 15. Porosity colour maps for the ANB parameters showing (a) delayed bifurcation when heated from
T̃start = 302 K to T̃end = 306 K, and (b) spinodal decomposition when heated from T̃start = 302 K to T̃end =
312 K. The front is shown in red in (a), but this is omitted on the sharp jump in (b) so that the detail of the
solution can be seen clearly.

(vi) The porosities φi and sphere radius a are then evolved by one time step using a
forward Euler method, for simplicity, on (A1) and (3.20), so that, for example,

a(t + Δt)3 φi(t + Δt) = a(t)3 φi(t) + Δt

[
3

R2
i+1/2Qi+1/2 − R2

i−1/2Qi−1/2

R3
i+1/2 − R3

i−1/2

]
,

(A3)

where the discretised spatial derivative has here been calculated by integrating (A1)
over a spherical shell between Ri−1/2 and Ri+1/2.

(vii) The procedure is then repeated from step (i) for the next time step.

Appendix B. Other numerical simulations

Here, we show two more results that demonstrate qualitatively different behaviour than that
seen in the main text. These results are for the ANB parameters (2.8) when increasing the
temperature from T̃start = 302 to T̃end = 306 K (figure 15a) or T̃end = 312 K (figure 15b).

In the first instance, following the temperature change, the hydrogel is initially outside
the coexistence region, but will pass through it. We observe front formation, but only after
a delay where the hydrogel initially shrinks smoothly.

In the second case, the starting point is just inside the spinodal region. We see points in
the interior of the hydrogel collapsing to a shrunken state, surrounded by swollen regions
of hydrogel. This is spinodal decomposition. We note that it is perhaps surprising that
we have been able to capture this behaviour without using a full phase field model. It is
not clear to us what is selecting the wavelength of the observed pattern here, whether it is
physical in origin or just due to numerical instability. However, we cannot make any strong
conclusions about the dynamic behaviour from this solution; due to the enforced spherical
symmetry, we are observing concentric shells of collapsed and swollen hydrogel, which
we do not expect to be realistic. Instead, we would expect the spinodal decomposition to
result in local pockets of collapsed gel.
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Figure 16. Porosity colour maps for the dynamics of the ANB hydrogel with permeability given by (C1) with
β = 1.5. In (a), the remaining parameters are the same as for figure 5. In (b), they are the same as for figure 6.

Appendix C. Varying the permeability

For simplicity, we focused on presenting results where the permeability had a constant
value, k = 1. However, in general, the permeability may depend on the porosity k = k(φ)

(or even be anisotropic, in which case it would be a tensor rather than a scalar). A common
form taken for the permeability of a hydrogel is

k(φ) = φ

(1 − φ)β
, (C1)

where β is a constant typically found to be in the range 1.5–2 (Tokita & Tanaka 1991;
Grattoni et al. 2001; Engelsberg & Barros 2013). With this form of the permeability, the
hydrogel is slightly less permeable at low porosities, when the gel is shrunken, but much
more permeable at the high porosities for a swollen hydrogel.

Taking a value β = 1.5, as in Bertrand et al. (2016), the results are qualitatively the same
although the details of the dynamics, such as the time scale of swelling or shrinking, do
vary. We show some example simulations of the ANB hydrogel in figure 16 for the same
parameters as in figures 5 and 6.

We see the same smooth swelling and front-dominated shrinking as in the constant
permeability case. The qualitative behaviour also remains the same for the other
temperature changes and with the HHT parameters. However, the swelling time scale
is noticeably faster, and the shrinking takes slightly more time. This can be explained
simply by increased permeability in the swollen state, and decrease in the shrunken
state. Changing the constant β accentuates the difference in the swelling and shrinking
dynamics, but still keeps the same qualitative behaviour.

One other noticeable difference between the shrinking results of figures 6(a) and 16(b)
for the two different permeability functions is that in this non-constant permeability case,
the porosity of the swollen core decreases slightly over time, which was not seen for
constant permeability. We believe that this variation is due to the high permeability in
the swollen core accentuating any tiny porosity gradients present, to drive a small but
significant fluid flow out through the front. However, at any given time, the porosity is
still close to uniform, and a step function approximates the solution well. Its dynamic
evolution approximates the numerics well, provided that the initial condition is started at a
late enough time, and the current porosity is input from the numerical solution rather than
using the initial condition for the inner swollen region.
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