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The simulation of turbulent flow requires many degrees of freedom to resolve all the
relevant time and length scales. However, due to the dissipative nature of the Navier—
Stokes equations, the long-term dynamics is expected to lie on a finite-dimensional
invariant manifold with fewer degrees of freedom. In this study, we build low-dimensional
data-driven models of pressure-driven flow through a circular pipe. We impose the
‘shift-and-reflect’ symmetry to study the system in a minimal computational cell (e.g.
the smallest domain size that sustains turbulence) at a Reynolds number of 2500. We
build these models by using autoencoders to parametrise the manifold coordinates and
neural ordinary differential equation to describe their time evolution. Direct numerical

simulations (DNSs) typically require of the order of O(10°) degrees of freedom, while
our data-driven framework enables the construction of models with fewer than 20
degrees of freedom. Remarkably, these reduced-order models effectively capture crucial
features of the flow, including the streak breakdown. In short-time tracking, these models
accurately track the true trajectory for one Lyapunov time, as well as the leading Lyapunov
exponent, while at long-times, they successfully capture key aspects of the dynamics
such as Reynolds stresses and energy balance. The model can quantitatively capture
key characteristics of the flow, including the streak breakdown and regeneration cycle.
Additionally, we report new exact coherent states found in the DNS with the aid of these
low-dimensional models. This approach leads to the discovery of seventeen previously
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unknown solutions within the turbulent pipe flow system, notably featuring relative
periodic orbits characterised by the longest reported periods for such flow conditions.

Key words: pipe flow boundary layer, transition to turbulence, machine learning

1. Introduction

The prevalence of wall turbulence in a diverse range of industrial and everyday
applications has attracted substantial interest, as approximately 25 % of the energy
consumed by industry is dedicated to transporting fluids through pipes and channels,
and about one quarter of this energy is dissipated due to turbulence occurring near walls
(Jiménez & Moin 1991; Jiménez 2013; Avila, Barkley & Hof 2023). Pipe flow has been
the subject of extensive research since the groundbreaking experiments conducted by
Reynolds nearly two centuries ago (Reynolds 1883). Flow regimes are solely governed
by the Reynolds number, which characterises the ratio of inertial forces to viscous forces.
Studies of the transition of pipe flow from laminar to turbulent have resulted in numerous
comprehensive reviews (see e.g. Eckhardt et al. 2007, Mullin 2011, Smits, McKeon &
Marusic 2011, Avila et al. 2023).

The focus of the present work is the extent to which modern data-driven methods can
capture the nonlinear dynamics of turbulent pipe flows near transition (Darbyshire &
Mullin 1995; Eckhardt 2009). Because of its geometric and dynamical simplicity, the
‘minimal flow unit’® (MFU) of pipe flow has been previously presented (Willis et al.
2013, 2016; Budanur et al. 2017; Constante-Amores & Graham 2024; Kaszas & Haller
2024). The MFU represents the smallest domain size capable of sustaining turbulence,
described by Jiménez & Moin (1991) in the context of plane Couette flow. It encapsulates
the essential elements of the turbulent dynamics, particularly the ‘self-sustaining process’
(SSP) described by Hamilton, Kim & Waleffe (1995). In this process, low-speed streaks
near the wall become unstable and wavy, leading to their breakdown and the formation
of rolls. These rolls then lift fluid from the walls, thereby regenerating the streaks and
perpetuating the cycle.

To understand the intricate nonlinear dynamics of turbulence, researchers have adopted
a dynamical systems perspective. The turbulent nonlinear dynamics of fluids is governed
by the (infinite-dimensional) Navier—Stokes equations (NSE). Despite this infinite-
dimensionality, the long-time dynamics is expected to lie on a finite-dimensional invariant
manifold within state space (Hopf 1948; Temam 1989; Cvitanovic et al. 2005) (we discuss
this point in more detail below). From this viewpoint, turbulence can be seen as a
chaotic attractor of the NSE. Turbulent flows can display persistent patterns in space
and time, commonly known as exact coherent states (ECSs) (Kawahara, Uhlmann &
van Veen 2012; Graham & Floryan 2021). There are several ECS types: steady or
equilibrium solutions, periodic orbits, travelling waves and relative periodic orbits.
A trajectory on the attractor picks up characteristics of underlying unstable ECSs as it
approaches them but is ultimately moved away along unstable manifolds. When many of
these ECSs are characterised, they can be used to approximate the statistical properties
of the attractor, such as work by Nagata (1990), Kawahara & Kida (2001), Chandler &
Kerswell (2013) and Page et al. (2024). However, a fixed-point ECS cannot capture the
dynamics entirely; periodic orbits can represent key aspects of the nonlinear turbulent
dynamics, such as bursting behaviour (Cvitanovi¢ 2013). In the realm of pipe flow,
early studies focused on ECS and their role in the transition to turbulence (Faisst &
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Eckhardt 2003; Wedin & Kerswell 2004; Pringle & Kerswell 2007; Duguet, Willis &
Kerswell 2008; Willis & Kerswell 2008; Pringle, Duguet & Kerswell 2009; Viswanath &
Cvitanovi¢ 2009). The first set of ECS discovered, presented by Faisst & Eckhardt
(2003) and Wedin & Kerswell (2004), were travelling-wave solutions, which were also
observed in experimentally (Hof et al. 2004; de Lozar et al. 2012). To date, several
studies have focused on the discovery and classification of ECSs according to the value
of their average dissipation, wave speed and spatial symmetry (Pringle et al. 2009; Willis,
Cvitanovi¢ & Avila 2013; Budanur et al. 2017). Willis et al. (2013) and Willis, Short &
Cvitanovi¢ (2016) reported 29 solutions and visualised these solutions in state space using
symmetry reduction, showing the connections of relative periodic orbits and the turbulent
attractor. Budanur et al. (2017) reported 49 new relative periodic orbits and 10 travelling-
wave solutions. Their findings further supported the view that turbulence wanders around
ECSs.

However, identifying ECSs remains challenging due to the high-dimensionality of
the state space. Traditional Newton—Raphson methods can be employed to locate those
solutions, but more advanced techniques, such as the Jacobian-free Newton—Krylov
method, are more effective because they avoid explicit computation and inversion of the
Jacobian, which is expensive for high-dimensional systems. In the latter, the Jacobian
matrix is not explicitly calculated, as detailed in Viswanath (2007). Good initial conditions
are important due to non-convexity mostly and are also computationally expensive.
Favourable initial conditions help narrow the search area and increase the likelihood of
finding ECSs. Lan & Cvitanovi¢ (2004) proposed a variational method to find unstable
periodic orbits in the Kuramoto—Sivashinsky equation, demonstrating that their method
can converge to a broader set of solutions compared with traditional shooting methods.

A promising avenue for studying turbulence is the development of reduced-order
models, which simplify the complex dynamics of turbulent flows while retaining essential
features. Among the nonlinear approaches to model reduction, invariant-manifold-based
frameworks, particularly spectral submanifold (SSM) methods, have emerged as powerful
tools. The SSM facilitates the construction of invariant manifolds near known stationary
points, to which the dynamics of a system can be reduced (Li, Jain & Haller 2022;
Kogelbauer & Haller 2018). The SSMs represent the smoothest nonlinear extensions of the
spectral subspaces of the linearised system near a stationary state, such as a fixed point or
a periodic orbit. Recently, Kaszds & Haller (2024) employed SSM to successfully identify
the invariant manifold capturing the edge of chaos in pipe flow. This manifold serves as
a crucial boundary, demarcating the transition from the laminar state to turbulence within
the phase space of the NSE. We note that SSM must be ‘anchored’ to a known stationary
point. In contrast, the framework we adopt in this work does not rely on such anchoring,
allowing for a more flexible exploration of the attractor.

The accurate simulation of MFU pipe flow requires a large state space to resolve all
the relevant spatial and temporal scales. For instance, Willis et al. (2013) and Budanur
et al. (2017) required of the order of O(10°) degrees of freedom to capture the complex,
nonlinear turbulent dynamics. Performing data-driven modelling in this full-state space
is computationally challenging. However, due to the dissipative nature of the NSE, it
is expected that viscosity attenuates the high wavenumber modes, confining the long-
term dynamics to an invariant manifold with fewer degrees of freedom than the full-state
dimension (Temam 1989; Zelik 2022). The exact dimension of this invariant manifold is
not known beforehand and must be estimated from data. The most common method for
linear dimension reduction is principal component analysis (PCA), also known as proper
orthogonal decomposition (POD) in the fluid dynamics community. Principal component
analysis works by projecting the state onto the set of orthogonal modes that captures
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the maximum variance or energy in the data (Jolliffe 1986; Abdi & Williams 2010;
Holmes et al. 2012). However, PCA assumes a flat manifold because it is an inherently
linear technique, which makes it a poor approximation for complex nonlinear problems.
To address this, nonlinear techniques for dimension reduction have emerged such as
autoencoders. Autoencoders consist of a pair of neural networks in which one network
maps from a high-dimensional space to a low-dimensional space, and the other maps back
(Kramer 1991; Milano & Koumoutsakos 2002; Hinton & Salakhutdinov 2006). For very
high-dimensional systems, it can be advantageous to perform an initial linear dimension
reduction step with PCA, followed by further nonlinear dimension reduction using an
autoencoder (Linot & Graham 2023; Young et al. 2023; Constante-Amores et al. 2024a).
Additionally, combining PCA and an autoencoder in parallel allows for capturing both
linear and nonlinear features of the data, with the autoencoder refining the representation
beyond what PCA alone can provide (Linot & Graham 2020).

Once we have a low-dimensional representation of the full state, we can proceed in data-
driven modelling of the dynamics in manifold coordinates (i.e. the intrinsic variables that
describe the key behaviour of the system in the low-dimensional representation). The goal
is to learn a vector field that governs the evolution of the system in this low-dimensional
representation. This approach has been successfully applied to chaotic systems, including
the one-dimensional Kuramoto—Sivashinsky equation (Linot & Graham 2020; Liu,
Axas & Haller 2024), two-dimensional Kolmogorov flow (Pérez-De-Jestis & Graham
2023; Constante-Amores et al. 2024b) and Couette flow (Kaszas et al. 2022; Linot &
Graham 2023). Linot & Graham (2020) presented the framework known as DManD
which stands for ‘data-driven manifold dynamics’. In DManD, an autoencoder finds a low-
dimensional representation of the full state, and then a neural ordinary differential equation
(ODE) (NODE) learns an evolution equation of this low-dimensional representation. The
NODE is a neural network that parameterises the vector field of the latent space (e.g. low-
dimensional coordinate representation found by the autoencoder) (Chen et al. 2019; Linot
& Graham 2022). It is important to highlight that DManD is highly advantageous because,
like the underlying turbulent systems, it is Markovian in nature (where predictions of the
next state only depend on the current state) and a continuous-time formulation.

In this work, we address data-driven modelling for turbulent MFU pipe flow at
Reynolds number of Re = 2500. We note that, while our approach shares methodological
similarities with the recent work of Linot & Graham (2023) on Couette flow, specifically
the use of POD, autoencoders and NODE, the focus of the present study is on pipe flow,
which poses fundamentally different physical challenges. Unlike the planar, zero-mean
shear profile of Couette flow, pipe flow features a non-zero, radially varying mean velocity
and geometric curvature, resulting in a richer dynamics and more intricate turbulent
structures. This work thus applies manifold-based data-driven modelling techniques to
a more practically relevant and dynamically complex shear flow system. We show that
the essential dynamics of pipe flow evolves on a low-dimensional manifold, enabling
accurate reconstruction of both short-time trajectory evolution and long-time statistical
properties. We compute the Lyapunov spectrum on the manifold and compare the leading
Lyapunov exponent with that obtained from the direct numerical simulation (DNS). The
good agreement indicates that the model successfully captures the dominant dynamics,
suggesting that only a few degrees of freedom are required. In addition, we identify ECS
in the latent space and successfully converged them in the DNS, leading to the discovery of
previously unreported solutions in this flow configuration. We also acknowledge that, in
Constante-Amores & Graham (2024), the authors constructed data-driven models using
pipe flow data restricted to a single relative periodic orbit, whereas the present study
focuses on learning a low-dimensional model from trajectories embedded within the full
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attractor, leading to a much more general data-driven model (which is needed to discover
new ECSs).

The rest of this paper is structured as follows. In § 2, we describe the framework for
dimension reduction and time evolution. In § 3, we present the results that include the
dimension reduction and the predictions of the DManD model for short- and long-time
statistics, ECS identification and new ECSs found in the DNS using converged ECSs from
the model as initial conditions. Finally, in § 4, we summarise the concluding results.

2. Framework
2.1. Dimension reduction

While the state space of a partial differential equation is formally infinite-dimensional,
the NSE, which govern the motion of fluids, are dissipative in nature, and therefore
solutions are expected to converge to a finite-dimensional invariant manifold, denoted
as M in this context (Hopf 1948; Foias, Manley & Temam 1988; Temam 1989; Zelik
2022). This manifold M exhibits a local Euclidean structure, implying that each point
within it possesses a nearby region that can be bi-directionally mapped to and from a
Euclidean space, denoted as RM, where dq (with dag < dp) represents the dimension
of the manifold; in this work dj, is a higher dimension, in which the manifold can be
embedded. This fact is also what allows for the global coordinate representation, since
the dynamics is learned in dj, rather than da. To effectively characterise this manifold
and consequently understand the underlying system dynamics, only da independent
coordinates are necessary, at least within local contexts. As M remains unchanged by the
system dynamics, the vector field which describes the dynamics on M is always tangential
to the manifold, resulting in a deterministic, memoryless dynamics confined to M. Then,
this dynamics is governed by an ordinary differential equation defined by this tangential
vector field.

In this work, there are four distinct representations of the system state. Let H denote
the infinite-dimensional solution space of the NSE. The DNS produces trajectories in a
finite-dimensional subspace RY C #, which we refer to as the ‘full state’. This full state is
projected onto a dpop-dimensional subspace via POD, yielding a linear mapping P : RY —
R4Pop  The POD reduced representation is then mapped to a dj,-dimensional coordinate
system via a nonlinear mapping £ : R%0o> — R%  obtained from a trained autoencoder.

We consider a system that is characterised by a deterministic, Markovian dynamics,
so if u € R? represents the full space state, then the dynamics can be represented by an
ODE as

du
e S ). (2.1)

Here, u represents the full-state space. In practice, u is obtained from DNS. In this work,
we find a mapping to a lower-dimensional representation

h=x(u), 2.2)

where h € R% is the low-dimensional representation of the full-state space, along with an
approximation of its inverse

u=yx(h), (2.3)

so that the full-state space may be recovered (e.g. ideally # ~ u). In this work, we opt to
parameterise x, x with an autoencoder, referred to as a hybrid autoencoder in Linot &
Graham (2020). This hybrid autoencoder is based on the idea of using neural networks to
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learn the corrections from the leading POD coefficients

h=x@: 0)=Uju+EUL u. be), (2.4)
where Uy € R?*k corresponds to a matrix containing the first X POD modes ordered by
variance, and &€ corresponds to the encoder in the neural network (e.g. § 3.2.1 presents
the framework for the linear reduction with POD). In this way, the first term (Ugh) is the
projection onto the leading d;, POD modes, and the second term is the corrections provided
by the neural network. The mapping back to the full space is given by

it = X (h; 0g) = Ugpp,, ([h, 017 + D(h; 6p)). (2.5)

Here, [k, 0] is the h vector zero padded to the correct size, and D is a neural network.
The first term is the POD mapping back to the full space, and the second term is a neural
network correction. The weight parameters 6¢, Op are trained to minimise the loss

1 & ;
L=— ; llu(t) — X (x (t;); 6g); 6p)||?

K

I
+dh—K§K||5(Ufu(fi)295)+Ddh(h(ti);ep)l|2. 2.6)

Here, the first term corresponds to the mean-squared error of the reconstruction #, while
the second term corresponds to a penalty term to enhance the accurate representation
of the leading d, POD coefficients (e.g. Dy, , denotes the leading dh elements of the
decoder output). Here, « is a penalty term. This penalty does not directly reduce the
magnitude of the encoder’s correction; instead, it promotes its removal by the decoder.
Throughout, the norm is defined as the L, norm, ||¢||>. The prefactor in front of each
term accounts for averaging over the vector components and the batch size K. In § 3.2,
we also use standard autoencoders, which can be seen as h = x(u; 6g) =& (UPTODu, O¢g)
and it = x(h; 0g) = UPTOD’D(h; 6p), to highlight the effectiveness of using the hybrid
autoencoders to find an accurate representation of the manifold coordinates. We note
that this hybrid autoencoder has been used successfully for the Kuramoto—Sivashinsky
equation, chaotic Kolmogorov flow and MFU plane Couette flow (Linot & Graham 2020,
2023; Pérez-De-Jesus & Graham 2023).

To train both the hybrid and standard autoencoders, we use the Adam optimiser to
minimise the loss function presented in (2.6), utilising the POD coefficients as inputs
(as explained in §3.2.1). The training process spans 500 epochs, and we incorporate
a learning rate scheduler that reduces the learning rate from 1073 to 10™* after the
initial 300 epochs. This adjustment is made based on our observation that no significant
improvements in reconstruction error occur beyond this number of epochs. For the
hybrid autoencoder approach, we set the hyperparameter « = 0.1, while for the standard
autoencoder, k =0 (indicating that this term is not included). All relevant details of the
neural network architectures and their hyperparameters (e.g. number of layers, neurons
per layer, activation functions) are summarised in table 1, to ensure reproducibility of the
results. The specific network parameters were determined through a meticulous trial and
error search, exploring variations in the network’s architecture and activation functions.
We remark that our goal was to achieve the lowest reconstruction error while avoiding
excessive computational costs.
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Function Shape Activation Learning Rate
X 1014/2500/1000/500/100/d}, ReLU/ReLU/ReLU/ReLU/lin [1073, 1074
X dp/100/500/1000/2500/1014 ReLU/ReLU/ReLU/ReLU/lin [1073, 1074
Zun dy,1250/250/250/250/d), sig/sig/sig/sig/lin [1072, 1073

Table 1. Neural network architectures for the autoencoder and NODE. ‘Shape’ represents the dimension of
each layer, ‘Activation’ refers to the types of activation functions used, where ‘rectified linear unit (ReLU)’,
‘sig’ and ‘lin’ stand for ReLLU, sigmoid and linear activation functions, respectively. ‘Learning Rate’ represents
the learning rate at various times during training.

2.2. Time evolution: neural ODEs

We use a stabilised neural ODE framework for state-space modelling in the latent space.
Rather than (2.1), we use a slight modification

dh

e g(h) — Ah. 2.7)
Here, A = y§;j0;(h), where o;(h) stands for the standard deviation of the ith component
of h, y is a fixed parameter and §;; is the Kronecker delta. This modification, with a small
value of y, has been found to stabilise the dynamics against spurious growth of fluctuations
without compromising the accuracy of predictions (Linot & Graham 2023; Linot et al.
2023). Linot & Graham (2023) demonstrated the importance of this damping term in detail
for MFU plane Couette flow.

Next, we approximate g using a neural ODE. For training g, we integrate (2.7) forward

in time from #; to #; + t resulting in the prediction

- ti+71
ht; +7)=h(;) + / g(h(t); 0) — Ah(t)dt. (2.8)

We determine the parameters 6, by minimising the difference between the true state
h(t; + t) and the predicted state h(#; + 7), as

K
_ N e 2
J_dhK ZHh(zl +1)—h(t; + )% (2.9)

i=1

To calculate the derivatives of g with respect to the neural networks parameters 6,
we make use of automatic differentiation. We train the stabilised NODE to predict the
system evolution over one time unit, using data from which the temporal mean has
been subtracted, by employing the Adam optimiser in PyTorch to minimise the loss
function described in (2.9) (Paszke 2019). The training process incorporates a learning rate
scheduler, which decreases the learning rate at three evenly spaced intervals, continuing
until the learning curve stabilises. The specific details of this neural network are provided
in table 1. The architectural choices are empirical, determined through trial and error by
varying the number of nodes and layers.

Once g is determined, an arbitrary initial condition can be mapped into the low-
dimensional coordinates with . Then, the state evolution of & at arbitrary points in time
can be computed as the solution to (2.7), and finally the solution can be mapped back to
the full space with x.
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Figure 1. Schematic representation of the three-dimensional pipe flow system. Panel (a) shows a snapshot of
the magnitude of the velocity field. For visualisation purposes, the entire pipe is shown, although calculations
in this work is restricted in the shift-and-reflect symmetry subspace with m, =4 ( whose boundaries are
highlighted with solid red lines). Panel (b) represents the energy in the axially dependent modes only (k
non-zero). This quantity decays rapidly after relaminarisations.

3. Results

In this section, we provide a detailed description of the dataset for MFU pipe flow,
present the results of dimensionality reduction, evaluate the performance of the reduced
models as we vary their dimension and introduce new ECSs. Figure 1(a) shows a three-
dimensional representation of the MFU pipe configuration used in the current research.
For visualisation purposes, the entire pipe is shown, although calculations in this work are
confined to the shift-and-reflect symmetry subspace (which is the highlighted area with

opacity).

3.1. Description of pipe flow data

We perform DNS of an incompressible viscous fluid moving inside of a pipe with a circular
cross-section. We consider flow with a constant max flux, thus, the dimensionless forms
of the NSE are expressed as

v B

1
—4+U-V VU +v-Vo=—-Vp+32- 74+ V2,
at+ v+ +v v p+ Rez+Re v

V.v=0. 3.1

The equations are solved in cylindrical coordinates (7, 6, z) which refer to the radial,
azimuthal and streamwise (axial) directions, respectively. Here, v and p stand for the
velocity and the pressure, respectively. The Reynolds number Re is defined as Re = U Z /v,
where U, Z and v are the mean flow velocity, the pipe diameter and the kinematic
viscosity, respectively. Lengths and velocities are made non-dimensional using & and
U as characteristic values, and hence, time will be made non-dimensional using Z/U.
The velocity v = (v, vy, v;) represents the deviation from laminar Hagen—Poiseuille flow
equilibrium U (r) = 2(1 — (2r)?)z. To maintain constant mass flux, a pressure gradient is
required, and the excess pressure needed is measured by the feedback variable g = 8 (v);
thus the total dimensionless pressure gradient is (1 + 8)(32/Re), and B =0 for laminar
flow.

In the NSE, symmetries appear in the form of continuous and discrete symmetry groups.
For the former, the cylindrical wall in pipe flow limits rotational symmetry around the z-
axis and restricts translational movement along it. Let g(¢, £) represent the shift operator,
where g(¢, 0) signifies an azimuthal rotation by ¢ about the pipe axis, and g(0, £)
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indicates the streamwise translation by £. Let o represent the reflection about the 6§ =0
azimuthal angle. Thus

g(¢’ E)[vrv vy, va p](r9 09 Z) == [vra Vg, UZ’ p](r7 9 _d)’ < _Z) (3 2)
U[Ur,UO,Uz» p](rvea Z):[Ur,—UQ,UZ, p](r7 _O,Z) ) )

Apart from azimuthal reflection, the NSE also have additional discrete symmetries in
both azimuthal and streamwise directions across the computational cell §2. The symmetry
group of streamwise periodic pipe flow is SO(2),; x O(2)p. In this paper, we restrict the
dynamics to the ’shift-and-reflect’” symmetry subspace

S ={e, opgs}, (3.3)
where g represents a streamwise shift by L/2, i.e. flow fields of (3.1) that satisfy
[U}“7 Vg, Uz, p](’”» 97 Z) = [Ury —Vg, Uz, p](ra _9’ Z— L/2) (34)

This symmetry couples the streamwise translations with the azimuthal reflection. By
imposing the shift-and-reflect symmetry, we eliminate the continuous phase along the
azimuthal rotations. In this work, we do not factor out the continuous symmetry in
the streamwise direction. Factoring out the streamwise symmetry reduces the manifold
dimension by only one degree of freedom, and our focus is on developing a general
framework that does not rely on symmetry reduction.

To perform the DNS of the incompressible turbulent pipe flow under the assumption of
shift-and-reflect symmetry, we use the pseudo-spectral code Openpipeflow (Willis 2017).
Fourier discretisation is used for the periodic axial (z) and azimuthal () directions, with
K and M representing the number of Fourier modes, i.e.

M K
W 0.2.0= > Y Bu(r, e, (3.5)

m=—M k=0

where B, (r, t) represents a three vector of Fourier amplitudes, m,, is a parameter to
control the azimuthal shift-and-reflect subspace we work in and o« = 27/L is a parameter
that controls the length of the pipe. In the radial direction, a Chebyshev grid is used that
clusters points near the wall to effectively resolve the velocity gradients. No-slip and no-
penetration boundary conditions are enforced at the wall. For a more detailed description
of the numerical method, we refer to Willis (2017).

The simulation of the entire cross-sectional pipe (m, = 1) presents a naturally periodic
azimuthal boundary condition, while other values of m, result in v repeating itself in the
azimuthal direction. In this work, we construct models for MFU pipe flow at Re = 2500,
with m;, =4 (‘shift-and-reflect’ invariant subspace) and o = 1.7, as in previous work by
Willis et al. (2016) and Budanur et al. (2017). Then, the size of the computational cell is
described by

2 =1[1/2,27/my, 7/al = (r, 6, 2) €0, 1/2] x [0, 27/ mp] x [0, 7 /at]. (3.6)

Thus, the domain size in wall units for the wall-normal, azimuthal and streamwise
dimensions is 21 & [100, 160, 370], respectively, which compares well with the MFUs
for Couette flow and plane Poiseuille flow (i.e. 27 ~[68,128,190] and 21~
[> 40, 100, 250—300], respectively). This domain size is similar to that used in the
minimal box simulation by Jiménez & Moin (1991) and Willis et al. (2013), and it is
sufficiently large to exhibit complex chaotic behaviour.

Data were generated with §¢ =0.01 on a grid (N,, M, K) = (64, 10, 14). To eliminate
aliasing errors in the evaluation of nonlinear terms, the 3/2 rule is applied. This rule
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increases the number of grid points in each periodic direction by a factor of 3/2, after con-
verting the number of complex modes to the corresponding number of real physical grid
points. Since each complex Fourier mode requires two real degrees of freedom in physical
space, the number of grid points in each direction becomes Ng =2M and N, =2K.
Therefore, the velocity field is evaluated on a 64 x 30 x 42 grid in physical space, with
three velocity components. The total number of degrees of freedom is d = N, x Ny X
N, x 3=241,920, so u € R?*-920_In this grid size, (AOD/2)* ~5.3 and Azt ~8.8
(which is consistent with grid sizes used by Jiménez & Moin 1991). The resolution was
tested to ensure mesh-independent results, confirmed by a drop in the energy spectra by at
least 4 orders of magnitude.

We initiated simulations from random divergence-free initial conditions. The solutions
were evolved forward in time for either 10000 time units or until relaminarisation
occurred. The initial 100 time units were excluded as transient data, and the final
200 time units were excluded if relaminarisation had occurred. Figure 1(b) shows the
energy in the axially dependent modes only (i.e. modes with non-zero axial wavenumber
k), which decays rapidly after relaminarisation, indicating the end of the simulation.
Relaminarisation is identified by monitoring this energy, and following (Willis 2017), the
simulation is terminated once it falls below 107>. This process was repeated with new
initial conditions until we accumulated 96 921 time units of data, sampled at one time unit
intervals (i.e. T = 1). Consequently, all data lie on the attractor. We divided this dataset,
allocating 80 % for training and 20 % for testing purposes.

In terms of energy balance, the intermittent nature of relaminarisation results in that the
energy balance does not necessary hold true, especially when patching together trajectories
from different simulations. While relaminarisation events temporarily disrupt this balance,
the entire dataset is collected from regions where the flow remains on the attractor, where
energy input and dissipation balance should hold. Thus, although the system is not strictly
stationary due to relaminarisation, all of the data ultimately represent the dynamics within
the chaotic saddle. This approach, while not ideal for strictly steady-state analysis, provides
a robust basis for exploring the turbulent dynamics across a variety of conditions. Future
work to avoid this problem would either increase the Reynolds number or simulate the full
pipe without symmetry restrictions.

3.2. Learning of manifold coordinates

In this section, we present our approach to dimensionality reduction. We first apply linear
reduction using POD, and then proceed with nonlinear reduction using autoencoders.

3.2.1. Linear dimension reduction with POD: from O(10°) to O(10%)

The first step in constructing the low-dimensional model is to apply POD on the original
dataset as a preprocessing step. This aims to reduce the dimension of the problem from
approximately (O(10°) degrees of freedom to O(10%), while preserving the essential
characteristics of the turbulent flow system. The POD tries to find the function & that
maximises

(| ®)e])

: 3.7)
|®]1%

where v’ (x) = v(x) — v(x) is the fluctuating component of the velocity field, and v is the
mean velocity, obtained by averaging over both space and time, (-) is the ensemble average
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Figure 2. (a) Eigenvalues of the POD modes sorted in descending order. (b) Reconstruction of four components
of the Reynolds stresses from the DNS and the data projected onto 512 POD modes. The curves correspond to
(u%), (u%), (uruz) and (ué), from top to bottom, respectively.

and the inner product is defined to be

(‘11»‘12)E=///‘I1"12dx’ (3.8)

with the corresponding energy norm ||q||% = (¢, ¢)£. Solutions @ to this problem
satisfy the eigenvalue problem

3 pL p2n/m, PR

> / / / (Vi (e, OV (x', D)@ W () 'dr'de'de = i d M (k). (3.9)
; 0 JO 0

j=1

The eigenvalue problem described by (3.9) becomes d x d. To reduce the computational
cost of this eigenvalue problem, and preserve symmetries, we treat the POD modes as
Fourier modes in both the azimuthal and streamwise directions. This approach has been
previously applied by Duggleby et al. (2007) and Linot & Graham (2023) for turbulent
pipe and plane Couette flow, respectively. Holmes et al. (2012) showed that for translation-
invariant directions, Fourier modes are the optimal POD modes. Thus, the eigenvalue
problem becomes

3 R
> /0 (ﬁl{(r’,kg,kz,t)ﬁ}*(r/,kg,kz,t))(p;.;’(;kz(r/)r’dr/:/lliz;czgoi(zgkz(r), (3.10)
j=1

where * denotes the complex conjugate. Thus, the eigenvalue problem is reduced from
adxd toa3N, x 3N, problem for each pair of wavenumbers (kg, k;) in the Fourier
coefficients. This analysis gives us POD modes represented by

B (r.0.2) =)} (e mhi/L, (3.11)

and eigenvalues /l,(c';iz. The projection onto these modes results in complex values unless
both kg and k, are zero. We arrange the modes in descending order of their eigenvalues
(4;), and we select the leading 512 modes, resulting in a vector of POD coefficients (a(?)).
Most of these modes are characterised by being complex valued (i.e. they have 2 degrees
of freedom), so projecting onto these modes results in a 1014-dimensional system, i.e.
dpop = 1014. In figure 2(a), we display the eigenvalues, revealing a rapid decline followed
by a long tail that contributes minimally to the energy content. By dividing the sum of the
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eigenvalues of the leading 512 modes by the total sum, we find that these modes account
for 99.44 % of the energy. [llustratively, figure 2(b) displays the reconstruction of Reynolds
stresses for the components (v?), (vg), (vrv;) and (vrz), from top to bottom, respectively.
This reconstruction is obtained using those 512 modes with 5000 snapshots. We observe
an excellent agreement between the DNS and the flow field obtained after truncating to
the leading POD modes.

3.2.2. Nonlinear dimension reduction with autoencoders: from O(10%) to O(10")

After projecting the data to the leading POD modes, and selectively retaining only the
high-energy coefficients, our next step involves a nonlinear reduction of the data using
autoencoders. As a crucial preprocessing step, we normalise the POD coefficients by
subtracting the mean and dividing by the maximum standard deviation, rather than
normalising each component by its own standard deviation. Without normalisation, the
lower-order coefficients with larger magnitudes would dominate training, potentially
causing instability and poor gradient updates. The mean subtracted corresponds to the
time-averaged mean flow field from which the POD coefficients are derived, ensuring the
data are centred before normalisation.

Figure 3(a) shows the relative error on the test data of the POD coefficients using
standard and hybrid autoencoders when varying dj, from 10 to 20. We have also added
the corresponding values from a linear projection onto an equivalent number of POD
coefficients. The POD projection onto the leading (complex) coefficients can be expressed
asa=U rT u. For each latent dimension dj, two autoencoders are trained independently to
reduce the effects of the inherently stochastic nature of neural network training, including
random weight initialisation and mini-batch sampling during optimisation, which can lead
to variability in performance across training runs. To mitigate this, multiple models are
trained, and the one with the lowest validation error is selected to represent performance at
that dimension. The same architectures are used for the standard and hybrid autoencoders
(see table 1).

In figure 3(a), the nonlinear reduction leads to nearly one order of magnitude decrease
in the value of mean-squared error (MSE) compared with its equivalent with POD for the
same dimensionality. Notably, a small reduction in error is observed beyond a threshold
of dy > 17. For POD, the relative error appears to plateau beyond this point, indicating
convergence to a low-dimensional representation. In contrast, the autoencoders exhibit a
more gradual reduction in error, which resembles a power-law decay rather than a distinct
plateau. This implies that, with dimensions as few as 17, the autoencoders provide a
good coordinate transformation from the full space (e.g. as we will show in §3.3). In
all considered cases, the hybrid autoencoder consistently produces slightly better results
in terms of MSE compared with the standard autoencoders. In figure 3(b), we compare
the performance of both autoencoders by plotting the mean-squared POD coefficient
amplitudes for the test data, denoted as (||a, |12), for the low-dimensional representation
with dj, =20 (see figure 3b). The hybrid autoencoder exhibits limitations in capturing
the amplitude of higher-order coefficients beyond a > 30, while the standard autoencoder
struggles to accurately represent coefficients beyond the first two. This discrepancy arises
from the fact that the hybrid autoencoder prioritises the reconstruction of the leading
dp POD coefficients. Figure 3(c) illustrates the Reynolds stresses for both types of
autoencoders with dj = 20 for 5000 snapshots of the test data, showing that the hybrid
autoencoder outperforms the standard autoencoder. Finally, figure 3(d) displays field
snapshots in the z — 0 plane (r = 0.496) at random times showing qualitatively that hybrid
autoencoders with dj =20 can accurately reconstruct the data. This result agrees with
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Figure 3. Nonlinear reduction with autoencoders: () relative error on test data for POD coefficients, standard
and hybrid autoencoders as a function of the latent dimension dj,. For each dimension, results for two standard
and two hybrid autoencoders are reported. (b) Reconstruction of (lan 1) (mean-squared POD coefficient
amplitudes) for the test data from 512 POD modes and the standard and hybrid autoencoders at dj, = 20.
(c) Components of the Reynolds stresses from the DNS and using autoencoders with dj, =20. (d) Two-
dimensional representation of the flow field in a z — 6 plane (r = 0.496) with u, for the DNS and reconstructed
using the hybrid autoencoder at dj, = 20.

the findings from Kreilos & Eckhardt (2012), who showed in plane Couette flow that
high-dimensional systems can live in low-dimensional manifolds.

Lastly, it is important to note that ideally the relative error value would plateau
after determining the ‘right’ manifold dimension yet it is not always feasible, primarily
due to computational limitations introduced during the training process. Our goal is to
identify the optimal dimension for constructing DManD models that faithfully capture
both short-time tracking and long-time statistical characteristics of turbulent pipe flow. In
the upcoming section, we will systematically build models with varying latent dimension
sizes (e.g. size of the low-dimensional space learned by the encoder).

We compared models using 512 and 1024 POD modes and found that increasing to 1024
resulted in less than 0.02 % improvement in prediction accuracy (with dj, = 20), despite a
significant increase in training time. Since 512 modes already capture over 99.44 % of the
total energy in comparison with 99.91 % for 1024 modes, we use 512 modes for efficiency
without loss of accuracy.

Although a deep autoencoder could, in theory, learn a low-dimensional representation
directly from high-dimensional input (e.g. O(10°)), training dense networks at this scale
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is computationally expensive and prone to overfitting (Goodfellow et al. 2016). To address
this, we first apply POD to reduce the input dimensionality while preserving the dominant
flow structures, enabling efficient and stable training. Alternatively, convolutional neural
networks (CNNss) offer a scalable solution that can learn directly from high-dimensional
data by exploiting local structure, potentially eliminating the need for POD. While we
focus on POD-based preprocessing here, CNN-based models are the alternative (Fukami,
Fukagata & Taira 2019).

3.3. Modelling in manifold coordinates

Following the training of the autoencoders, a comprehensive exploration of the
damping parameter y is conducted to prevent the dynamics from drifting away
from the attractor during modelling. This is motivated by the concept of an inertial
manifold: in dissipative systems such as the NSE, the long-term dynamics is expected
to collapse onto a lower-dimensional attracting set. In this spirit, the damping parameter
acts as a regulariser that promotes stability in the latent dynamics by encouraging
trajectories to remain close to the learned manifold. To find the optimal value of
y, trials are performed with dj =20, varying y within the range 0.1 <y <0.5.
Empirical findings consistently point towards the fact that y =0.25 yields superior
outcomes, with respect to the long-term dynamics of the system, as assessed by
comparing the norm of the latent representation obtained from the autoencoder with
that predicted by the NODE. We note that the significance of y has been rigorously
investigated by Linot & Graham (2023), in the context of MFU plane Couette flow,
who showed that without the damping term almost all models become unstable for
longer runs. The training objective of the NODE is focused on predicting one time unit
ahead (r = 1), as described by (2.8). As a preprocessing step for training the NODE,
we subtract the mean of the autoencoder’s latent representations to centre the data. This
centralisation ensures that the linear damping effectively guides trajectories towards the
origin.

Unless otherwise specified, the results presented showcase the top-performing model at
each dimension, with the lowest relative error averaged across all considered statistics. It
is crucial to note that, for all DNS versus DManD model comparisons at each dj, identical
initial conditions are applied in the models. From the perspective of the DManD models,
this involves encoding the initial condition from the DNS, and subsequently evolving it
forward in time in the latent space to generate a time series of k. This time series is then
decoded to the full-state space for comparative analysis.

3.3.1. Short-time tracking

In this section, we evaluate the performance of the DManD models in reconstructing short-
time trajectories. Figure 4(a) shows the time evolution of the kinetic energy of the system
for the DNS and DManD model with dj, = 20. Here, the kinetic energy of the system is
given by the L? inner product

1 2o 2w /my R 1
E=— / / / —v.vrdrdfdz, 3.12)
vV Jo 0 0o 2

where V corresponds to the volume of the cylindrical flow domain. The results displayed in
figure 4(a) are normalised by the kinetic energy of the laminar state. We have selected dj, =
20 as it represents the minimum dimension that yields superior results for both short-term
and long-time measures, as will be demonstrated in this and the subsequent sections. We
note that d;, =20 may not necessarily correspond to the exact dimension of the manifold,
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Figure 4. Normalised kinetic energy of the system for the DNS and DManD model with dj, =20 up to t = 200
shown for two random initial conditions, corresponding to panels (@) and (), respectively. Panels (¢) and (d)
represent two-dimensional representations of the dynamics in the z — 6 plane (r = 0.496) with u, for the DNS
and DManD model for initial condition (IC) corresponding to panels (a) and (), respectively. The vertical
dashed line marks one Lyapunov time. We refer the reader to the supplemental materials to view a video of the

trajectory corresponding to panel ().
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Figure 5. Self-sustaining process in DManD model corresponding to the initial condition shown in figure 4(a).
Isosurfaces of the streamwise velocity fluctuations are displayed for u’, = 0.05 (blue, representing fast streaks)
and u’, = —0.05 (red, representing low-speed streaks). Additionally, each snapshot includes isosurfaces of the
Ay criterion with a threshold of A1, = 0.1, shown in green, to highlight vortical structures. Only a quarter of the
domain is shown.

but this corresponds to the smallest dimension that can faithfully capture the nonlinear
dynamics of the turbulent pipe flow in the present modelling framework. We reiterate that
we have started from an initial state dimension of @ (10%), and developed a data-driven
model of O(10) without substantial loos of accuracy. Figure 4(a,b) show that the DManD
model can generate predictions that capture the true dynamics of the system up to ¢ ~ 50,
which corresponds to slightly more than one Lyapunov time (17 = 30.43, this value is
calculated later from the DNS). To provide a more qualitative representation of the model
dynamics, figure 4(c,d) displays a two-dimensional representation of the dynamics in the
Z — 0 plane (r = 0.496) with v, for the DNS and DManD model for IC corresponding to
figures 4(a) and 4(b), respectively. We observe a good agreement between the model and
the DNS. We refer the reader to the supplementary materials to view a movie from the
trajectory for figure 4(a).

The initial conditions for figure 4 are chosen to demonstrate that DManD qualitatively
captures the dynamics observed in the true data. These two initial conditions are
representative of the SSP, in which streamwise rolls, streaks and wave-like disturbances
mutually reinforce one another, thereby counteracting viscous decay. This behaviour is
further supported by the results shown in figure 5. In figure 4(c), the true system (top
panels), streaks (velocity fluctuations below the mean) near the wall (see blue colour at the
edges of the panel at r = 0) are affected by azimuthal wavy disturbances (at t = 30—40),
leading to their breakdown (at t = 50) and the formation of rolls (after r = 80). The
DManD qualitatively captures this dynamics (see the corresponding bottom panels) with
a slightly accelerated breakdown of the rolls into streaks. In figure 4(d), we track a second
initial condition that also highlights some parts of the SSP dynamics. At ¢t = 30, streaks
are observed near the centre of the domain. These streaks undergo a breakdown and
temporarily vanish by r = 50, before gradually re-emerging by ¢ = 80. This cyclical pattern
observed in panels a and b, of decay followed by regeneration, reflects the characteristic
SSP interplay between streamwise rolls, streaks and wave-like instabilities. The DManD
reconstruction (bottom rows) qualitatively reproduces this sequence of events, capturing
the key transitions present in the DNS (top rows).

Figure 5 illustrates the dynamics of the SSP observed in the DManD model using
isosurfaces for the streaks and vortical structures. The blue and red isosurfaces represent
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Figure 6. Normalised short-time-tracking error for five arbitrary initial conditions using DManD with dj, = 20
up to £ =200. The vertical dashed line marks one Lyapunov time. Two of the lines corresponds to the initial
conditions shown in figure 4.

high (1}, =0.05) and low (u, =—0.05) speed streaks, respectively, while the green
isosurfaces correspond to regions of high vorticity, identified using the A, criterion. At
t =0, the flow exhibits well-defined streamwise streaks. Due to the imposed periodic
boundary conditions, only one quarter of the domain is shown, effectively capturing a
pair of streaks. By ¢ = 20, the low-speed streaks near the lateral walls begin to exhibit
sinuous (wavy) instabilities, which amplify and lead to streak breakdown. This breakdown
gives rise to streamwise vortices, clearly visible at t =40 through the emergence of
green A criterion structures. As the cycle progresses, these vortical structures redistribute
momentum and energy, leading to the regeneration of coherent streaks by r = 100. At
t =180, a new breakdown event is underway, completing one full SSP cycle. This
sequence captures the essential feedback loop of streak formation, instability, breakdown
and regeneration that underpins sustained turbulence in wall-bounded flows.

While figure 4 only shows the trajectory for two selected initial conditions, figure 6
represents the tracking error for five random initial trajectories at dj =20. Here, we
plot |la(t) — &(t)ll%//\f , where N\ denotes the error of true solutions at random times
t; and 1}, i.e. N = (|la(t;) — a(t;)|). To enhance computational efficiency, we opted for
comparisons in POD coefficients space rather than reconstructing full velocity fields. This
decision was motivated by the computationally intensive nature (i.e. memory usage) of
reconstructing fields from POD coefficients. Moreover, the POD coefficients enable the
capture of the 99.83 % of the energy within the system (with 512 POD modes). Figure 6
shows that, for certain initial conditions, the error remains relatively low until t = 50, after
which it increases before stabilising at unity at longer times. This behaviour is expected
for chaotic systems, where small initial errors grow exponentially and eventually lead
to complete decorrelation between predicted and true trajectories. Once this occurs, the
normalised error saturates at its maximum possible value, indicating a loss of predictive
capability. We note the recent work by Vela-Martin & Avila (2024), who demonstrated that
in Kolmogorov flow, the short-term predictability limit for a given uncertainty in initial
conditions depends strongly on the location of the initial condition within the attractor.
This supports our observation in figure 6 that predictive accuracy varies across different
initial conditions due to the intrinsic structure of the chaotic attractor.

Next, we conduct a parametric study on the normalised ensemble-averaged tracking
error for DManD models by varying the dimension of the latent space (see figure 7a). We
used 500 random initial conditions evolved over 100 time units. Notably, we observe that,
when the dimensionality surpasses 17 (d > 17), the tracking errors converge, indicating
that a dimension of at least 17 is required for a better field reconstruction.

To understand the short-time tracking and the correlation of the models with different
initial conditions, we plot the autocorrelation of fluctuations of the kinetic energy.
We define its fluctuating part as k(¢) = E(¢) — (E). In figure 7, we plot the temporal
autocorrelation of k with respect to its corresponding initial condition for 6000 random
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Figure 7. Short-time-tracking performance: (a) ensemble average of 500 random initial conditions as a function
of dj,. (b) Temporal autocorrelation of fluctuations in the kinetic energy as a function of dj. The black solid
line represents the temporal autocorrelation calculated in the DNS. For representation purposes, we only show
results for dj, =[15, 17, 20].
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Figure 8. Comparison of (||ay||?) for the DNS and DManD at dj, = 20 for the same initial condition evolved
3000 time units.

initial conditions evolved up to r=200. It is not until dy =20 that the predicted
autocorrelation matches reasonably well up to ¢ ~ 120 with respect to the true data.

3.3.2. Long-time statistics
This section is dedicated to presenting the long-time statistics predictions for the DManD
models. To evaluate the long-time performance of the DManD models, we first use the
(lan)?) metric, plotting it for a long trajectory (up to 3000 time units) in both the DNS
solution and the predicted trajectories from DManD at dj, = 20 (see figure 8). We observe
that DManD shows good agreement with the true solution up to the first 30 leading
POD coefficients of the true solution. This suggests that DManD effectively captures the
attractor structure, and subsequently the temporal prediction of the nonlinear dynamics of
the system over an extended time span. To benchmark the performance of our framework,
we draw parallels with classical methods for reduced-order models proposed by Gibson
(2002) for Couette flow (i.e. POD Galerkin). Gibson (2002) required between 512 (~1000
degrees of freedom) and 1024 modes (~2000 degrees of freedom) to achieve a reliable
prediction of the leading 30 POD coefficients for plane Couette flow.

We turn our attention to the predictions of various models concerning the Reynolds
stresses, as illustrated in figure 9. The streamwise velocity component (u%) is the most
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Figure 9. Long-time statistics: components of the Reynolds stresses with increasing dimension for DManD
models of various dimensions. The black solid lines represent the Reynolds stresses calculated in the DNS. For
clarity, we only show results for d, =[15, 17, 20].

important component with a peak near the wall, being one order of magnitude bigger than
the other components. We observe that our DManD models perform well in predicting the
Reynolds stresses of the system beyond d, > 17. Atdy, = 20, in particular, DManD exhibits
exceptional performance by closely matching three out of the four displayed components.
However, minor discrepancies are observed in the component corresponding to (u%).

Next, we assess how well the DManD models are capable of reconstructing the energy
transfer rates at long times by examining the joint probability density functions of power
input (/) and dissipation (D). The power input required to maintain constant mass flux and
dissipation due to viscosity are defined as

1 2r /o p2m/my
L
A Jo 0 r=R

1 2rfa 21 /my R
D= > fo /0 /O |'v xv|* r drdodz. (3.14)

Here, V and A stand for the volume of the cylindrical flow domain and area of the pipe,
respectively. In the results shown in this paper, the energy input and dissipation values are
normalised with respect to their laminar values. An energy balance can be derived from
the inner product (v, dv/dt) (Waleffe 2001). Then, the energy input rate, the dissipation
rate and the kinetic energy E = (I — D)/Re, which must average to zero over long times. It
is imperative to ensure that this quantity averages to zero over extended periods, signifying
equilibrium. This assessment is important for assessing the accuracy of DManD models
in maintaining energy balance. Specifically, we define the energy balance deviation as
EB=(|I(t) — D(t)|) /Re, where I (t) and D(¢) represent the cumulative energy input and
dissipation up to time ¢. Over a trajectory of 5000 time units, the average deviation remains
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Figure 10. Energy balance: (a) joint probability density functions (PDFs) of the dissipation (D) and power
input (/) for the true system, and the DManD models at dj, = 15 and dj, = 20, corresponding to columns one to
three, respectively. (b) Earth movers distance (EMD) between the PDF from the DNS and the PDF predicted by
the DManD model at various dimensions dj,. The dashed line represents the error between two PDFs generated
from DNS trajectories of the same length but with different initial conditions.

below 1 %, demonstrating that the model faithfully captures the essential energy transfer
and dissipation mechanisms without explicitly enforcing energy conservation.

Figure 10 displays the joint PDFs of the normalised D and / from the DNS, and DManD
models with d;, = 15 and dj, = 20, generated from a longtime trajectory evolved up to 3000
time units (with the same initial condition). For dj, = 15, the model fails to capture the
intrinsic nonlinear dynamics of the system, but for dj, = 20, the model accurately captures
the core region of these projections, including the excursions occurring at high dissipation
rates that are also present in the DNS results, indicating that high-dissipation bursts are
preserved in the learned manifold when d;, increases. This suggests that the model is
capable of encoding rare events that are observed in the DNS. Overall, we can conclude
that DManD can effectively predict accurately the long-time statistics of this complex
system in the coordinates of the low-dimensional representation.

To further quantify the divergence between the PDFs from the DNS and DManD, we
calculate the EMD as a function of the dimension of the low-dimensional model. The
EMD measures the distance between two PDFs by framing the true PDF as the ‘supplies’
and the DManD model PDF as the ‘demands’ (Peyré & Cuturi 2020). We use the EMD
as a robust and interpretable metric of similarity between probability distributions. Unlike
Kullback-Leibler divergence, EMD is a true distance that captures both the magnitude
and spatial displacement of probability mass, features that are especially relevant in
turbulent flows, where dissipation can exhibit heavy tails or abrupt shifts across regimes.
The EMD seeks to minimise the effort required to transport the supplies to meet the
demands, essentially solving a transportation problem. We find the flow f;; that minimises
>iz1 -1 fidi subject to the constraints

fiz0, I<i<m, 1<j<n, (3.15)
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n
> fi=pi 1<i<m, (3.16)
j=I
m
S fi=a 1<j<n. (3.17)
i=1

Here, p; represents the probability density at the ith bin in the model PDF, and g is the
probability density at the jth bin in the DNS PDF, where both PDFs are discretised into
n and m bins (in this scenario, n = m). Additionally, d;; denotes the cost associated with
moving between bins, with the L, distance between bins i and j serving as the measure
(where djj = 0 for i = j). After solving the minimisation problem to determine the optimal
flow flj* the EMD is calculated as

Yt Z?:l fzj*dlj
Yin Xia fi

Figure 10(b) shows the EMD values depending on the latent dimensions, with all
DManD models starting from the same initial condition and evolved up to 3000 time
units. Additionally, we include the error when comparing two PDFs generated from the
DNS with different conditions (dashed line). Figure 10(b) demonstrates that the addition
of latent dimensions results in an enhancement of the EMD value. Specifically, for
dy = 20, the DManD model reaches a level of comparability to the DNS. This observation,
combined with short-time tracking, supports the assertion that only 20 degrees of freedom
are necessary to create low-dimensional models that faithfully capture both the short-time
tracking and long-time statistics of the nonlinear turbulent dynamics of MFU pipe flow
at Re =2500. It is important to note that we are not asserting a specific dimension for
the manifold, but rather identifying the minimum dimension needed to produce accurate
models. Similar results have been observed for plane MFU Couette flow (Linot & Graham
2023; Constante-Amores et al. 2024a) and Kolmogorov flow (Pérez-De-Jesus & Graham
2023).

Finally, we examine the leading Lyapunov exponents of the DManD models depending
on dj,. The methods used are those described in Sandri (1996), with publicly available code
from Rozbeda (2017). Simulations were run for over 1000 time units to ensure convergence
of the Lyapunov exponents. Figure 11(a) shows a representative spectrum of Lyapunov
exponents AL as a function of time, obtained from the DManD model with dj, = 20 for a
single initial condition. We effectively see three positive exponents, we also observe two
exponents near zero due to the spatial translational symmetries in 6 and z. Figure 11(b)
displays the exponents, averaged over five different initial conditions, as we vary the
dimension of the DManD model. Increasing the model dimension leads to enhancements
in the estimation of these Lyapunov exponents. At low dimensions (d;, < 12), we do not
observe any positive Lyapunov exponents (i.e. models land in a fixed point). We also
report the Lyapunov spectrum for dj, = 22 to demonstrate that the spectrum converges with
increasing latent dimension dj,. Furthermore, the leading Lyapunov exponent computed
from the DManD model closely matches that of the DNS (shown below), indicating that
the dominant chaotic dynamics is well captured.

To enable comparison with DNS, we calculate the leading Lyapunov exponent (LLE)
using the DNS solver. To do this calculation, we numerically evolve two nearby trajectories
in Openpipeflow, and the divergence rate of their separation over time is calculated. As
the trajectories separate, the difference between them (or the perturbation) can grow
or shrink significantly. To prevent numerical errors and ensure consistent tracking, the
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Figure 11. (a) Lyapunov exponents for the DManD models from a single trial with dj, =20. (b) Lyapunov
exponents for the DManD models at various dimensions with error bars representing the results from five
different trials. The grey dashed line identifies A-E =0, while the red dashed line represents the leading
Lyapunov exponent of the DNS. (¢) Leading Lyapunov exponent for the DNS for four different initial
conditions.

separation is rescaled every 10 time units to a small, fixed value (10~?) while maintaining
its direction. This allows us to measure the exponential divergence rate reliably. The LLE
is calculated as

) (3.19)

where A is the cumulative sum of the logarithmic growth of the separation, and ¢ is the
total time. After each rescaling, A is updated based on the ratio of the norms before and
after rescaling.

To ensure the calculation of the Lyapunov exponent is meaningful, we evolve four
different initial conditions that lie on the attractor (see figure 11c). The system is evolved
for a sufficiently long time, and the LLE is updated incrementally until convergence
with a tolerance of 10~°. The average of these independent calculations yields a LLE
of ALE =0.0329. This value compares well with the LLE predicted by DManD.

3.4. Finding ECSs in the model and DNS

In this section, we leverage the DManD model with a dimension of dj, = 20 to explore the
state space of the low-dimensional representation and discover new ECSs in the DNS. The
primary goal is to use DManD to identify optimal initial conditions that can be fed into
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Openpipeflow, which is equipped with an ECS solver for the full-state space. It is essential
to highlight that discovering suitable initial conditions is pivotal to the success of any ECS
solver for high-dimensional systems (as we described in the introduction).

First, we summarise the approach that we use to find ECSs within the context of
DManD. This method follows the framework outlined by Cvitanovic et al. (2005), and has
been previously used by Linot & Graham (2023). To identify ECSs in the full-state space
(which, despite being high-dimensional due to the numerical discretisation of the infinite-
dimensional NSE, is still finite), our objective is to find an initial condition that leads to
a trajectory repeating over a defined time interval 7. Thus, we aim to search for solutions
where the trajectory’s behaviour is periodic, essentially involving the identification of
Zeros in

Fw, T)=Fr(v)—v, (3.20)

where Fr(v) refers to the flow map T time units from v (i.e. Fr(v()) =v(t+T7)). In
manifold coordinates, this equation is expressed as

Hh, T)=Gr(h)—h, (3.21)

where Gr(h) is the flow map T time units from h (i.e. Gr(h(t))=h(t + T)). To
compute, G, we use (2.8). Solving (3.21) requires finding both a point 2* on the periodic
orbit and the period T*, such as H (h*, T*) =0. We use a Newton—-Raphson method to
determine A* and T*.

By taking a Taylor series expansion of H, we find that near the fixed point A*, T* of H,
such that

Hh*,T*)— H(h,T)~DyH(h, T)Ah+ DrH(h, T>AT»} (3.22)

Hh, T)~D,Hh, T)Ah + g(Gr(h))AT

where D, and D7 represent the Jacobians of H with respect to & and the period T,
respectively. Additionally, AT = T* — T and Ah = h* — h. We impose the constraint that
the updates of Ah are orthogonal to the vector field & (i.e. g(h)T Ah = 0). At a Newton
step (i), the system of equations becomes

DyHHD, TV) g(Gro () | [AR® H®D, TO)

g7 0 [AT“)] - _[ 0 ] 02
where the standard Newton—Raphson method updates the guesses h'+D = p@© 4 AR®
and 70D =70 L AT,

A Newton scheme can be used to find ECSs within high-dimensional data,
the computational challenge posed by the Jacobian calculations has prompted the
development of various solutions (Page & Kerswell 2020; Page, Brenner & Kerswell 2021;
Parker & Schneider 2022; Linot & Graham 2023; Yasuda & Lucas 2024). Openpipeflow
addresses this issue by using a Jacobian-free Newton—Krylov solver with a hookstep-trust-
region approach, as detailed by Willis (2019a). This solver efficiently bypasses the need for
explicitly calculating the Jacobian when evaluating the objective function F. For a more
detailed understanding of the ECS solver in the Openpipeflow solver, readers are referred
to Willis (20190). The advantage of constructing a low-dimensional model that accurately
captures the dynamics becomes pivotal in the search for new ECSs, as demonstrated in
this section. Leveraging the inherent low-dimensionality of DManD models, we choose
to compute the Jacobian Dy H (h, T) directly using the automatic differentiation tools
employed during the training of the NODE.
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Figure 12. The top panels show the converged ECS by DManD projected onto the first three manifold
coordinates. The black dot and red diamond indicate the starting and ending points of the trajectory,
respectively. The middle and bottom panels show snapshots of the vorticity flow field using the A> criterion
with a threshold of A, = 0.1. The middle panels represent the ECS from the DManD search, while the bottom
panels display the converged state from the ECS solver of Openpipeflow. Note that for representation purposes,
we display m, = 1 instead of m;, = 4.

Our approach involves randomly selecting 100 initial conditions and exploring five
distinct periods T = [5, 20, 40, 90, 100] (e.g. 500 guesses in total). In the reduced model,
a Newton residual threshold of 1073 identifies converged ECS candidates efficiently. These
provide accurate initial guesses for the full system, where exact convergence is achieved
with residuals between 10~* and 1079, as used in previous works such as Willis ez al.
(2013).

As an illustrative example, the top panels of figure 12 depict the trajectories of three
relative periodic orbits discovered by DManD, projected onto the three leading manifold
coordinates (h1, ho, h3). We also display the associated vorticity fields by displaying
the A, criterion (Jeong & Hussain 1995) for the state of the converged ECS from DManD
(middle panels) and the converged ECS in the DNS (bottom panels). There is a notable
qualitative agreement between these solutions, underscoring the effectiveness of using
converged ECS from DManD as robust initial conditions for the DNS ECS solver.

Table 2 presents 17 new ECSs of pipe flow identified via the ECS solver embedded in
Openpipeflow using the converged solutions obtained via DManD. The RPOs are labelled
by their periods 7' (in units of D/U), while travelling waves (TWs) are labelled by their
average dissipation rate (D). Additionally, table 2 includes information regarding the linear
stability of each ECS, described by its Floquet multipliers A =exp(u; T +i6;). We have
performed a systematic cross-check of these ECSs against all ECSs from Willis et al.
(2013, 2016) and Budanur et al. (2017). We note that many of our newly discovered
ECSs exhibit significantly longer periods than those previously reported (i.e. Budanur
et al. (2017) reported RPOs with periods up to 7 & 68). We note that the DManD solver
demonstrates its capability to accurately capture the orbit lengths of the ECSs, with errors
in their periods consistently below 1 %.

1020 A58-24


https://doi.org/10.1017/jfm.2025.10687

https://doi.org/10.1017/jfm.2025.10687 Published online by Cambridge University Press

Journal of Fluid Mechanics

Solution D c unax
TWi332 1.3325 0.93571 0.04056
TW1 798 1.7985 1.6619 0.08803
TW 448 1.4484 1.8009 0.04892
TW 575 1.5759 2.7052 0.12259
RPOy4 591 1.4740 2.7430 0.06686
RPO 19 631 2.0324 3.30392 0.03060
RPO9 631 2.0172 3.30392 0.03605
RPO24.956 1.8644 2.4739 0.03784
RPO35.042 1.7582 1.6211 0.04585
RPOs3g.157 1.7503 1.8426 0.03465
RPO3g 654 2.0475 1.142 0.04499
RPOgg 348 1.7985 0.83400 0.04039
RPOg4 891 1.9147 4.01616 0.03011
RPOog 259 2.0036 1.5157 0.02991
RPO 2,683 1.9793 0.98244 0.02988
RPOj03.899 1.9036 6.1943 0.01088
RPO05.466 1.8270 3.0258 0.01653

Table 2. List of new invariant solutions for pipe flow at Re = 2500 using initial conditions from the DManD
model. The travelling waves are labelled with their dissipation rate D, whereas the relative periodic orbits
(RPOs) are labelled by their period T'. For each solution, we report the average rate of dissipation D, average
downstream velocity ¢, and the real part of the largest stability eigenvalue/Floquet exponent p™*,
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Figure 13. The normalised dissipation verses power input for the collection of invariant solutions displayed in
table 2 with a long trajectory of the DNS turbulence plotted in the background. The dashed box in the left panel
outlines the region that is magnified in the right panel for a closer view.

One useful method for visualising of the high-dimensional space of these new invariant
solutions is by projecting them onto the dissipation versus energy input plane. Figure 13
illustrates the input and dissipation projection of these new ECSs, with the shaded region
indicates the area in the input-dissipation projection where a long turbulent trajectory
predominantly resides. It is expected that turbulence should explore more of the phase
space and visit simple invariant solutions, then these ECSs appear to be embedded in
this projection. While these solutions appear to reside within the central region of the
ID projection, determining their precise location within the turbulent attractor would
require a more detailed analysis, in the full-state space, such as the work by Krygier,
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Figure 14. The normalised dissipation versus power input plot for RPOjgy 633 is depicted, with a long trajectory
of the DNS turbulence plotted in the background. The black dot points denote the times along the orbit at
which three-dimensional snapshots are shown below. Each snapshot displays isosurfaces of the streamwise
velocity fluctuations for u’, =0.075 (blue, representing fast streaks) and u’. = —0.075 (red, representing low-
speed streaks). Additionally, each snapshot includes isosurfaces of the A, criterion with a threshold of 1, = 0.1,
shown in green, to highlight vortical structures. Note that for representation purposes, only a quarter of the
domain is shown.

Pughe-Sanford & Grigoriev (2021). But we leave these avenues for future work. This
finding is consistent with previous assertions suggesting that the attractor is guided
by ECS Chandler & Kerswell (2013), Cvitanovi¢ (2013), Budanur et al. (2017). The
condition D = I signifies dissipation balancing out energy input, which is the essential
requirement for any equilibria or TW (essentially an equilibrium in a co-moving frame of
reference). We observe the discovery of four TWs. The shaded region shows that the DNS
predominantly stays within the region of 1.6 < D/Djy, < 2.2 and 1.7 < I /1y < 2.2.
Most of the discovered ECSs remain within this region. In the right panel of figure 13, we
present a magnified view. This image reveals that many of these RPOs have complicated
ID curves, whereas the periodic orbits exhibit simple loops.

In figures 14 and 15, we focus on elucidating the state space of RPOjp.6g3 and
RPO103.899, respectively. The selection of RPO1 633 is based on its characteristic complex
ID curve, which spans both high and low-dissipation regions within the state space. To
understand the flow dynamics associated with this RPO, the bottom panels of figure 14
also shows blue and red isosurfaces representing high (u, = 0.075) and low (u}, = —0.075)
speed streaks, respectively, while the green isosurfaces correspond to regions of high
vorticity, identified using the A, criterion with 1, = 0.1. We observe that the flow exhibits
well-defined streamwise streaks during the entire cycle of the RPO, with some wavy
disturbances at + =30, t =52 and ¢t = 96. At the points of higher dissipation, (t =52)
and (r =61), the vorticity appears to undergo significant shearing, leading to vortex
breakup (see the intense isosurfaces associated with A; criterion). High rates of dissipation
correspond to intense velocity gradients, and subsequently, this leads to high values of the
strain rate tensor. This indicates that these times are characterised by strong and turbulent
flow structures. At the lowest point of dissipation, see t =30 and ¢ =96, the vortex
structures are much weaker and less pronounced. This weakening of the vortex structures
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Figure 15. The normalised dissipation versus power input plot for RPOjo3 899 is depicted, with a long trajectory
of the DNS turbulence plotted in the background. The black dot points denote the times along the orbit at
which three-dimensional snapshots are shown below. Each snapshot displays isosurfaces of the streamwise
velocity fluctuations for u’, = 0.075 (blue, representing fast streaks) and u, = —0.075 (red, representing low-
speed streaks). Addmonally, each snapshot includes isosurfaces of the A, crlterlon with a threshold of 1, =0.1,
shown in green, to highlight vortical structures. Note that for representation purposes, only a quarter of the
domain is shown.

correlates with lower dissipation rates. Then, the dynamics stabilises due to the increases
in the power input (¢ = 96), in comparison with # = 52. It is worth noting that for these
three-dimensional snapshots only a quarter of the domain is shown. Finally, we turn our
attention to RPO103.399. The top panel of figure 15 presents the /D projection for this RPO,
which intriguingly resembles the shadow of two shorter orbits, similar to those described
by Budanur et al. (2017) (see their figure 11). We also observe well-formed fast streaks
in the domain. This results in the dynamics at the highest point of dissipation, at t = 17
and r = 94, exhibiting significant shearing, leading to intense vortex interactions and high
dissipation rates. These moments are characterised by extreme shearing, events affecting
the slow streaks. Conversely, at the lowest point of dissipation, for example ¢ = 83, the
vortex structures are notably weaker. This reduced dissipation corresponds to a more stable
and less turbulent flow state.

4. Conclusions

In this study, we have built data-driven models for pressure-driven fluid flow through a
circular pipe. To reduce the computational requirements, we impose the shift-and-reflect
symmetry to study the system in a minimal computational cell at Re = 2500. Nonetheless,
this computational size is capable of maintaining the chaotic nonlinear dynamics of
turbulence. To build these data-driven models, we employed DManD, an invariant-
manifold-based method. The DManD model is based on the idea of the modelling of
turbulence from a dynamical systems approach in which the long-time dynamics of the
dissipative NSE is expected to live in a finite-dimensional invariant manifold. Thus,
DManD allows the parameterisation of the invariant manifold with vastly fewer degrees of
freedom compared with the original data. For learning these manifold coordinates, we first
perform a linear dimension reduction with POD, and then a nonlinear dimension reduction
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via autoencoders which are capable of accurately predicting the low POD coefficients.
Finally, we use a state-space approach with NODEs within these learned coordinates
to model the dynamics. This combination of linear and nonlinear techniques allows for
a compact and efficient representation of the turbulent flow dynamics. Our framework,
solely driven by data, enables us to construct models with fewer than 20 degrees of
freedom, a significant reduction compared with a fully resolved DNS that requires of the
order of O(10°). In short-time tracking, the model accurately track the true trajectory for
one Lyapunov time. Additionally, the LLE estimated from DManD closely matches that
obtained from the DNS, confirming that our approach captures the chaotic dynamics and
the short-term predictability of the flow. In the long term, the models successfully capture
key aspects of the nonlinear dynamics such as the Reynolds stresses and the probability
distribution in /D space.

We have also identified seventeen previously unknown ECSs for turbulent pipe flow at
Re =2500. The success in discovering these new ECSs lies in using converged ECSs from
DManD at dj, = 20 as effective initial conditions for the ECS solver in Openpipeflow. This
approach has led to the reporting of RPOs with the longest periods observed for three-
dimensional turbulent pipe flow to date, to the best of our knowledge. These periodic
orbits are situated within the core of the state space traversed by the attractor. This finding
is consistent with previous assertions suggesting that the turbulent attractor is guided by
ECSs (Hopf 1948; Cvitanovié¢ 2013; Budanur et al. 2017; Page et al. 2024).

We acknowledge that Linot & Graham (2023) presented DManD models for turbulent
Couette flow with fewer than 18 degrees of freedom, which quantitatively capture key
features of the dynamics, including the streak breakdown and regeneration cycle. At short
times, these models track true trajectories for multiple Lyapunov times, while at long times
they reproduce the Reynolds stresses, capture the energy balance and provide effective
initial conditions for finding ECS. In the present study, we extend this methodology to pipe
flow, which constitutes a more complex geometry and higher-dimensional dynamics; the
DManD model identifies an embedding dimension of approximately 20. We demonstrate
that DManD similarly captures the SSP, reproduces the LLE and provides effective initial
conditions for ECSs in the pipe setting. Thus, while the essential capabilities of DManD
are consistent across Couette and pipe flows, our results highlight its robustness and
applicability to more complex wall-bounded shear flows, thereby broadening the scope
of the approach.

Accurately modelling the turbulent dynamics with significantly fewer degrees of
freedom than required for DNS, as demonstrated by the manifold dynamics models
presented here, opens up exciting possibilities for dynamical-systems-type analyses. These
models enable the calculation of local Lyapunov exponents in a computationally efficient
manner. We also highlight that we have presented a global description of the manifold, but
it would be possible to divide the global manifold topology into many local representations
called charts (Floryan & Graham 2022; Fox et al. 2023). In experimental settings, temporal
data are typically limited to partial observables (i.e. measurements at a few spatial
locations) making full-state methods such as DManD difficult to implement. Nonetheless,
data-driven models constructed from such partial measurements may still enable control-
oriented strategies. Investigating this direction represents a promising avenue for future
research.

Importantly, the models developed in this study are dependent on specific system pa-
rameters such as the Reynolds number. Therefore, when transitioning to different Reynolds
numbers, it is necessary to obtain a new dataset to adjust the weights of the neural networks
for the autoencoders and NODE. Therefore, a crucial direction for future research is to
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develop models that capture this parameter dependence. The goal is to create robust low-
dimensional models capable of transferring knowledge across different parameter regimes.
Achieving this would enable broader applications and provide deeper insights into the
turbulent flow dynamics. This represents a key direction for future research in this field.
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