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Abstract

We propose an optimally regularized Bayesian estimator of multilevel latent
variable models that aims to outperform traditional maximum likelihood (ML)
estimation in mean squared error (MSE) performance. We focus on the between-
group slope in a two-level model with a latent covariate. Our estimator combines
prior information with data-driven insights for optimal parameter estimation.
We present a “proof of concept” by computer simulations, involving varying
numbers of groups, group sizes, and intraclass correlations (ICCs), which we
conducted to compare the newly proposed estimator with ML. Additionally, we
provide a step-by-step tutorial on applying the regularized Bayesian estimator
to real-world data using our MultiLevelOptimalBayes package.

Encouragingly, our results show that our estimator offers improved MSE
performance, especially in small samples with low ICCs. These findings suggest

that the estimator can be an effective means for enhancing estimation accuracy.

Keywords: regularized estimation, multilevel latent variable model, mean

squared error, small sample, intraclass correlation
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An Optimally Regularized Estimator of Multilevel Latent Variable Models

with Improved MSE Performance
1. Introduction

Multilevel latent variable models have been widely adopted in psychology, education,
and related sciences to analyze hierarchical data while accounting for unobserved effects
(Liidtke et al., 2008; Skrondal & Rabe-Hesketh, 2009; Bollen et al., 2022; Zitzmann, Wag-
ner, et al., 2022). Unlike traditional multilevel regression models (Raudenbush & Bryk,
2002; Snijders & Bosker, 2012), which rely on observed variables at each level, multilevel
latent variable models introduce latent constructs that improve measurement accuracy
and reduce bias in parameter estimates (Muthén & Asparouhov, 2012; Zitzmann et al.,
2016). These models allow for more precise estimations of relationships at different levels
of analysis by correcting for measurement error and providing a more flexible framework
for capturing complex dependencies in nested data.

Over the past two decades, multilevel latent variable models have been widely applied
in educational research to model student achievement and classroom effects (Liidtke et al.,
2008; Marsh, 1987), psychological research for latent personality and cognitive processes
(Bollen et al., 2022; Muthén & Asparouhov, 2012), and health sciences for hierarchical
patient-reported outcomes (Hamaker & Klugkist, 2011).

Compared to mixed-effects models (Raudenbush & Bryk, 2002; Snijders & Bosker,
2012), which typically assume that all predictors are observed and measured without
error, multilevel latent variable models provide greater flexibility in handling measure-
ment error and latent constructs. This makes them particularly valuable in psychological
and educational research, where many key variables (e.g., cognitive ability, motivation,
instructional quality) cannot be directly observed. Moreover, multilevel latent variable
models allow researchers to separate within-group and between-group variance more ef-
fectively than traditional mixed-etfects models, leading to more reliable inferences.

Multilevel models can be classified based on whether variables are assessed at the

individual or group level (Croon & van Veldhoven, 2007; Snijders & Bosker, 2012). One
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relevant example in education is the study of student learning outcomes as a function of
class-level characteristics such as class size. The “classic” multilevel models (also called
random intercept models) used for this purpose are often estimated using software such
as HLM (Raudenbush et al., 2011) or Ime4 (Bates et al., 2015).

However, various works (e.g., Asparouhov & Muthén, 2007; Liidtke et al., 2008) have
argued that this type of aggregation can lead to severely biased estimates of the etfect of
the context characteristic. One possible solution is to use a specialized multilevel model
in which the context variable is formed through latent rather than manifest aggregation
(for a discussion of latent aggregation, see Liidtke et al., 2008, 2011). Unfortunately, such
a model with a latent predictor cannot be specified in HLM or Ilme4 and is therefore
often estimated using Mplus (Muthén & Muthén, 2012). However, these models place
high demands on the data, and convergence problems or inaccurate estimates of effects
at the class level (accuracy issues) can occur.

Similar methods also play a role in other modeling contexts, such as regression anal-
ysis (Hoerl & Kennard, 1970; Tibshirani, 1996; see also McNeish, 2015) and structural
equation models (Yuan & Chan, 2008; see also Yuan & Chan, 2016). In the latter, a
small value is typically added to the estimated variance, and it has been suggested that a
similar effect can be achieved by selecting an appropriate prior distribution (e.g., Chung
et al., 2015; McNeish, 2016; Zitzmann et al., 2016).

Bayesian approaches have gained increasing popularity in multilevel modeling due to
their ability to enhance estimation accuracy by incorporating prior information (Hamaker
& Klugkist, 2011; Liidtke et al., 2013; Muthén & Asparouhov, 2012; Zitzmann et al., 2015,
2016). The possibility of adding prior information is a fundamental aspect of Bayesian
estimation. It combines information from the data at hand, captured by the likelihood
function, with additional information from prior distribution, resulting in inferences based
on the posterior distribution (Gelman, 2006). However, specifying priors can pose chal-
lenges, particularly in small samples with a low intraclass correlation (ICC), where the
choice of prior is crucial (Hox et al., 2012). Small sample sizes are very common in

psychology and related sciences due to limitations in funding and resource constraints
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(Browne & Draper, 2006). In such cases, between-group estimates may approach zero
and become unstable, significantly increasing sensitivity to prior specification. This makes
prior misspecification one of the biggest challenges in applying Bayesian approaches to
latent variable models (Natarajan & Kass, 2000; Zitzmann et al., 2015). However, this
effect of the prior can also be exploited. Recent research by Smid et al. (2020) has shed
light on the importance of constructing “thoughtful priors” based on previous knowl-
edge to enhance estimation accuracy (see also Zitzmann, Liidtke, et al., 2021). In the
Bayesian approach proposed in this paper, the prior parameters are determined through
a theoretically derived automated procedure that minimizes the estimated Mean Squared
Error (MSE). This removes the need for the user to manually specify a prior, thereby
eliminating the risk of user-induced misspecification.

While Smid et al. (2020) focused on addressing small-sample bias, it has been ar-
gued that evaluating the quality of a method should consider not only bias but also the
variability of the estimator, particularly in small samples with low ICCs (Greenland,
2000; Zitzmann, Lidtke, et al., 2021). In cases of low ICCs, within-group variability
dominates, and small sample sizes lead to unstable group-level estimates, resulting in
higher variance when estimating between-group slopes. This highlights a crucial point —
approaches solely dedicated to minimizing bias may, in fact, perform less optimally than
those focused on reducing variability alone. Thus, it is important to consider both bias
and variability in optimizing analytical strategies. In this regard, alternative suggestions
for specifying priors have aimed at reducing the MSE, which combines both bias and
variability (e.g., Zitzmann et al., 2015, 2016). Note that in cases of small samples and
low ICCs, MSE is largely driven by the variability of the estimator. Therefore, minimizing
variability remains an important goal when optimizing MSE.

In the same spirit, in this article, we derive a distribution for the Bayesian estimator
of between-group slopes, building on the model originally established by Liidtke et al.
(2008). Specifically, we use this distribution to develop an optimally regularized Bayesian
estimator that automatically selects priors to minimize MSE, thereby avoiding misspec-

ification caused by user-specified priors. We then report the results from computational
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simulations conducted across a broad spectrum of conditions to evaluate the estimator.
They demonstrate the advantages of this approach compared to ML estimation, partic-

ularly in scenarios of small samples and a low ICC.

2. Theoretical Derivation

Before delving into detailed aspects, we will briefly summarize Liidtke et al.’s (2008)
model, which we use to exemplify our approach. This model was proposed as one way
to provide unbiased estimates of between-group slopes in contextual studies. It pro-
poses predicting the dependent variable Y at the group level by using a latent variable.
This latent variable represents a group’s latent mean, offering a more reliable alternative
than the traditional manifest mean approach. Known as the “multilevel latent covariate
model”, this model allows for the integration of latent group means into the more complex
frameworks of multilevel structural equation models, which are prevalent in psychological
research and related research (see also Zitzmann, Lohmann, et al., 2022).

Zitzmann, Liidtke, et al. (2021) have proposed and discussed a Bayesian estimator
for the between-group slope in this model (see also Zitzmann & Helm, 2021). Their ap-
proach introduced a method for incorporating prior information in estimating between-
group slopes. However, this method required manual specification of prior distributions,
which could be challenging, particularly in small samples where misspecified priors may
lead to biased or unstable estimates. In contrast, our approach extends this work by up-
grading their Bayesian estimator to a regularized Bayesian estimator that automatically
selects optimal priors, thereby preventing user misspecification and improving estimation
stability.

Since our method regularizes the estimator introduced by Zitzmann, Liidtke, et al.
(2021), we maintain their notation for consistency. More precisely, in the model, it
is assumed that the individual-level predictor X is decomposed into two independent,
normally distributed components: X, representing the latent group mean, and X,
representing individual deviations from Xj,. Thus, for an individual « = 1,...n within a

group j = 1,...J, the decomposition can be stated:
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Xij = Xp; + X ij (1)
Xoj ~ N(px, 7%) (2)
Xuw,ij ~ N(0,0%) (3)

Note that further, we assume that each of J groups includes n persons, therefore the
overall sample size is nJ.

Hereafter, we will refer to 0% and 7% as the within-group and between-group vari-
ances of X, respectively. Similarly, o and 72 are the within-group and between-group

variances of Y, respectively.

The individual-level and group-level regressions read:

Level 1: Yi; = Boj + BuwXuw,ij + €ij (4)

Level 2: By; = o + Bp X j + 0, (5)

In Equation 4, (3, represents the within-group slope that characterizes the relationship be-
tween the predictor and the dependent variable at the individual level, while 5y; describes
the random intercept. Normally distributed residuals are denoted as £;; ~ N (0, 02).

Moreover, we denote between-group slope in Equation 5 as 3, and the overall inter-
cept as a. d; ~ N(0,77) represents normally distributed residuals. See Figure 1 for a
visual representation of the model. Note that the between-group component Y, in Fig-
ure 1 corresponds to the random intercept fy; in Equation 4, whereas the within-group
component Y,, in Figure 1 corresponds to (5, Xuw,; + €i;) in Equation 4.

We focus on the between-group slope [, which is the most important parameter in
numerous multilevel model applications, such as when analyzing contextual effects. For
balanced data (where each group has an equal number of individuals), the maximum

likelihood (ML) estimator of 3, is given by:
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Figure 1
A multilevel structural equation model using the within-between framework that decomposes the

variables X and'Y into within-group and between-group components

. /

 Within
B i

Note. The within-group components are denoted by subscript w, and the between-group
components are denoted by subscript b. The between-group components (X, and Y3) are
connected through a regression, where Y} serves as the dependent variable and X} as the
predictor. Similarly, the within-group components (X,, and Y,,) are related to each other
in an analogous manner. The notation includes (3, for the between-group slope and f,, for

the within-group slope.

In this equation, 7% and 7y x are sample estimators of the group-level variance of X and
the group-level covariance between X and Y, respectively.

While the asymptotic properties of the ML estimator (6) are advantageous, it tends
to exhibit bias in finite sample sizes and displays significant variability, leading to a sub-
stantial Mean Squared Error (MSE) in such scenarios (as demonstrated by, e.g., McNeish,
2016). This poses a challenge to the practical utility of the ML estimator for rather small
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samples with low ICCs, as results from individual studies could be notably imprecise.
Consequently, researchers have recommended alternative estimators that demonstrate
lower variability, leading to increased accuracy and a reduced MSE, although potentially
at the cost of some more bias compared to the ML estimator. Notable among these are the
estimators proposed by Chung et al. (2013), Zitzmann et al. (2015), Zitzmann, Liidtke, et
al. (2021); see also Zitzmann & Helm (2021). Next, we will develop a regularized version
of Zitzmann, Liidtke, et al.’s Bayesian estimator for the between-group slope, drawing on
so-called indirect strategy approach of constructing the estimator outlined by Zitzmann,
Liidtke, et al. (2021). The details of this development are provided in Appendix A.
Zitzmann, Liidtke, et al.’s (2021) Bayesian estimator starts with the prior gamma
distribution and its two parameters, vy and 73 (see Appendix A). A specific choice of prior
parameters is not required, as our forthcoming Bayesian estimator is designed to find the
optimal values to minimize MSE. Combining priors with the ML estimator, Zitzmann,

Liidtke, et al. (2021) derived the Bayesian estimator as:

z Ty X
bo = (1 —w)rd +wiz (7)

where w is the weighting parameter defined as a function of the gamma-distributed priors.
The denominator in Equation 7 accounts for both the prior variance 73 and the observed
between-group variance 7%, with weights adjusted by w to control the influence of prior
information as .J increases.

Practically, w € [0,1] can be interpreted as the relative weight given to the prior
versus the data-base estimate: w = 1 corresponds to the standard ML estimator (Equa-
tion 6), w = 0 corresponds to full shrinkage toward the prior mean, and intermediate
values balance the two sources of information.

The derivation of the Bayesian estimator (Equation 7) is described in detail in Ap-
pendix A. Note that Equation 7 is essentially a Stein-type estimator (Stein, 1956).

We specify the weighting parameter (prior) w in a manner similar to that of Zitz-
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mann, Liidtke, et al. (2021):

w=-—2 (8)
Z-1

So w is defined as a function of the gamma-distributed prior 1y and the number of
groups J. The weighting factor w is derived such that as J — oo, w approaches 1, ensur-
ing that the Bayesian estimator converges to the ML estimator. Note that the weighting
parameter w in Equation 8 differs from the one introduced by Zitzmann, Helm, and Hecht
(2021) because we further optimize it (see Appendix A).!

The Bayesian estimator (3, is not yet regularized. To this end, the two parameters
7¢ and w need to be identified. As mentioned, w is defined as a function of sample size
and converges to 1 when J — co. Therefore, the Bayesian estimator 3, is asymptotically
unbiased and coincides with the ML estimator Bb in Equation 6 when samples are suffi-
ciently large. In finite samples, however, the Bayesian estimator is biased.

To obtain the optimally regularized By, it is essential to find the values for 7¢ and w
based on an optimality criterion. The MSE serves as the natural choice for this criterion.

It is defined as:

MSE(By) = Var(B) + (E(By) — 5y)° (9)

As can be seen from the equation, this measure is simply the sum of the variance and
the squared bias of the estimator. As the ML estimator in Equation 6 is unbiased in
theory, its MSE shortens just to the variance of this estimator. The Bayesian estimator
as defined in Equation 7 does not share the same unbiasedness property. Rather, it
reduces the MSE by reducing its variance at the cost of some bias. We will show how
to construct the estimator in such a way that a substantially reduced MSE is achieved
compared to the ML estimator Bb in small samples with low ICCs. In infinite samples,

the MSE of Bb reaches its global minimum of 0 (as both variance and bias converge to

'In this case, optimized stands for w that minimizes the total error of an approximated denominator

of the Bayesian estimator in Equation 7.
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0), and due to the weighting parameter w, the Bayesian estimator 3, achieves the same
outcome.

To find the optimal values of the parameters 7§ and w, it is necessary to express
the between-group (co)variance estimators from Equation 7, 7% and 7y, in terms of the
normal distributions of the between- and within-group components of the predictor and
the dependent variable, namely X, X, Y, and Y,, (see Appendix B for more details). We
derived the expression for 7% under the restriction that it should have an easily definable

distribution. For the derivation, see Appendix B. This resulted in:
7% = HxSxVx AVxSx Hx (10)

where Hy ~ N(0,1,71511). The coefficient matrix A is defined in Equation 102 of
Appendix F. Additionally, matrices Vy and Sx are the matrices of eigenvectors and
eigenvalues, respectively. They are defined in Equation 57 of Appendix B. The internal
part of Equation 10, SxViAVxSx, is a diagonal coefficient matrix. This means that
in Equation 10, we express 7% as a weighted sum of squares of independent normally
distributed random variables, that is, a weighted sum of x?-distributed random variables,
which are transformed from X, X, Y3, and Y.
2

To express 7y x, we use a similar transformation as for 75. This transformation is

described in detail in Appendix C. The result is:

where Hy ~ N (O,Ig(n Jt J+1)) is a multivariate standard normally distributed random
vector. Coefficient matrix @ is computed in Equation 75 of Appendix C. Matrices Vg
and Sy are the matrices of eigenvectors and eigenvalues, respectively. They are defined in
Equation 72 of Appendix C. Furthermore, the internal part of Equation 11, Sy V},QVySH,
is a diagonal coefficient matrix. With Equation 11, the estimator of the group-level
covariance 7y y is represented as a weighted sum of squares of independent normally

distributed random variables, that is, a weighted sum of y?-distributed random variables.
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As a consequence, we express each of the estimators of group-level (co)variances 7%
and 7y x as a sum of squares of independent and identically distributed normal random
variables in Equations 10 and 11, respectively. Every term of these sums is y?-distributed,
thus following the Gamma(%, 2) distribution. Notice that a gamma distribution can be
scaled: if a variable 1 follows the Gamma(k, #) distribution, then cx1 is Gamma(k, c*0)-

distributed. Therefore, we can represent the estimators of group covariances, 7% and 7y,

~2
TX ~ Gamma(ksumlg Hsuml)

ksuml - 22

(205

7A_YX ~ Gamma(ksum27 05um2)

k

232
233
234
25 Ty x to calculate the distributions of the
236
237
238

230 are the following distributions:

ksuml esuml

ksumZ esqu

kB(w, Tg)QB(w, T02)

(X, Oy x.)”

sum2 — )
2305,
The scales fx ; and y x; are the elements of the diagonal matrices SxVy AVx Sy (for 7%)

and SgV;,QVy Sy (for 7y x) in Equations 10 and 11.

ksqu esumZ

>, 0% (12)
9%(71‘ y Usuml — Zz 0)(72'
> b (13)

6

Sum2 - < A
>ibvxi

In the next step, we make use of the distributions of the sample covariances 7% and

ML estimator éb and the Bayesian estimator Bb.

The estimators 3, and Bb are defined using an F' distribution, because ratios of gamma-
distributed random variables follow F' distributions. The full procedures of deriving the

distributions of Bb and B, are presented in Appendix D. The results of these derivations

Bb NF(kaum2a kauml) (14)

By ~F (2kguma, 2kp(w, 72)) (15)

a0 where the coefficients kgumi1, Osumi, Ksumz, Osum2, kg, O0p are defined and fully described

2 in Equations 81, 82, 87, and 88 of Appendix D. Note that kg and g are functions of
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22 the prior parameters w and 7¢. Using these distributions, we compute the variances and

23 expected values of both estimators and combine them into the final formulas for their

s MSEs:
A ksum292 2(ksum1 + ksqu - 1) ksum20$um2 2
MSFE = s — 1
S <5b> ‘gguml(ksuml - 1)2(ksum1 - 2) (ksuml - 1)95um1 5b ( 6)
MSE (Bb) =
2 2 2 (17)
ksum295um2(kB (W, 7—0) + ksum2 - 1) ksum263um2 . 6
03w, 78) (kp(w, 78) — 1)*(kp(w,7) —2) * \(kp(w,73) = Dp(w,3)
25 As a byproduct, we obtain their standard errors from the estimators’ distributions
246  AS:
A esqu ksum2 (ksuml + ksum2 - 1)
SE( ) - 18
5b esuml (ksuml - 1) \/ ksuml - 2 ( )
= esumZ ksum2 (kB (wa TUQ) + ksqu - 1)
SE = 19
€y O (0. 72) (k@ 72) — 1) \/ Fp(w,72) — 2 (19)
247 Using these standard errors, one can describe the uncertainty associated with the

ug  estimation or use them for statistical testing. However, when samples are rather small, we
a9 recommend to use resampling procedures for obtaining standard errors, such as the delete-
20 d jackknife (Shao & Wu, 1989; for applications in multilevel modeling, see Zitzmann, 2018;
251 Zitzmann, Lohmann, et al., 2022; Zitzmann et al., 2023, 2024).

252 Having obtained the MSE of Bb (Equation 17), we can minimize it with respect to
3 the parameters w and 7¢ in order to obtain our regularized Bayesian estimator. To find
4 the optimal choices for the prior parameters, we employ a numerical approach, which is
25 algorithmic in nature, making it well-suited for implementation in software platforms like
6 R or MatLab. The algorithm is a grid search over the parameters, with 0 < w < 1 and
w7 0> 78 > d*7%. Since it is impossible to find the global minimum in the general case
28 (Lakshmanan, 2019), the algorithm we implement performs only a local optimum search.

0 We propose to choose parameter d to be at least five times the standard deviation of the
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estimated group-level variance of X, that is, 5x \/W(%)Q() . The value of Var(7%) may be
obtained from the derived distribution of 7% in Equation 81 of Appendix D, or even more
exactly, by using the procedures of Mathai (1993) or Fateev et al. (2016). This 5-sigma
region guarantees that the minimum estimated MSE falls inside this region with high
probability. The probability of the minimum estimated MSE being within this interval
is at least 0.9857 for J = 3, 0.9996 for J =5, and > 0.99998 for J > 7. In this case, our
grid search will find the inner solution for the optimal values of w and 7¢ that minimize
the estimated MSE. Note that the grid search algorithm minimizes the estimated MSE
but not the unknown true MSE.

It is important to note that the MSE in Equations 16 and 17 incorporates the un-
known between-group coefficient 5,. We propose using its ML estimate, Bb, as a sub-
stitute, thereby giving our technique an empirical Bayes flavor. Such uses of “plug-in
estimates” are not uncommon in statistics and often very useful (Liang & Tsou, 1992;
see also Zitzmann et al., 2024).

We have demonstrated an approach for minimizing the MSE of the between-group
parameter, leading to what we refer to as the optimally regularized Bayesian estimator
B3, for this parameter. Notice that our estimator uses the ML estimator /3, during MSE
optimization and even includes ML as a special case when w = 1. This means, in small
samples, we can do better than the ML estimator in terms of MSE. However, when
working with large sample sizes, the costs due to using approximate distributions and
the plug-in procedure to compute the regularized Bayesian estimator may be larger than
the benefits. Such a scenario is likely to occur with larger group sample sizes combined
with high levels of the intraclass correlation of the predictor. In the next section, we

demonstrate some of these properties using simulated data.

3. Simulation Studies

We begin with the description of the data-generating mechanism, including its pa-
rameters such as group size n, number of groups J, intraclass correlation coefficient ICCy,

and the coefficients 3, and (,,. We utilized the generated data to compute estimates us-
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ing both the proposed optimally regularized Bayesian estimator and, for benchmarking
purposes, also the ML estimator. The full algorithm used to actually yield Bb is detailed
in Appendix E. Finally, we present the results graphically. Detailed results can be found
in Appendix G, which allows for a more comprehensive evaluation of the estimation ac-

curacy under varying input parameters.

3.1. Data Generation

Next, we detail the data generation process and outline the specifics of our simulation
setup. We base our simulations on the data-generating process used by Zitzmann, Helm,
and Hecht (2021), Zitzmann, Liidtke, et al. (2021). Specifically, we conducted simulations

for each unique combination of the following parameters:

e ICCyx: Intraclass Correlation (0.05, 0.1, 0.3, 0.5)
e J: Number of groups (5, 10, 20, 30, 40)

e n: Number of individuals per group (5, 15, 30)
e [(,: Between-group parameter (0.2, 0.5, 0.6)

e [, Within-group parameter (0.2, 0.5, 0.7)

In total, this resulted in 4 x 5 x 3 x 3 x 3 = 540 scenarios, each of which was replicated
5,000 times. The relatively small number of groups was chosen to reflect reasonable two-
level scenarios in the social sciences (i.e., typically < 30 students per class, < 30 schools
per district), and to align with examples from Gelman & Hill (2006).

The values of 3, and [, follow ranges used in prior simulation studies on the
multilevel latent covariate framework and related models. For example, Liidtke et al.
(2008) used values {0.2,0.7}, Grilli & Rampichini (2011) considered values including
{0.25,0.5,0.75,1,1.5}, and Zitzmann & Helm (2021) used the value of 0.7. The combi-
nation g, = 8, = 0.7 is infeasible under our fixed ICCy = 0.2 design, so [3, was reduced
to 0.6 in that case. Similarly, near-zero (3, values were not included because for ICCy =

0.2, they would violate ICC constraints:
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I 1-1
ng >ICCx >1— # (20)
Bb ﬂw

The intraclass correlation of the dependent variable, denoted as ICCy, was preset to 0.2

within the code to study scenarios with ICC values that lie at the center of the typi-
cal ICC range observed in empirical studies (Gulliford et al., 1999). Additionally, we
incorporated another validity check in order to identify and exclude incorrectly specified

inputs, such as non-integer values for J or n.

3.2. Fvaluation Criteria

The goal of our simulations was to assess how well the regularized Bayesian estimator
can estimate the true parameter value 3, across various scenarios. To this end we assessed
its performance in terms of the MSE and bias. Note that in addition to the presented
estimator, a variant thereof was studied. Both variants were compared against the ML
estimator.

We consider the following variants of the regularized Bayesian estimator: our pro-
posed Bayesian estimator with the MSE optimization based on plugged-in ML-estimate
f3,; Bayesian estimator with MSE optimization based on the true value of /3.

It is important to note that only the variant-1 Bayesian estimator (with MSE opti-
mization based on the ML estimate Bb) and the ML estimator are practically applicable
to real data. In contrast, the second Bayesian estimator (with MSE optimization based
on the true f3,) serves only as a theoretical benchmark.

Further, as evaluation measures, we use the square root of the MSE, denoted as
RMSE, and the relative bias. First, MSE is computed as the mean of the squared dit-
ferences between the estimated parameter and the true between-group parameter, .
Second, the square root is taken to obtain RMSE from MSE. RMSE then allows for
comparisons similar to those made with MSE? while presenting the error in the original

units of measurement. Our preference for RMSE over MSE stems from its scalability and

2The method with the smallest MSE also has the smallest RMSE, and the reverse is also true.
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straightforward interpretability. These attributes enhance the visualization of our anal-
ysis, facilitating clearer insights into the estimators’ performance. The RMSE describes
the overall accuracy of parameter estimation, indicating the proximity of estimated values
to the true parameter values. Relative bias, in contrast, assesses the average deviation of
the estimated parameters from the true value. It is computed as the ratio of the mean
difference between the estimated parameter and the true between-group parameter to
the true between-group parameter, [3,. The mean difference is calculated over repeated
replications of each scenario in our simulation study. A small relative bias indicates that
the estimator produces results that, on average, are closer to the true parameter value,

while a larger relative bias suggests systematic over- or underestimation.

3.8, Simulation Results

Here, we report the results of our simulation study, focusing on the characteristics of
the simulated data, their alignment with theoretical expectations, and the comparisons
between our proposed estimator, the variant thereof, and the ML estimator. To facilitate
a better understanding, we present visual analyses in Figures 2, 3, and 4, which illustrate
the differential behaviors of the estimators as a function of the group-level sample size
and the ICC. For a better differentiation between methods, we chose to show the logged
RMSE in Figures 2 and 3. Note that log is a monotone increasing function for RMSE> 0.

For more details about the RMSE and relative bias across 540 unique scenarios, see
Tables 2 — 9 (see Appendix G).

Figure 2 provides a visual representation of the log of the RMSE patterns for the
three estimators of the slope. The first line (blue dashed line) in Figure 2 is from the
second alternative variant of the Bayesian estimator; that is, the Bayesian estimator
based on the true value of [, and thus the direct implementation of Equation 17. As
mentioned, this estimator cannot be used on the real data, as the [, is unknown, but it
works as a benchmark for comparison with our proposed Bayesian estimator. This latter
estimator (red solid line) is the Bayesian estimator with the plug-in ML estimate 3, in

place of f,. The third estimator (black dash dot line) is the ML estimator. Recall that
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Log of root mean squared error (RMSE) in estimating the between-group slope By for the ML

and the two Bayesian estimators as a function of the sample size at the group level (J) and the

intraclass correlation of the predictor ICCx

log(RMSE)

log(RMSE)
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Note. The scale of the y-axis differs between the four subplots. Results are shown for

n = 15 people per group, and constant within-group and between-group slopes of 3, = 0.5

and 8, = 0.2, respectively.

among the three estimators, only the second and third are applicable to the real data.

Our theoretical expectations align with the observed trends, as both Bayesian es-

timators exhibit lower RMSE compared to the ML estimator. This RMSE reduction is

more pronounced for smaller group sizes (J), with the effect amplified by lower intraclass

correlations (ICCy). Additionally, RMSE consistently decreases with increasing J for

all methods and ICC levels. However, an exception is observed for the ML estimator in
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Figure 3
Log of root mean squared error (RMSE) in estimating the between-group slope [y for the two

Bayesian estimators as a function of the sample size at the group level (J) and the intraclass

correlation of the predictor ICCx
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Note. The scale of the y-axis differs between the four subplots. Results are shown for
n = 15 people per group, and constant within-group and between-group slopes of 3,, = 0.5

and 8, = 0.2, respectively.

the upper left plot of Figure 2, where RMSE does not follow this expected trend. At
low ICCx and small J, between-group variance 7% is often estimated near zero, causing
the ML estimator (Equation 6) to inflate and produce occasional extreme values. This
yields a finite-sample distribution that mixes regular estimates with such extremes. Be-
cause RMSE is highly sensitive to these rare events, the population RMSE can display
non-monotonic patterns across adjacent .J values even with very large numbers of replica-

tions. In contrast, the regularized Bayesian estimators replace 7% with (1 — w)78 + wi%
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Figure 4

Relative bias in estimating the between-group slope By for the ML and the two Bayesian estima-

tors as a function of the sample size at the group level (J) and the intraclass correlation of the

predictor ICCx

Comparison of relative bias for n = 15
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Note. The scale of the y-axis differs between the four subplots. Results are shown for

n = 15 people per group, and constant within- and between-group slopes of 5,, = 0.5 and

By = 0.2, respectively.

;9 in the denominator, bounding it away from zero and producing smooth, strictly decreas-

0 ing RMSE curves. Despite this, the overall comparison remains valid, as ML consistently

;1 underperforms the regularized Bayesian estimators across all analyzed scenarios in Figure

382 2 .

383 Figure 3 further adds to the understanding of the performance differences. This
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figure demonstrates that the differences in RMSE between Bayesian estimators based
on inserting the true versus estimated values of 3, are only negligible, speaking for the
usefulness of the Bayesian estimator with the plugged in ML estimate of [,.

Figure 4 shows the behavior of the estimators with respect to the relative bias.
The first thing to mention is that both variants of the Bayesian estimator (blue dashed
and red solid lines) do not converge to a bias of zero with an increasing, but finite
number of groups J, while the ML estimator does (black dash dot line). This bias is
not due to misspecified priors but is the intended result of MSE-optimal shrinkage in the
Bayesian estimator (Equation 7), where bias is deliberately traded for reduced variability.
However, as J — 0o, and w — 1, the regularized Bayesian estimator converges to ML,
and the bias disappears. Secondly, with an increasing intraclass correlation ICCx, the
relative bias of all three estimators decreases (plots 1-4 of Figure 4). Thirdly, despite
being asymptotically unbiased, the ML estimator exhibits small-sample bias, especially
for small ICC values (see upper left plot in Figure 4). This bias is inherent to ML es-
timation and results from denominator instabilities when 7% (Equation 6) is estimated
near zero under low ICC, which can lead to sporadic extreme values and a heavy-tailed
error distribution. This effect occurs only with the ML estimator, whereas the regularized
Bayesian approaches remain stable across all scenarios because the denominator uses the
weighted sum (1 — w)7¢ + w7% (Equation 7).

Table 1 presents RMSE and relative bias values computed across all 540 scenarios
and averaged within each combination of group size n and number of groups .J. It con-
solidates information from Tables 2 - 9 in Appendix G. Specifically, Table 1 compares
three estimators: Maximum Likelihood (ML), regularized Bayesian with f,, and regular-
ized Bayesian with Bb- Highlighted cells identify the estimator with the smallest RMSE
(and therefore the smallest MSE) and the smallest relative bias. Results clearly illustrate
that, across all examined cases, the regularized Bayesian estimators consistently provide
lower RMSE values compared to the ML approach. However, as both group size and the
number of groups increase, the relative bias of the ML estimator approaches zero, as

it is a consistent estimator. At the same time, relative bias of the regularized Bayesian
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Table 1
Average RMSE and Relative Bias values of the ML (RMSEy, and Biasyy, respectively), the
Bayesian estimator with fy, (RMSEpq, and Biasp,y, respectively), and the Bayesian estimator

with Bb (RMSEpy1, and Biaspyr, respectively) for different values of n and J

n |J | RMSEmL | RMSEgR,y, | RMSEgm | Biasur, Biasga.y, | Biasgmr,
5 |5 | 138.948 2.165 2.139 -541.286 | -85.861 | -85.565
5 | 10 | 65.035 1.230 1.231 20.007 -79.511 | -77.130
5 |20 | 101.584 0.771 0.781 253.325 -67.544 | -64.531
5 30120412 0.602 0.611 33.315 -09.854 | -56.847
5 140 | 25.685 0.519 0.526 -60.882 -57.754 | -54.792
15 |5 | 456.334 1.131 1.129 -2815.721 | -31.872 | -31.855
15 | 10 | 107.527 0.653 0.662 -564.371 | -51.219 | -48.227
15 | 20 | 19.847 0.443 0.451 -79.606 -54.971 | -51.664
15| 30 | 7.720 0.362 0.368 -5.551 -55.591 | -52.659
15 | 40 | 3.561 0.315 0.320 -4.161 -55.796 | -53.163
30 | 5 | 84.649 0.949 0.950 -88.566 -20.531 | -20.521
30 | 10 | 19.940 0.546 0.556 16.845 -52.950 | -49.524
30 | 20 | 4.110 0.341 0.347 -12.779 | -57.784 | -54.571
30 | 30 | 0.473 0.279 0.283 -1.565 -57.588 | -54.760
30 | 40 | 0.386 0.257 0.260 -1.737 -56.888 | -54.412

a3 estimators remains around 60%. Consequently, for larger n, the ML estimator often has
aa the smallest highlighted relative bias. Nevertheless, even when the ML estimator exhibits
a5 less bias than both regularized Bayesian estimators, the regularized Bayesian estimators
a6 achieve a substantial reduction in MSE and RMSE values, especially when n and J are
a7 small. Thus, Table 1 emphasizes that, according to our simulation studies, regularized
a1z Bayesian estimation - where only the regularized Bayesian estimator with By is applicable
a0 in the real world - may deliver more biased estimations, compared to ML, but is highly

w0 preferable in terms of MSE, especially in scenarios with small n and J.
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In conclusion, our optimally regularized Bayesian estimator with the ML estimate
plugged-in demonstrates its power to refine the accuracy of estimators for the between-
group slope f, in small samples. While acknowledging inherent bias (see Table 3 in
Appendix G for details), this estimator generated through our approach demonstrates
enhanced accuracy when juxtaposed with the ML estimator, particularly in situations
characterized by a finite sample size. Next, we provide a summary of our introduced
approach, reflect on the theoretical advancements, highlight new findings, address limi-

tations, and offer insights into the broader implications of our work.

4. Step-by-Step Tutorial Using MLOB R Package

To illustrate the practical application of the newly developed estimator, we cre-
ated the MultiLevelOptimalBayes (MLOB) package, which includes the estimation func-
tion mlob (). In this section, we provide step-by-step instructions on using the regularized
Bayesian estimator with the MLOB package in R. The estimator is applied to the PASS-
NYC dataset—a real-world dataset on educational equity in New York City that includes

data from 1,272 schools across 32 districts.

4.1. Loading MLOB Package
First, install and load the MLOB package, which is available on CRAN:
install.packages("MultilLevelOptimalBayes")

Alternatively, the development version can be installed from GitHub:

install.packages("devtools")
devtools: :install_github("MLOB-dev/MLOB")

library("MultilevelOptimalBayes")

4.2. Loading and Preparing the Dataset

As mentioned earlier, we demonstrate how to use the MLOB package based on the

PASSNYC dataset. The PASSNYC dataset is available on Kaggle.® In the next step,

Shttps://www.kaggle.com/datasets/passnyc/data-science-for-good/data
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ws load, clean, and convert the relevant variables of the PASSNYC dataset to numeric val-

447 UES:

48 # Load data (set up the correct folder in R using setwd())

449 data <- read.table("2016 School Explorer.csv", sep = ’,’, header = TRUE)
450

41 # Create a subset excluding N/A values in Average.Math.Proficiency

42 data_subset <- datal[data$Average.Math.Proficiency != ’N/A’, ]

454  # Convert the Average Math Proficiency variable to numeric

45 data_subset$math <- as.numeric(data_subset$Average.Math.Proficiency)
456

457  # transform variable Economic.Need.Index to numeric variable ENI

458 data_subset$ENI = as.numeric(data_subset$Economic.Need.Index)

450 4.3. Estimating the Between-Group Ejfect

460 We seek to obtain the contextual effect of economic need on average math proficiency
w1 using the regularized Bayesian estimator. For user convenience, the mlob() function fol-
w2 lows a similar notation and works as simply as the linear regression function 1m() in R.
w3 We specify District as the grouping variable. To ensure reproducibility, we set a random
ws  seed before processing the dataset. Since the dataset is unbalanced (i.e., the number of
ss individuals per group varies), our procedure balances the data by randomly removing
w6 entities from larger groups to achieve equal group sizes. Setting a seed ensures that the
w7 same entities are removed each time the procedure is run, making the results fully repli-
w8 cable.

469 # Set seed for reproducibility

470 set.seed(123)

an

472 # Apply the mlob function

473 result <- mlob(math ~ ENI, data = data_subset, group = ’District’, balancing.limit = 0.35)

ara Warnings may indicate that the data are unbalanced and that a balancing procedure

a5 has been applied. The function also alerts the user if estimates may be unreliable due to
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a6 a highly unbalanced structure. By default, if more than 20% of the data would need to
an be deleted to achieve balance (threshold adjustable via the balancing.limit parameter),
as the function stops and issues a warning. While this procedure preserves the estimator’s
a0 assumptions, removing many observations or groups may affect the generalizability of the

40 results.

a81 4.4. Summary of Results

a8 The output of the customized summary() function follows the format of the sum
3 mary(1m()) function and provides the estimated between-group effect (/) obtained with
s the regularized Bayesian estimator. For comparison, the summary () function also includes

45 ML estimation results:
486 summary(result)

487 Call:

488 mlob(math ~ ENI, data = data_subset, group = "District", balancing.limit = 0.35)

489

490  Summary of Coefficients:

491 Estimate Std. Error Lower CI (95%) Upper CI (95%) Z value Pr(>|z|) Significance
492 beta_b -1.0379 0.0183 -1.0737 -1.0020 -56.6769  0.00e+00 * Kk

493

44 For comparison, summary of coefficients from unoptimized analysis (ML):

495 Estimate Std. Error Lower CI (95%) Upper CI (95%) Z value Pr(>|z|) Significance
406 beta_b -1.7415 0.7580 -3.2271 -0.2560 -2.2977 0.0216 *

497

498 Signif. codes: 0 ‘**x’ 0.001 ‘**’ 0.01 ‘x’ 0.05 ‘.’ 0.1 ¢ * 1

499 4.5. Interpretation

500 The results indicate that the regularized Bayesian estimator provides an estimate

s with a significantly lower standard error compared to the ML estimator. Notably, the be-
si2  tween-group coefficient estimated by the regularized Bayesian estimator (Bb = —1.0379)

s: is smaller in absolute terms than the one estimated by ML (3, = —1.7415). The reduction
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in absolute magnitude suggests that ML may overestimate the effect due to its higher
variance, whereas the regularized Bayesian estimator produces more reliable estimates,
particularly in small samples. The between-group etfect in this context represents how eco-
nomic need, averaged at the district level, influences math proficiency across the districts
of New York City. The negative coefficient suggests that districts with higher economic
need tend to have lower average math proficiency. Given that the PASSNYC dataset is
relatively small, containing 1,272 schools across 32 districts, the primary small-sample
issue arises from the limited number of districts rather than the total number of schools.
Since hierarchical models rely on the number of groups to estimate between-group effects,
a small number of districts leads to increased variance in the estimated between-group
coefficient. In this setting, the lower variance of the Bayesian estimator is particularly
beneficial, as it enhances the reliability of the estimates. This highlights the advantages
of the regularized Bayesian estimator in two-level latent variable models, especially with
small datasets such as PASSNYC.

To draw a parallel with the previous section, we refer to Table 1, which summarizes
the average RMSE and relative bias across different n and J and illustrates when reg-
ularized Bayesian or ML estimation is the preferable choice. A green color code is used
to indicate the superior estimator for each scenario. Notably, in all analyzed cases, the
newly developed estimator outperformed ML in terms of RMSE, further demonstrating
its reliability in multilevel latent variable modeling. Therefore, even when the sample
is sufficiently large, we recommend using our MLOB package, which offers both ML and
regularized Bayesian estimations, allowing users to select the most appropriate method
for their data. It is also important to consider degenerate cases where either the between-
group or within-group effect is zero. In such cases, the mlob() function recommends using

simpler models, such as ordinary least squares (OLS) or ML.

5. Discussion and Conclusion

In this article, we thoroughly described and analyzed a regularized Bayesian esti-

mator for multilevel latent variable models, which we optimized with respect to MSE
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performance, using the multilevel latent covariate model as an example. In addition, we
derived an analytical expression for the standard error.

However, given our specific focus on small sample size, rather than using this stan-
dard error, it might be more reasonable to employ a resampling technique for accurately
determining the standard error. As mentioned, one such effective method is a delete-
d jackknife procedure. The main achievement lies in deriving an optimally regularized
Bayesian estimator by seamlessly integrating the minimization of MSE with respect to
the parameters of the prior distribution. Through graphical representations of the re-
sults, we highlighted the pronounced improvements that our approach garners over ML
estimation, particularly in small samples.

The following contributions to the theoretical landscape are noteworthy. Primarily,
we derived a distribution of the Bayesian estimator, enabling us to achieve further op-
timization of the MSE with respect to the parameters of the prior distribution for this
estimator. Moreover, we proposed an algorithm to construct our optimally regularized
Bayesian estimator. These theoretical achievements are mirrored by the results from our
simulation study as detailed in the previous section. In a nutshell, from these results,
significant performance improvements emerged for the optimally regularized Bayesian es-
timator compared to the ML estimator, particularly in situations characterized by small
sample sizes and low ICCs. These advantages can be attributed to the way the estimator
is constructed, which allows for some bias while actively minimizing the MSE.

Although our work focuses on Bayesian estimation, the utilization of prior informa-
tion to enhance estimation is not exclusive to Bayesian methods. Similar means are taken
by frequentist approaches. For example, the Bayesian estimator’s weighting parameter w
in Equation 8 achieves an effect analogous to the penalty in regularized structural equa-
tion modeling, as seen in Jacobucci et al. (2016). Similarly, the weighting parameter in
the denominator of Equation 7 aligns with the concept of regularized consistent partial
least squares estimation (e.g., Jung & Park, 2018).

While our research offers significant contributions, we also acknowledge limitations.

The advantages of our method over ML estimation become less pronounced with larger
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sample sizes, indicating that our approach may be most beneficial in contexts with smaller
samples. Another limitation of our approach lies in the locality of the search for the op-
timal MSE. Our optimization strategy within a 5 * o region ensures that the minimum
MSE falls within this region with almost 100% probability, although this is not guaran-
teed. Additionally, since the true MSE remains unknown, we rely on the estimated MSE,
which provides a reliable approximation within the defined bound. However, the extrema
of the real and estimated MSE do not always coincide. As a result, misspecification of the
regularized Bayesian estimation is possible but extremely unlikely. Moreover, by reducing
the 5 % o search region, we can control bias and select an optimal estimator within the
reduced region. While this decreases the probability of finding the globally optimal MSE,
it ensures that the estimator has a relative bias within a predefined threshold. In the
degenerate case where the search region is zero, we obtain an exact ML estimator. This
is a potential area for future research.

One more limitation is the assumption of equal group sizes, which simplifies the
statistical problem. However, in practice, group sizes often vary (e.g., the number of
students in classes). While our current approach does not directly account for unequal
group sizes, one possible solution would be to average the group sizes and apply our
estimator. It is important to note that our regularized Bayesian estimator formulas
extend to non-integer values of n, allowing for this flexibility. This is also a potential
area for future research. Nevertheless, our MLOB R package includes a built-in data-
balancing mechanism that provides a practical solution for handling unequal group sizes.
Notably, if more than 20% of the data would need to be deleted to achieve balance, the
function stops and alerts the user.

Beyond these limitations, the regularized Bayesian estimator can be extended to
three- and higher-level models. While our estimator has not yet been fully developed for
such multilevel structures, these models could be implemented through an iterative ap-
plication of the two-level estimator. One approach is to iteratively apply the regularized
Bayesian estimator by reducing the model to two levels at a time, computing estimates,

and then proceeding to the next pair of levels.
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An extension for future simulation work is to explore a broader range of between-
group parameter values, including near-zero 3, settings, to more fully assess performance
under weak between-group effects. Future designs could also relax the constraints on
ICCy to investigate the estimator’s behavior in such scenarios.

Another possible extension is incorporating time as a predictor, enabling a longitudi-
nal modeling framework for analyzing time-related trends. For example, the application
of our regularized Bayesian estimator to the longitudinal dataset ChickWeight is included
as a standard example in the MLOB R package. Such extensions provide promising direc-
tions for future research and further refinement of the regularized Bayesian estimator.

To conclude, our optimized Bayesian estimator, which sophistically balances bias
reduction and variance minimization, offers improved precision in parameter estimation,
particularly in small samples. Thus, our findings hold promising implications for mul-
tilevel latent variable modeling, and the demonstrated accuracy improvements due to
optimized regularization underscore the practical value of our estimator. We aspired to
empower researchers in psychology and related fields to utilize the benefits of our pro-
posed estimator and use the newly developed mlob package in R, as demonstrated in the
Section Step-by-Step Tutorial when dealing with small samples in fitting multilevel latent
variable models.

By highlighting the efficacy of Bayesian strategies, we hope to inspire a paradigm
shift in estimation techniques for small-sample scenarios. This shift could lead to more

robust and informed modeling practices in the research community.
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Appendix A

To derive a Bayesian estimator following Zitzmann, Helm, and Hecht (2021) indirect
strategy, we start by adopting a gamma prior distribution for the inverse of the group-

level variance of the predictor variable 7%:

1

— ~ Gamma(a, b) (21)

Tx
where a and b are the parameters of the Gamma distribution. For better interpretability,

2
we employ a reparameterization of a = % and b = 5% leading to:

1 2
— ~ Gamma (ﬂ, ﬂ) (22)
Tx 27 2

Similarly, the likelihood for the inverse of the group-level variance is:

T2 27 9

)
LN Gamma (J Jj) (23)

with 7% being an estimate of the group-level variance. To get an inverse-gamma posterior,

we combine Equations 22 and 23 and yield:

1 J 2+ J73
— ~ Gamma (VO i : YTy + TX) (24)
Tx 2 2

As demonstrated by Zitzmann, Liidtke, et al. (2021) in Appendix C, an approximation

for the mean of this distribution can be derived as follows:

TQX ~ (1- w)TO2 + wf')%— (25)

With the Equation 25, the Bayesian expected a posteriori (EAP) estimate is defined. We

specify the weighting parameter w from the Equation 25 as:
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—% +2% — (26)
This formula minimizes the total error of the approximation of 7% from Equation 25,
making it optimal.

Note that w is defined in Equation 26 as a function of sample size, or more precisely,
as a function of the number of groups J.

Asymptotically, when J — oo, w converges to 1. Thus, 74 becomes equal to 7% in
this case.

To derive the new estimator, we take Equation 6 and replace 7%, with its Bayesian

EAP as defined in Equation 25. This gives:

(1 —w)d + wiz
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798 Appendix B

799 To compute an estimate of the group-level covariances, we apply the formulas from

so  Zitzmann, Liidtke, et al. (2021), starting from the decompositions:

Xij = Xp; + X ij (28)

Yii=Y; + Yuj (29)

sn  We assume that X, ; and X, ;; are uncorrelated and both independently identically nor-

g2 mally distributed. The same assumptions are considered for Y.

803 Next, we define (manifest) group means for both X and Y as:
- 1 1«
Xoj = - ;(Xb,j + Xuij) = Xoj + - ;Xw,ij (30)
= 1 1 ¢
Y=o ;(Yb,j + Yusg) = Yo+ ; Yiij (31)

s« Then, the overall means are:

J n J J n
— 1 1
X..:K]Z (XbJ+XwZJ>_jszﬂ‘i‘_JZZwa (32)
7j=1 =1 7j=1 7j=1 =1
1 J n 1 J 1 J n
Vo= — Yo+ Yui)==Y Y+ — Yo ij 33
njjz:;i:1( byt 73) JJZ:; bJ“'nJ;i:l 1iJ ( )

sos The sums of squared deviations of the group means from the overall mean (SSA) and of

sos the individual values from the group means (SSD) for X are:

J J
SSA=n Z(Y.j — X.) = TLZYZ - nJYf. (34)
J n = J nj:1 J
SSD = ZZ<X” —7.]')2 :ZZXZQJ —HZij (35)
j=1 i=1 j=1 i=1 j=1

sor  The same equations hold for Y. And the cross products of Y and X are:
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J
SPA_nZ i — Ye)(Xuj — Xoo) —nZY.jX.J—nJY..X.. (36)

M:

SPD=3 30 V)X, -3

=1 i=1

J
—nY VyXe  (37)
7=1

i=1
Zitzmann, Liidtke, et al. (2021) derived the relations between the sum of squared devia-

tions of X and the within- and between-group variances as:

SSA=n(J—-1)7% — (J —1)6% (38)
SSD = (n—1)J6% (39)

Combining Equations 38 and 39 with Equations 34 and 35, we yield an estimate of the

group-level variance of X:

n

2= iZX2+ ”‘]_1 if X.. (40
X n—lJ 9 (n— = Xee

Jj=1 =1

Note that this estimator may not be optimal, because estimates may not be positive.
To address this issue, Chung et al. (2013) introduced a maximum penalized likelihood
(MPL) approach for the estimating this parameter. This method mitigates the prob-
lem of boundary estimates, specifically preventing the occurrence of negative estimated
group-level variances. In our approach we used the estimator from Equation 40, due
to the transformation in the further steps and no anomalies found during the extensive
simulations.

Zitzmann, Lidtke, et al. (2021) also derived how the sum of squared deviations of
cross products of X and Y can be expressed in terms of their within- and between-group

covariances:

SPA:n(J—l)%YXJr(J—l)&yx (41)
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This means that the estimator for the group-level covariance 7y x can be obtained from

Equations 36, 37, 41 and 42 as:

. 1
TYX =~ 17

n(n—1)J

J n

nd —1 4 J
Y;i X YeXe— ——YeXee (4
R R T s sy DIRCAT (43)

1 i=1 j=1

j
So far, we have derived both the numerator and the denominator of the ML estimator
and, partly, of Bayesian estimator in Equation 7. But how can we use these derivations?
Our aim is to minimize the MSE of the Bayesian estimator, and to do this, we need to
know the mean and the variance of the estimator. One way to find them is to compute
the estimator’s distribution.

We begin with the derivation of the distributions of group-level variance of X and
the group-level covariance between X and Y. To this end, two new variables are defined.
The Zx merges all the elements of predictor sample together with its means into one
vector of length (nJ+.J+1), and Zy combines all the elements of the dependent variable

and its means:

Zx = (Xi1,- - Xot, X2, -+ Xy Xty -+ Xagy Xao)| (44)
Zy = (Y11> Yo, Yia, Y, Y, -?.J,?..)/ (45)

Using these newly defined variables, we can rewrite the estimators for the group-level

variance and the covariance 7y x in matrix form:

i = ZVAZx (46)
Tyx = Zy Ay (47)

With the same coefficient matrix A for both defined in Equation 102 of Appendix F. Note
that matrix A is diagonal.
Thus, 7y x and 7% are quadratic forms of the sample elements and their means. If the

equations consist only of second order terms of normally distributed random variables, we
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can interpret 7y y and 7% as the weighed sums of x?, and thus gamma-distributed random
variables. However, the distribution of such a quadratic form is highly complicated in
the general case. Therefore, we apply a transformation to yield weighted sum of squares
(without interaction terms) of iid normal random variables.

Firstly, we compute the distribution of Zx and Zy, using the previously made as-

sumptions about X and Y:

Zx ~ N(Lpjyre * fix, Xx) (48)

Zy ~ N(Lpjrg1 * piy, Sy) (49)

Where 1,74 541 is a vector of ones of size (nJ+ J+1). Also, note the following important

facts:

e cach element of Zx and Zy has the same mean

e the sum of coefficients defined by matrix A in Equation 102 of Appendix F is zero

As a result, when we demean Equations 46 and 47, these means sum up to zero. To
demonstrate it, define Z% and Z3 and all their elements as the demeaned counterparts

of Zx and Zy, respectively:

Zx = Zx + Lnjyge1 * hx

(50)
Zy = Zy + Lpjigg1 * fy
Show that Z%' « Ax 1,5.541 and Zy' % A * 1,541 are both zeros:
nJ —1 d
* / _ <7k

Z s Axlpgyg = — nln —1)J ZZ )(J_l)JZX.j—
7j=1 =1 j=1

nn—l)J nin—1)(J—-1)J nJJ-1))

=0

i g I lnd —1-n]+J
v nJ(n—1)(J —1)
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J n J
*/ nJ— 1 —x
=1 =1 7j=1 (52)
nd —1 J
DHE . -
n—l)J nn—1)(J—-1)J nJ(J—-1)

7j=1 =1

ssa Plug the expressions from Equation 50 into the Equations 46 and 47, and remind that

g5 the sum of coefficients of matrix A is zero:

T = ZxAZx = (Zx + Lngrain * pix) A(Zx + Lngigin * px) = Zx' AZx+

25 A Lngygsyspx + px * 1y 0 AZY + pxox 1y g ALy six — (53)
. ~ 7/ \ J/ N - /
=0 =0 =0
=2V AZ%

Tyx = Z5xAZy = (Z% + Logrger * ux) A(Zy + Lpgrg x py) = Z AZy+

ZX Ak Lngyga sty + pix % 1y g AZy + px x5 o Al g sty — (54)
N g N\ " J/

NV vV
=0 =0 =0

A~ * / *

856 Hence it is irrelevant for f?{ and 7y x whether Zx and Zy have non-zero means or
ss7 not, they always cancel out. So, we do not loose generality by assuming ux = 0 and
g8 by = 0.

859 Y x and Yy are defined in the Equations 104 and 105 of Appendix F. These matrices
g0 are symmetric and positive semi-definite as covariance matrices. Therefore, their square
s roots will have only real entries (Horn & Johnson, 2013). Using the matrices, we can

s> transform 7% to:

22 = 7L AZy = 25PN ASYP Y P 2y = Wi s P AS Wy (55)

83 Where Wy = E}l/ 27v ~ N (0,1,,54711) follows the standard (multivariate) normal distri-

ss«  bution, which has the identity matrix I as the covariance matrix. Following the rationale
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that led to Equation (55), we define a square root of the covariance matrix Xx by using

its spectral decomposition as:

Sy = VyDx VL (56)

Where Vy is a matrix of eigenvectors and it is orthogonal (V§ = V'), because Sy is a real
symmetric matrix by its nature (Horn & Johnson, 2013). Matrix Dy is a diagonal matrix
of eigenvalues. These eigenvalues are non-negative, because X x is positive-semidefinite
(Horn & Johnson, 2013). Thus, we may denote the square root of Dx as Sy, which is
just a diagonal matrix with real square roots of each element of Dy. This helps us to

define the matrix Z%Q:

SV = Vi Sy Vi (57)
Indeed, we have:
=1 =Dx
— —~N
SV = Vi Sy VIV Sx Vi = Vi SxSx Vi = Vx Dx Vi = Sx (58)

The eigenvalues of Y x are the following:

Ai =0, (J 4 1) eigenvalues

e \;, =0%, ((n—1)J) eigenvalues

Ai=(n+1) (% +20%), (J — 1) eigenvalues

o Nsysin = 2EEL (71 + 16%), 1 eigenvalue

Dy, a diagonal matrix, is composed of the eigenvalues in this order. Matrix Vyx =V is
presented in Equation 103 of Appendix F. Due to its bulkiness, we provide Vx for the
case n = 3 and J = 4, but it could be expanded upon demand.

We can now plug the decomposition of ¥ x into Equation 55 so that it becomes:
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72 = WS PASY P Wy = Wi Vi Sx Vi AV Sx Vi W (59)
7% = HxSxVixAVxSxHx (60)

where Hy = V{iWx ~ N(0,V{L,;15:1Vx) = N(0,L,715:+1). Thus, the orthogonality
of matrix Vx kept the standard normal distribution of the new variable Hx. Since the
internal right-hand side of Equation 60, Sx V3§ AVx Sy, is diagonal, we indeed managed to
represent 7% as a weighted sum of squares of independent normally distributed random

variables, that is, a weighted sum of y3-distributed random variables.

https://doi.org/10.1017/psy.2025.10045 Published online by Cambridge University Press


https://doi.org/10.1017/psy.2025.10045

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

OPTIMALLY REGULARIZED ESTIMATOR August 21, 2025 46

Appendix C

Similarly to the transformation of the group-level variance of X, which was intro-
duced in Appendix B, we continue with the description of the transformation of the
group-level covariance of X and Y as this is partially similar. We start from Equation 47
in Appendix B and use the previously defined covariance matrices ¥ x and Xy (Equations

48 and 49 in Appendix B):

Pyx = ZAZy = Z3 S PSP ASYP S P 2y = WS PASY Wy (61)

where Wy = Z;l/ °Zyv ~ N (0,1,71s41) is a new random vector that follows the multi-
variate standard normal distribution. For further transformation, we also introduce the

spectral decomposition of covariance matrix ¥y and its square root as:

Sy = Ve Dy VY, (62)
Y2 = Vo Sy Vi (63)

where Vy is a matrix of eigenvectors of ¥y. It turns out to be equal to Vy, therefore
sharing its property of orthogonality. We will further refer to them as V' = Vy = V4 (see
Equation 103 in Appendix F).

Matrix Dy consists of (non-negative) eigenvalues of ¥y on the diagonal (because of
the positive-semidefiniteness of ¥y ). Its square root matrix, Sy, is also diagonal, with
non-negative square roots of eigenvalues on the main diagonal. We can compute the

eigenvalues of Yy in closed-form and thus define matrix Dy by:

./\i

0, (J + 1) eigenvalues

e )\, =0y, ((n—1)J) eigenvalues

Ai=(n+1)(rf+ Lo}), (J — 1) eigenvalues

J+J+1 1 .
Agigil = % (7')2/ + 5052/), 1 eigenvalue
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For the next step we plug in the decompositions Equation (57) of Appendix B and
Equation (63) into the Equation (61) and obtain:

Pyx = WiSPASY Wy = WLV SV AV Sy VIWy (64)
Pyx = HySxV'AV Sy Hy (65)

where Hy = V'Wy ~ N(0,V'L;4541V) = N(0,1,54741). Thus, the distribution of
the new variable Hy is standard normal because of the orthogonality of the matrix V.
Additionally, the inner right-hand side of Equation 65, SxV’AV Sy, is diagonal due to
its construction. Comparing Equations 60 and 65, one might be inclined to see the
distinct similarities and the claim to also represent 7y x as a weighted sum of squares of
independent normally distributed random variables. However, this is not true. Hy and
Hy are different random vectors, and thus, we continue the transformation by defining a

new aggregated variable:

H
H="" (66)
Hy

with the distribution of H being N (0, X ). Its covariance matrix Xy is defined as follows:

Var(H Cov(Hy, H
5, ar(Hy) ov(Hx, Hy) (67)
Cov(Hy, Hy) Var(Hy)

We already showed that Var(Hx) = L,;1541 and Var(Hy) = 1,5, 41 as well. Before
calculation of Cov(Hy, Hy ), we additionally define 3y x in Equation 106 of Appendix F
in a manner similar to Equations (104) and (105). Then the spectral decomposition of

Yy x become:

Yyx = VDyx V' (68)
V2 = VSyx V! (69)
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where matrix V' is the same as in decompositions of ¥ x in Equation 56 from Appendix B
and Xy in Equation 62. Matrix Dy x is diagonal with non-negative eigenvalues of positive-
semidefinite matrix Xy x (Horn & Johnson, 2013). Thus, the square root matrix, Syx,
is diagonal with non-negative square roots of eigenvalues on the main diagonal. The

eigenvalues of Yy x that define matrix Dy y are in the closed-form:

Xi =0, (J 4 1) eigenvalues

Ai =oyx, ((n—1)J) eigenvalues

Ai = (n+1) (1yx + 2oyx), (J — 1) eigenvalues

_ nJ+J+1 1 -
Angrie1 = 25 (TYX + EO'YX), 1 eigenvalue

Next, we use the generalized inverses of matrices Sx and Sy, as described by Penrose
(1955), since they include zero eigenvalues and are not invertible. These matrices are
denoted as S¥ and Sy and include the inverse of diagonal elements that are invertible
and zeros otherwise.

Using all this, the covariance Cov(Hyx, Hy) is computed as:

COU(H)(, Hy) = COU(V’WX, V/Wy) = V/COU(W)(, Wy)v =

V'Cov(S5 Zx, 552 2 )V = V'SL? Cov(Zx, Zy) 5y PV =
~————
Yyx

V'S P8y x5 PV = VIVSEVIV Dy x VIV SEVIV —

COU(H)(, Hy) = S}Dyxs; (70)
This result is used to fully define the covariance matrix of H:
I SiDyxSi

Yy = (71)
St Dy xSy I

and its spectral decomposition:
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Sy = VyDyVi (72)

where the closed-form solutions for both the matrix of eigenvalues Dy and the orthogonal

matrix of eigenvectors Vy. Dy is:

I+ StDyxST 0
Dy = XYY (73)
0 I S{DyxSs

Matrix Vg is defined in Equation 107 of Appendix F. Both matrices follow the same
properties as their predecessor: Dy is diagonal with non-negative eigenvalues, and Vy is
orthogonal.

After exposing the new composite vector H and its covariance matrix Xy, we can

rewrite Equation 65 as:

Tyx = HQH (74)
with coefficient matrix () defined as:
0 18xV'AV S
Q _ PX Y (75)
%S xV'AV Sy 0

Note that () is designed to keep the symmetry of Equation 74. Including the square root

of the covariance matrix leads to:

fox = HQH = IS P Quifsyt Pl = HSyPOsif, (10

where H, = Z;Il/ H~N (0,Iy(ns40+1)) is & vector of independent normally distributed
variables. Using the decomposition of ¥y from Equation 72, denoting a square root of

Dy as Sy, and plugging both of terms into in Equation 76 yields:

https://doi.org/10.1017/psy.2025.10045 Published online by Cambridge University Press


https://doi.org/10.1017/psy.2025.10045

953

954

955

956

957

958

OPTIMALLY REGULARIZED ESTIMATOR August 21, 2025 50

Py = HISWPQSY? Hy = HVySyVEQVy Sy Vi Hy (77)
Hvx = HySyViQVi Sy Ho (78)

with Hy = V};H; ~ N (O, | DYy J+1)) - a multivariate standard normally distributed ran-
dom vector, as Vj is orthogonal. Furthermore, since matrix SyV},QVySy is diagonal,
the estimator of the group-level covariance 7y x is now represented as a weighted sum of
squares of independent normally distributed random variables, that is, a weighted sum of
x3-distributed random variables. Thus, at this point we achieved our aim of transforming

TvX-
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Appendix D

Here, we derive the distributions of the ML and the Bayesian estimator. To this
end, we start by calculating the distributions of sample group-level covariances 7x? and
Ty x in Equations 10 and 11, respectively. According to Welch (1947) and Satterthwaite

(1946), we can approximate these sums as generic Gamma distribution with parameters:

0:k;)?

Hsum -

(80)

Ksum
Notice that each element in the sums 7% and 7yx is scaled. The scales are defined by
diagonal matrices Sx Vi AVxSx (for 7%) and SgV};,QVy Sy (for 7y x). Let us denote their
diagonal elements as 0x; and 0y x; respectively. Then, we can express the distributions

of 7% and 7y x as:

%3( ~ Gamma(ksum1, sum1) (81)

L _ (Zz QX,i)Q 0 _ Zz eg(,z
suml 2 Zl 9_%(71 y Ysuml ZZ 9){72'

7A—YX ~ Gamma(ksum% 65um2) (82)

A ST SO D O 9
- 2Z¢ 952/X,i e EZ Oy x,i

Using these distributions, we can find the distribution of the ML estimator. It is well
known that the ratio of two independent gamma-distributed random variables follows F'
distribution. The independence of 7% and 7yx is not directly clear, but it follows from
the approximation of the sum of Gamma-distributions. Therefore, the ML estimator’s

distribution is:
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ksum Hsum A
#ﬁb ~ F<2ksum27 2k3um1) (83)

ksum26$um2

Next, we derive the distribution of Bayesian estimator. Since it includes the two
parameters 7¢ and w, we need to adjust the process of derivation and find the distribution
of denominator first.

The denominator is (1 — w)7d + w7% and consists of a stochastic part w7% and
deterministic part (1 — w)7¢. To sum them up, we replace the deterministic part with

the sequence of random variables t,,, that converges (in probability) to this deterministic

part:

1
tm ~ G ), — 84
amma <m7’0 m) (84)

Further we substitute 7¢ with ¢,, and yield a sum of gamma-distributed random
variables. Using once more the approach from Welch (1947) and Satterthwaite (1946), we
compute a sum as a new sequence of random variables that follows a Gamma distribution

with parameters kg, and 0p ,,:

(wesumlksuml + (1 - W)Tg)Q

kpm = T (1;;;)2 mr? (85)
Om = wesumlks“’};: (=) (86)
The limit is the Gammal(kg, 0p) distribution with parameters:
by = lim s = (wemfw%:k(im_l <)) (87)
05 = lim Op,, = 7wt Ksum (88)

m—»00 wesumlksuml + (1 - W)T()?

Using the derived distribution of the denominator, similarly to the ML estimator, we

yield the total distribution of the Bayesian estimator:
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kg0 -
ke 5b ~ F(kaum% 2kB) (89)

ksum295um2
989 After computing the distributions of the ML estimator (Equation 83) and the
w0 Bayesian estimator (Equation 89), we use them to calculate biases and variances of the

o1 estimators and thus their MSEs as:

A ksum202 Q(ksuml + ksqu - 1) ksum205um2 2
MSE — sum .
S <6b> ‘gguml(ksuml - 1)2(ksum1 - 2) (ksuml - 1)95um1 Bb (90)
s ksum292 Q(kB + ksumZ - 1) ksum293um2 2
MSE _ sum - 91
(ﬁb) 9,23(/{3 _ 1)2(kB — 2) (kB — 1)93 ﬁb ( )
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Appendix E: Estimation Algorithm

Finally, we introduce a novel and practical algorithm based on the theoretical inves-

tigations made in the main part of the paper. This algorithm aims to provide an efficient

and effective solution for computing the regularized Bayesian estimator:

Input data: n, J, X;; and Yj;

Define matrix A from Equation 102 of Appendix F

Calculate the (manifest) group means: Y.j of X from Equation 30 in Appendix B
and Y,; of Y from Equation 31 in Appendix B

Calculate the overall means: X,., of X from Equation 32 in Appendix B and Y., of
Y from Equation 33 in Appendix B

Compute 7% from Equation 40 in Appendix B and 7¢  from Equation 43 in Appendix

B as well as:

J n J
1 nd —1 —2 J 2
22 Y2 Y ——Y 92
KT YD IO A s 1Py D DI e R
j=1 i=1 j=1
J n J
52 =1 DD IPP R X (93)
X n-1)J ; Yo (n—=1)J *
7j=1 i=1 Jj=1
1 J n n J
byx = XY X.;Y. (94)
YX ( _1)(];; JAij ( _1)‘]]-21 ji ej
1 T n J 2
22 2 v
UY (Tl . 1>J ZZ 1] (TL . 1)J Z o] (95)

Find the ML estimator Bb from Equation 6

Compute diagonal matrices of eigenvalues Dy (page 44), Dy (page 46), Dyx (page
48) and matrix of eigenvectors V' from Equation 103 of Appendix F

Calculate the square root matrices Sx = v/Dx and Sy = /Dy

Compute the diagonal matrix of coefficients Ly = SxV'AV Sx

Calculate matrix @) from Equation 75 in Appendix C

Compute the diagonal matrix of eigenvalues Dy from Equation 73 of Appendix C and

eigenvectors matrix Vg from Equation 107 of Appendix F
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w2 12. Calculate the square root matrix Sy = /Dy
03 13. Compute the diagonal matrix of coefficients Ly = SpV},QVySy

s 14. Compute the coefficients kgum1, Osumis Ksume and Ogume (note that 1 is a vector of ones):

(1 L)
[ nJ+J+1 96
! 2L/ L, (96)
L' L
esuml = % (97)
nJ+J+1~1
(s 1)
2(nJ+J+1) 2)
ksum = 98
? 2L, Ly (98)
L)L
93um2 = % (99)
2(nJ+J+1)2

w5 15. Define vectors W and Ty, with the values of w and 7¢ that specify grid search region.
1016 For example, W goes from 0 to 1 by steps of 0.01, and T, goes from 0.1 to 10 by steps
1017 of 0.1

s 16. Compute the MSE for each value of W and Tps, whereby S, should be substituted

1019 with Bb. The final formula is delineated as:

MSEML@J) = {ksum?egum2(ksum2 + 1) ((1 - W(l))Tw(]) + W(i)]lng-f—J-&-lLl)}
/(=W () Toa(§) + W (i)15, 54 41 L1)? = 2W (0)*(L1'L1))
(L= W(@)Toa(s) + W(i) 1374 741 L1)° — AW (0)*(L1'L1)) } —

26yksumaBsuma (1 — W (i) Toa(5) + W (@)1 s 1 L) . ébloo)
(1= W) TG) + W)Ly g L — Wi - (LILD))
w20 17. Find the minimum MSE and indexes ¢* and j* that provide this minimum
w21 18. Define the optimal parameters w* = W (i*) and 73* = Tp2(5%)
w2 19. Compute the optimally regularized Bayesian estimator as:
By = v (101)

(1 — w*)7g* + wi%

1023 .
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1024 Appendix F: Matrices
0 0 0 0 0
1
0 a7 0 0 0
— nJ—
A= 0 0 oYy 0 0 (102)
0 0 0 0 0
nJ—1
O 0 O o .. m 0
0 0 0 e 0 —ﬁ
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)
— 0 0 0 S W R/ 0
n (n+1) V(J+JIn) (J+J n+1) 2 6
V2 V6
0 0 0 0 0 0 T 2Vntl 6+/ntl
N S 0 0 0 -1 V2 _V6 0
Vn(n+1) V(T+JI n) (J+J n+1) 2 6
1 I S _V2
0 v/n (n+1) 0 0 V(J+JTn) (J+J n+1) 0 0 2
1 I S V2
0 Woyeesy) 0 0 Trmon 0 2
0 - 0 0  — 0 0 0
Vvn(n+1) AV (J+JIn) (J+J n+1)
0 0 - 0 e 0 0 0
v/n(n+1) A (J+JIn) (J+J n+1)
0 0 B 0 S 0 0 0
Vn(n+1) V(J+JIn) (J+J n+1)
= 0 0 -1 0 e 0 0 0
v Vn(n+1) V(J+JIn) (J+J n+1)
0 0 0 -1 - L 0 0 0
v/n (n+1) V(T+Tn) (J+J nt1)
. 1 o 1
0 0 0 \/n(n+l) \/(J+J7L) (J+J n+1) 0 0 0
_ 1 o 1
0 0 0 V/n (n+1) V(T+Tn) (J+J nt1) 0 0 0
_n_ [ S
\ n+l 0 0 0 (J+Jn) (J+J n+1) 0 0 0
_n_ I S
0 \ n+1 0 0 (J+Jn) (J+J n+1) 0 0 0
_n_ I S
0 0 \V n+1 0 (J+Jn) (J+J n+1) 0 0 0
[_n_ [ S
0 0 0 n+1 V(T+JTn) (J+J n+1) 0 0 0
[_J+J
0 0 0 0 J+J7n:l—1 0 0 (103)
2/n+1 6v/n+1 6/n+1 J+J ntl
0 0 0 0 0 V2 6 V3 L
2/ntl 6v/ntl 6vntl J+J n+l
V2 V6 V3 1
0 0 0 0 0 T2Vntl 6+/ntl T 6vnt1 J+J ntl
,ﬁ 0 0 0 0 V2 _ V6 _ V3 1
6 2v/n+1 6vntl 6vntl J+J n+tl
_ V6 0 0 0 0 V2 __ /6 __ 3 1
6 2/n+1 6 vn+1 6vn+1 J+J n+1
V23 0 0 0 0 V2 _ V6 _ V3 1
3 2/n+t1 6v/ntl 6vntl J+J n+tl
0 _¥2  _ 6 0 0 0 V6 __ V3 1
2 6 3vn+1 6v/n+1 J+JTn+1
0 V2o_vE 0 0 /6 3 1
2 6 3vn+1 6 v/n+1 J+JIn+1
0 0 V23 0 0 0 V6 _ V3 1
3 3vn+1 6vn+1 J+JIn+1
V2 V6 V3 1
0 0 0 —= -5 0 0 2vnil pES ST
V2 _ V6 V3 1
0 0 0 5 6 0 0 TVTT SESEES|
V23 V3 1
0 0 0 0 3 0 0 TUnTT ST
V2 V6 V3 1
0 0 0 0 0 T2Vntl  6v/ntl T 6vntl J+J n+l
V2 V6 V3 1
0 0 0 0 0 2/n+1 T 6v/n+1 T 6vnt1 J+J ntl
V6 __ /3 1
0 0 0 0 0 0 3vn+1 6 vn+1 J+Jn+1
V3 1
0 0 0 0 0 0 0 Tt SESE
1
0 0 0 0 0 0 0 0 WaES T

https://doi.org/10.1017/psy.2025.10045 Published online by Cambridge University Press


https://doi.org/10.1017/psy.2025.10045

OPTIMALLY REGULARIZED ESTIMATOR August 21, 2025 o8

Yx =
1025
Aok Tk 0 0 0 kedek 0 drk+dek
7')2( 7)2(4»03( 0 0 0 TX+iU§( 0 %Tiﬁ'%ai
2 2 2 12 12
0 0 Tx tox TX 0 0 0 1:2 4 Lo%
1.2 12
. 7TX+WCFX
2 2 2 12 1.2
0 0 TX Tx tox 0 0 0 7TX+TJUX (104)
2 2 2 1.2 1.2 12
0 0 0 Tx tox 0 x tnox JTx T aio%
2 12 2 12 2 12 1.2 12
TX+;D'X TX+;GX 0 0 TX+;O'X 0 7TX+WO'X
2 1.2 2 1.2 1.2 1.2
0 0 0 0 ™x t nox 0 ™x twox TTx tnrox
12 121 2 121 2 12 1.2 121 2 121 2 121 2 121 2 12
TX T a7ox 7 X tagox 7 x tagox - TXx T nsox 7 x tnsox7x t niox 77x t nrox 77x T nrox
Yy =
1026
7‘2, + (7%/ 7‘2, 0 0 0 7)2/ + la%, 0 %7}2/ + %JU%/
7'}2/ TXQ/ + o%/ 0 0 Ty + 70'%/ 0 %7'}2/ + %‘]‘7%/
2 2 2 12 12
0 0 Ty + oy Ty 0 0 0 12+ Lo3
1.2 12
. 7TY+WJY
2 2 2 1.2 1.2
0 0 Ty Ty + oy 0 0 0 TTY + wToY (105)
2 2 2,12 1.2 12
0 0 0 0 Ty + oy 0 TY+HO'Y 7TY+TJO'Y
2 12 2 12 2 1.2 1.2 12
TY+;G'Y TY+;G'Y 0 0 TY+IO'Y 0 77Y+WUY
2,1 2 2 ,1.2 1.2 1.2
0 0 0 0 Ty + 5oy 0 TV + oy FTy + 570y
1.2 121 2 121 2 12 1.2 1212 1212 121 2 1212 12
Ty tRroy Ty Y Rrov Ty Fagoy 7y Y oy 7Ty T nroy iy tnyov iy tazov 7Ty tnroy
Yyx =
1027
1 1 1
Tyx toyx TY X 0 0 0 TYx + 5;0vx 0 FTYx t 707X
1 1 1
TY X Tyx toyx 0 0 0 TYx + 5;0vx 0 FTYyx + 707X
0 0 Ty x +oyx TY X 0 0 0 %Tyx+ﬁo'yx
1 1
FTYX + 797X
1 1
0 0 TY X .. Tyx toyx 0 0 0 FTYX + 5707 X
L , (1os)”
0 0 0 0 Tyx toyx 0 TYX T 50vX JTYX t n79vX
1 1 1 1 1
TYX + 50vXx  TyX t 50vx 0 0 0 TYX t 50vX 0 FTYX + 707X
0 0 0 0 Tyx + Lo 0 Tyx + Lo Lryx + Lo
vyx + 50vx vyx +,0vx FTvyx + 707X

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FTYX T 279YX FTYX T 570YX 7YX + 279YX - FTYX T 779X 7YX T 79YX FTYX T 770X 5TYX T n79vX 57y X + 7507 X

https://doi.org/10.1017/psy.2025.10045 Published online by Cambridge University Press



https://doi.org/10.1017/psy.2025.10045

OPTIMALLY REGULARIZED ESTIMATOR

1 1 0
0 0 1

0 0 0

0 0 0

21 -1 0

0 0 1

0 0 0

0 0 0

0 0 0

https://doi.org/10.1017/psy.2025.10045 Published online by Cambridge University Press

o O = O

o = O O

o O = O O

S = O O

|
—
— (@] (@) ) =)
=) (e ) =)

August 21, 2025

_ o O O
_ o O O

29

(107)


https://doi.org/10.1017/psy.2025.10045

OPTIMALLY REGULARIZED ESTIMATOR

1028

Table 2

August 21, 2025

Appendix G: Tables

60

RMSE values of the ML (RMSEy,) and the Bayesian estimators (RMSEp,, represents the

Bayesian with 8, and RMSEg), represents the Bayesian with Bb) for ICCx = 0.05 and different
values of n, J, By, and By

n | J | B | Bw | RMSEymr | RMSEgRsy | RMSEgmy || n | J | Bb | Aw | RMSEymL | RMSEg,.y | RMSEgL
5 |5 02| 02| 57.587 2.725 2.667 15|20 | 05| 0.7 | 6.992 0.913 0.913
5 |5 02|05 | 5269 3.065 3.036 15|20 | 0.6 | 0.2 | 24.893 0.868 0.872
5 |5 | 02|07 | 93937 3.475 3.462 15|20 | 0.6 | 0.5 | 31.363 0.863 0.864
5 |5 | 05| 02| 29.285 2.644 2.613 15 | 20 | 0.6 | 0.7 | 271.245 0.883 0.883
5 |5 | 05| 05 | 32474 3.07 3.043 15 | 30 | 0.2 | 0.2 | 24.704 0.67 0.676
5 |5 | 05|07 | 108.22 3.458 3.426 15 | 30 | 0.2 | 0.5 | 14.967 0.702 0.707
5 |5 |06 02| 37614 2.79 2.755 15 | 30 | 0.2 | 0.7 | 66.872 0.769 0.775
5 |5 |06 05| 38324 3.036 3.002 15|30 | 05| 0.2 | 85.611 0.679 0.681
5 |5 | 06|07 | 246.624 3.4 3.393 15|30 | 0.5 | 0.5 | 17.079 0.703 0.704
5 | 10 | 0.2 | 0.2 | 103.585 1.868 1.862 15 | 30 | 0.5 | 0.7 | 18.208 0.749 0.748
5 | 10 | 02 | 0.5 | 18.639 2.121 2.133 15|30 | 0.6 | 0.2 | 15.823 0.744 0.743
5 | 10 | 02| 07 | 68.983 2.348 2.346 15|30 | 0.6 | 0.5 | 11.853 0.72 0.719
5 [ 10|05 |02 | 21.904 1.881 1.872 15 | 30 | 0.6 | 0.7 | 9.818 0.741 0.739
5 | 10 | 05 | 0.5 | 172.495 2.051 2.039 15 | 40 | 0.2 | 0.2 | 6.608 0.516 0.525
5 | 10 | 05| 0.7 | 85.472 2.383 2.392 15| 40 | 0.2 | 0.5 | 3.685 0.546 0.551
5 | 10|06 |02 | 65174 1.911 1.894 15 | 40 | 0.2 | 0.7 | 18.378 0.585 0.593
5 | 10 | 0.6 | 0.5 | 19.356 2.129 2.124 15 | 40 | 0.5 | 0.2 | 15.753 0.61 0.611
5 | 10 | 06 | 0.7 | 553.141 2.315 2.313 15| 40 | 05 | 0.5 | 5.633 0.607 0.605
5 [ 200202323 1.37 1.364 15 | 40 | 0.5 | 0.7 | 25.081 0.606 0.603
5 | 20] 02| 05 | 186.452 1.486 1.491 15 | 40 | 0.6 | 0.2 | 9.669 0.652 0.648
5 |20 02|07 | 31417 1.633 1.652 15 | 40 | 0.6 | 0.5 | 6.565 0.61 0.607
5 | 20|05 | 02| 528303 1.302 1.313 15 | 40 | 0.6 | 0.7 | 13.398 0.632 0.629
5 | 2005 | 05| 15767 1.38 1.376 30 |5 |02 02| 346.81 1.549 1.554
5 | 20|05 | 07 | 81714 1.614 1.612 30 |5 | 02|05 | 697.82 1.646 1.649
5 | 2006 | 02| 84.956 1.347 1.347 30 |5 | 02|07 | 841.537 1.734 1.732
5 | 2006 | 05 | 22968 1.379 1.378 30 |5 | 05|02 | 44.781 1.552 1.554
5 | 20|06 | 07 | 70.052 1.57 1.58 30 |5 | 05| 05 | 41.708 1.557 1.56
5 |30 )02 02| 25439 1.087 1.098 30 |5 |05 |07 | 116.407 1.712 1.718
5 |30 ] 02|05 | 39795 1.142 1.14 30 |5 | 06| 02| 89.971 1.519 1.523
5 |30 ] 02|07 | 157.449 1.337 1.343 30 |5 | 06| 05 | 51.606 1.591 1.593
5 | 30|05 | 02| 17.714 1.107 1.113 30 |5 | 06|07 | 111.256 1.604 1.611
5 | 30|05 | 05 | 65436 1.175 1.169 30 | 10 | 02 | 02 | 125.74 1.067 1.072
5 | 30|05 | 07 | 20967 1.249 1.248 30 | 10 | 0.2 | 0.5 | 44.729 1.087 1.091
5 | 30|06 | 02| 112.352 1.104 1.109 30 | 10 | 0.2 | 0.7 | 28.094 1.133 1.136
5 | 30|06 | 05 | 24527 1.181 1.183 30 | 10 | 0.5 | 0.2 | 11.672 1.057 1.061
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5 | 30| 06 | 07 | 31.858 1.241 1.25 30 | 10| 05 | 05 | 251 1.076 1.078
5 | 40 | 0.2 | 0.2 | 42.185 0.979 0.983 30 | 10 | 0.5 | 0.7 | 164.174 1.13 1.131
5 | 40 | 0.2 | 0.5 | 53.56 1.054 1.053 30 | 10 | 0.6 | 0.2 | 40.099 1.044 1.045
5 | 40 | 0.2 | 0.7 | 15.499 1.082 1.086 30 | 10 | 0.6 | 0.5 | 68.118 1.047 1.05
5 | 40 | 0.5 | 0.2 | 115.685 0.987 0.987 30 | 10 | 0.6 | 0.7 | 122.808 1.088 1.092
5 | 40 | 0.5 | 0.5 | 32.061 0.998 0.994 30 | 20 | 0.2 | 02 | 4.08 0.587 0.597
5 | 40 | 0.5 | 0.7 | 28.321 1.161 1.166 30 | 20 | 0.2 | 0.5 | 6.696 0.561 0.571
5 | 40 | 0.6 | 0.2 | 34.223 0.973 0.97 30 | 20| 0.2 ] 07 | 871 0.587 0.597
5 | 40 | 0.6 | 0.5 | 107.287 1.018 1.016 30 | 20 | 0.5 | 0.2 | 6.382 0.647 0.646
5 | 40 | 0.6 | 0.7 | 41.419 1.044 1.047 30 | 20 | 0.5 | 0.5 | 66.702 0.642 0.642
155 |02 02| 205555 1.676 1.667 30 | 20| 05 | 0.7 | 6.12 0.647 0.644
155 | 02|05 | 200.677 1.777 1.762 30 | 20 | 0.6 | 0.2 | 9.591 0.693 0.689
155 |02 07 | 8.916 1.946 1.942 30 | 20 | 0.6 | 0.5 | 11.39 0.669 0.665
155 |05 02| 96434 1.599 1.597 30 | 20 | 0.6 | 0.7 | 2.793 0.705 0.702
155 |05 05 | 61.309 1.747 1.742 30 | 30 | 0.2 | 0.2 | 0.981 0.342 0.353
155 | 05|07 | 83573 1.936 1.926 30 | 30 | 0.2 | 0.5 | 0.794 0.322 0.333
155 | 06| 02| 34357 1.622 1.61 30 | 30 | 0.2 | 0.7 | 2.281 0.331 0.341
155 | 06| 05 | 111.232 1.742 1.739 30 | 30 | 0.5 | 0.2 | 0.973 0.503 0.499
155 | 06|07 | 328599 1.904 1.903 30 | 30 | 0.5 | 0.5 | 2.255 0.476 0.472
15| 10 | 0.2 | 0.2 | 216.574 1.186 1.184 30 | 30 | 0.5 | 0.7 | 1.147 0.494 0.491
15| 10 | 0.2 | 0.5 | 2961.914 1.25 1.249 30 | 30 | 0.6 | 0.2 | 0.815 0.558 0.55
15| 10 | 0.2 | 0.7 | 93.279 1.271 1.278 30 | 30 | 0.6 | 0.5 | 0.745 0.541 0.533
15 | 10 | 0.5 | 0.2 | 30.459 1.195 1.195 30 | 30 | 0.6 | 0.7 | 1.736 0.564 0.558
15| 10 | 0.5 | 0.5 | 120.55 1.208 1.209 30 | 40 | 0.2 | 0.2 | 0.621 0.231 0.24
15 | 10 | 0.5 | 0.7 | 19.802 1.288 1.291 30 | 40 | 0.2 | 0.5 | 3.259 0.241 0.252
15 | 10 | 0.6 | 0.2 | 135.805 1.178 1.181 30 | 40 | 0.2 | 0.7 | 0.651 0.261 0.272
15 | 10 | 0.6 | 0.5 | 40.038 1.221 1.226 30 | 40 | 0.5 | 0.2 | 0.708 0.443 0.435
15 | 10 | 0.6 | 0.7 | 35.817 1.265 1.268 30 | 40 | 0.5 | 0.5 | 0.572 0.441 0.435
15 | 20 | 0.2 | 0.2 | 24.678 0.878 0.883 30 | 40 | 0.5 | 0.7 | 1.201 0.432 0.427
15 | 20 | 0.2 | 0.5 | 166.166 0.875 0.878 30 | 40 | 0.6 | 0.2 | 1.296 0.522 0.514
15| 20 | 0.2 | 0.7 | 19.525 0.936 0.939 30 | 40 | 0.6 | 0.5 | 0.731 0.509 0.502
15 | 20 | 0.5 | 0.2 | 43.648 0.899 0.903 30 | 40 | 0.6 | 0.7 | 0.475 0.508 0.501
15|20 | 05| 05 | 62277 0.879 0.878

Table 3

RMSE values of the ML (RMSEyg) and the Bayesian estimators (RMSEpg,, represents the

Bayesian with 8, and RMSEg), represents the Bayesian with &) for ICCx = 0.1 and different

values of n, J, By, and By
n | J | Bp | Bw | RMSEmL | RMSER,, | RMSEgmr || n | J | Bb | Sw | RMSEMm | RMSEg,, | RMSEpmL

0.2 | 0.2 | 33.935 2.436 2.383 15 20| 05| 07 | 245 0.511 0.51

5 |5 | 02] 05| 61283 2.858 2.853 15 [ 20 | 0.6 | 0.2 | 24.405 0.578 0.578
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155 |02 02| 32744 1.411 1.402 30 | 20 | 0.5 | 0.7 | 0.437 0.394 0.39
155 | 02/ 05 | 82355 1.494 1.497 30 | 20 | 0.6 | 0.2 | 18.717 0.458 0.452
155 | 02/ 07 | 13462.32 1.654 1.651 30 [ 20 | 0.6 | 0.5 | 0.577 0.466 0.46
155 | 05| 02| 100.543 1.402 1.394 30 | 20 | 0.6 | 0.7 | 0.451 0.462 0.456
155 |05 05 | 12623 1.392 1.388 30 | 30 | 0.2 | 0.2 | 0.344 0.162 0.174
15| 5 | 05| 07 | 238.948 1.459 1.458 30 [ 30 | 0.2 | 0.5 | 0.345 0.163 0.176
155 | 06| 02| 169.018 1.356 1.359 30 [ 30 | 0.2 | 0.7 | 0.347 0.168 0.181
155 | 06|05 | 97213 1.343 1.343 30 [ 30 | 05 | 0.2 | 0.341 0.369 0.363
155 | 06| 07 | 25553 1.525 1.519 30 [ 30 | 0.5 | 0.5 | 0.511 0.375 0.37
15| 10 | 0.2 | 0.2 | 30.52 0.852 0.855 30 [ 30 | 0.5 | 0.7 | 0.326 0.372 0.368
15| 10 | 0.2 | 0.5 | 37.813 0.877 0.884 30 | 30 | 0.6 | 0.2 | 0.332 0.43 0.424
15| 10 | 0.2 | 0.7 | 17.617 0.9 0.901 30 [ 30 | 0.6 | 0.5 | 0.319 0.433 0.428
15| 10 | 0.5 | 0.2 | 8591 0.842 0.846 30 | 30 | 0.6 | 0.7 | 0.308 0.433 0.429
15| 10 | 0.5 | 0.5 | 28.307 0.863 0.866 30 | 40 | 0.2 | 0.2 | 0.292 0.16 0.167
15| 10 | 0.5 | 0.7 | 16.876 0.838 0.84 30 | 40 | 0.2 | 0.5 | 0.292 0.159 0.165
15| 10 | 0.6 | 0.2 | 12.698 0.84 0.842 30 | 40 | 0.2 | 0.7 | 0.293 0.16 0.168
15| 10 | 0.6 | 0.5 | 18.314 0.833 0.833 30 | 40 | 0.5 | 0.2 | 0.279 0.359 0.354
15| 10 | 0.6 | 0.7 | 17.259 0.834 0.835 30 | 40 | 0.5 | 0.5 | 0.272 0.36 0.356
15|20 | 02 | 0.2 | 4.809 0.437 0.449 30 | 40 | 0.5 | 0.7 | 0.269 0.362 0.358
15|20 | 02| 05 | 14.818 0.448 0.459 30 | 40 | 0.6 | 0.2 | 0.266 0.421 0.418
15|20 | 02 | 0.7 | 5329 0.486 0.498 30 | 40 | 0.6 | 0.5 | 0.268 0.421 0.417
1520 | 05| 0.2 | 1.404 0.525 0.524 30 | 40 | 0.6 | 0.7 | 0.261 0.423 0.42
15|20 | 05| 05 | 1.637 0.518 0.517

Table 4

RMSE values of the ML (RMSEy,) and the Bayesian estimators (RMSEpg,, represents the

Bayesian with By and RMSEg, represents the Bayesian with Bb) for ICCx = 0.3 and different

values of n, J, By, and By
n |J | B | Bw | RMSEyL | RMSERyy | RMSEpymy || n | J | Bb | fw | RMSEymL | RMSEg,, | RMSEgMmL
5 |5 | 02|02 | 42506 1.716 1.658 15 | 20 | 0.5 | 0.7 | 0.202 0.255 0.261
5 |5 | 02|05 | 18529 1.853 1.828 15 | 20 | 0.6 | 0.2 | 0.196 0.282 0.287
5 |5 | 02|07 | 19436 1.959 1.943 15 | 20 | 0.6 | 0.5 | 0.188 0.283 0.288
5 |5 | 05| 02| 17.082 1.664 1.634 15 | 20| 0.6 | 0.7 | 0.177 0.284 0.291
5 |5 | 05|05 | 150933 1.746 1.725 15 30| 0202|019 0.128 0.141
5 |5 | 05|07 | 30333 1.858 1.821 15|30 | 0.2 | 0.5 | 0.186 0.13 0.142
5 |5 | 06| 02| 15691 1.594 1.555 15 | 30 | 0.2 | 0.7 | 0.189 0.13 0.142
5 |5 | 06|05 | 171.096 1.616 1.592 15 | 30 | 0.5 | 0.2 | 0.166 0.23 0.236
5 |5 | 06|07 | 122525 1.71 1.69 15 | 30 | 0.5 | 0.5 | 0.157 0.231 0.238
5 |10 | 0.2 | 0.2 | 20.815 0.758 0.761 15 |30 | 05| 0.7 | 0.155 0.231 0.237
5 |10 | 0.2 | 0.5 | 36.747 0.844 0.835 15 | 30 | 0.6 | 0.2 | 0.153 0.261 0.266
5 |10 | 0.2 | 0.7 | 38.392 0.883 0.878 15 | 30 | 0.6 | 0.5 | 0.142 0.262 0.267
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15 | 10 | 0.2 | 0.5 0.616 0.284 0.313 30 | 30 | 0.6 | 0.2 | 0.129 0.259 0.263
15 | 10 | 0.2 | 0.7 | 0.95 0.287 0.314 30 | 30 | 0.6 | 0.5 | 0.123 0.26 0.265
15 10 | 0.5 | 0.2 1.122 0.345 0.351 30 | 30 | 0.6 | 0.7 | 0.12 0.26 0.264
15 10 | 0.5 | 0.5 0.693 0.342 0.348 30 | 40 | 0.2 | 0.2 | 0.146 0.12 0.126
15 10 | 0.5 | 0.7 1.563 0.34 0.345 30 | 40 | 0.2 | 0.5 | 0.144 0.122 0.128
15 10 | 0.6 | 0.2 13.285 0.367 0.373 30 | 40 | 0.2 | 0.7 | 0.143 0.12 0.126
15 | 10 | 0.6 | 0.5 | 2.519 0.36 0.366 30 | 40 | 05 | 0.2 | 0.123 0.215 0.221
15 | 10 | 0.6 | 0.7 1.467 0.361 0.365 30 | 40 | 0.5 | 0.5 | 0.118 0.215 0.221
15 | 20 | 0.2 | 0.2 0.245 0.135 0.156 30 | 40 | 0.5 | 0.7 | 0.118 0.217 0.223
15 | 20 | 0.2 | 0.5 0.344 0.139 0.161 30 | 40 | 0.6 | 0.2 | 0.111 0.251 0.254
15 | 20 | 0.2 | 0.7 | 0.245 0.141 0.163 30 | 40 | 0.6 | 0.5 | 0.105 0.25 0.253
15 |1 20 | 0.5 | 0.2 0.213 0.251 0.257 30 | 40 | 0.6 | 0.7 | 0.101 0.251 0.255
15 | 20 | 0.5 | 0.5 | 0.206 0.254 0.259
Table 5

RMSE values of the ML (RMSEyg) and the Bayesian estimators (RMSEpg,, represents the

Bayesian with 8, and RMSEgy, represents the Bayesian with ﬁb) for ICCx = 0.5 and different
values of n, J, By, and By

n J Bb | bw | RMSEnmL | RMSER,y, | RMSEpMmL n J B | bw | RMSEnL | RMSERsy | RMSERML
5 5 0.2 | 0.2 | 25.163 1.146 1.126 15 | 20 | 0.5 | 0.7 | 0.122 0.161 0.175
5 5 0.2 | 0.5 | 10.82 1.242 1.221 15 | 20 | 0.6 | 0.2 | 0.1 0.17 0.177
5 5 0.2 | 0.7 | 1591.347 1.281 1.257 15| 20 | 0.6 | 0.5 | 0.093 0.173 0.181
5 5 0.5 | 0.2 | 35.852 1.098 1.086 15| 20 | 0.6 | 0.7 | 0.085 0.175 0.182
5 5 0.5 | 0.5 | 9.419 1.04 1.023 15 | 30 | 0.2 | 0.2 | 0.136 0.103 0.12
5 5 0.5 | 0.7 | 10.523 1.092 1.077 15 | 30 | 0.2 | 0.5 | 0.137 0.103 0.121
5 5 0.6 | 0.2 | 16.765 1.05 1.028 15 | 30 | 0.2 | 0.7 | 0.136 0.104 0.121
5 5 0.6 | 0.5 | 27.568 1.048 1.033 15 | 30 | 0.5 | 0.2 | 0.103 0.137 0.149
5 5 0.6 | 0.7 | 14.273 1.031 1.023 15 | 30 | 0.5 | 0.5 | 0.097 0.139 0.151
5 10 | 0.2 | 0.2 | 3.749 0.334 0.371 15 | 30 | 0.5 | 0.7 | 0.094 0.139 0.151
5 10 | 0.2 | 0.5 | 1.869 0.356 0.383 15| 30 | 0.6 | 0.2 | 0.079 0.154 0.161
5 10 | 0.2 | 0.7 | 41.055 0.396 0.428 15 | 30 | 0.6 | 0.5 | 0.072 0.154 0.159
5 10 | 0.5 | 0.2 | 1.281 0.345 0.359 15 | 30 | 0.6 | 0.7 | 0.067 0.154 0.16
5 10 | 0.5 | 0.5 | 2.041 0.323 0.337 15 | 40 | 0.2 | 0.2 | 0.115 0.093 0.108
5 10 | 0.5 | 0.7 | 12.806 0.344 0.358 15 | 40 | 0.2 | 0.5 | 0.114 0.094 0.108
5 10 | 0.6 | 0.2 | 179.541 0.346 0.363 15 | 40 | 0.2 | 0.7 | 0.113 0.094 0.109
5 10 | 0.6 | 0.5 | 0.501 0.323 0.334 15 | 40 | 0.5 | 0.2 | 0.088 0.128 0.138
5 10 | 0.6 | 0.7 | 2.179 0.311 0.322 15 | 40 | 0.5 | 0.5 | 0.084 0.128 0.138
5 20 | 0.2 | 0.2 | 0.24 0.134 0.172 15 | 40 | 0.5 | 0.7 | 0.082 0.129 0.14
5 20 | 0.2 | 0.5 | 0.242 0.136 0.177 15 | 40 | 0.6 | 0.2 | 0.068 0.143 0.148
5 20 | 0.2 | 0.7 | 0.273 0.148 0.185 15 | 40 | 0.6 | 0.5 | 0.062 0.144 0.15
5 20 | 0.5 | 0.2 | 0.208 0.194 0.213 15 | 40 | 0.6 | 0.7 | 0.058 0.145 0.149
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15 120 | 0.2 | 0.7 | 0.172 0.115 0.138 30 | 40 | 0.6 | 0.5 | 0.05 0.147 0.15
1520 | 0.5 | 0.2 | 0.131 0.155 0.169 30 | 40 | 0.6 | 0.7 | 0.048 0.146 0.15
15|20 | 0.5 | 0.5 | 0.124 0.16 0.174
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Relative bias in % of the ML (Biasyg) and the Bayesian estimators (Biaspay represents the

Bayesian with By and Biaspy, represents the Bayesian with Bb) for ICCx = 0.05 and different

values of n, J, By, and By,

n J B Bw | BiasmrL Biaspay | BiaspmL n J B Bw | Biasymn Biaspay | BiaspmL
5 5 0.2 | 0.2 | 939.706 -175.218 | -177.665 15 | 20 | 0.5 | 0.7 | -23.76 -67.163 -65.211
5 5 0.2 | 0.5 | -2576.35 | -344.055 | -340.826 15 | 20 | 0.6 | 0.2 | -102.766 | -32.639 -31.891
5 5 0.2 | 0.7 | 1012.501 | -456.048 | -461.978 15 | 20 | 0.6 | 0.5 | -151.732 | -52.393 -50.838
5 5 0.5 | 0.2 | -108.197 | -84.818 -81.633 15 | 20 | 0.6 | 0.7 | -639.383 | -63.361 -61.91

5 5 0.5 | 0.5 | 9.274 -162.483 | -163.005 15 | 30 | 0.2 | 0.2 | -200.772 | -65.025 -62.464
5 5 0.5 | 0.7 | -526.117 | -210.689 | -210.87 15 | 30 | 0.2 | 0.5 | -167.176 | -104.229 | -100.129
5 5 0.6 | 0.2 | -173.361 | -90.041 -87.431 15 | 30 | 0.2 | 0.7 | 18.683 -137.57 -133.024
5 5 0.6 | 0.5 | 49.158 -135.665 | -134.478 15 | 30 | 0.5 | 0.2 | 161.756 -47.165 -45.048
5 5 0.6 | 0.7 | -699.459 | -178.635 | -179.595 15 | 30 | 0.5 | 0.5 | 47.962 -62.547 -60.248
5 10 | 0.2 | 0.2 | 1064.461 | -128.863 | -127.003 15 | 30 | 0.5 | 0.7 | -75.302 -76.234 -73.687
5 10 | 0.2 | 0.5 | 203.735 -207.413 | -208.761 15 1 30 | 0.6 | 0.2 | 67.323 -43.167 -41.534
5 10 | 0.2 | 0.7 | -94.878 -297.133 | -296.062 15 | 30 | 0.6 | 0.5 | -19.332 -59.943 -58.139
5 10 | 0.5 | 0.2 | -93.408 -77.668 -76.457 15 | 30 | 0.6 | 0.7 | -17.13 -63.18 -61.173
5 10 | 0.5 | 0.5 | -654.471 | -102.57 -103.688 15 | 40 | 0.2 | 0.2 | 36.969 -72.628 -69.546
5 10 | 0.5 | 0.7 | 332.931 -144.312 | -146.785 15 | 40 | 0.2 | 0.5 | -15.178 -101.716 | -98.562
5 10 | 0.6 | 0.2 | -169.053 | -59.41 -59.602 15 | 40 | 0.2 | 0.7 | -103.122 | -122.674 | -119.056
5 10 | 0.6 | 0.5 | 63.505 -109.252 | -108.353 15 | 40 | 0.5 | 0.2 | 54.952 -56.233 -53.458
5 10 | 0.6 | 0.7 | -1353.22 | -122.199 | -123.637 15 | 40 | 0.5 | 0.5 | 14.505 -71.001 -68.306
5 20 | 0.2 | 0.2 | 313.298 -94.42 -90.214 15 | 40 | 0.5 | 0.7 | 31.637 -74.519 -71.875
5 20 | 0.2 | 0.5 | 1435.496 | -175.674 | -172.445 15 | 40 | 0.6 | 0.2 | 3.904 -55.525 -53.487
5 20 | 0.2 | 0.7 | -104.246 | -207.484 | -206.478 15 | 40 | 0.6 | 0.5 | 15.277 -66.395 -64.375
5 20 | 0.5 | 0.2 | 1695.914 | -54.03 -54.491 15 | 40 | 0.6 | 0.7 | -28.682 -71.796 -69.65

5 20 | 0.5 | 0.5 | -43.633 -84.151 -84.021 30 | 5 0.2 | 0.2 | -1394.99 | -57.697 -57.462
5 20 | 0.5 | 0.7 | 321.686 -101.773 | -101.497 30 | 5 0.2 | 0.5 | -6438.42 | -92.174 -91.853
5 20 | 0.6 | 0.2 | -216.689 | -54.383 -55.371 30 | 5 0.2 | 0.7 | 6188.805 | -107.343 | -107.263
5 20 | 0.6 | 0.5 | -51.553 -75.3 -74.366 30 | 5 0.5 | 0.2 | -177.108 | -33.585 -32.785
5 20 | 0.6 | 0.7 | -26.749 -96.432 -96.959 30 | 5 0.5 | 0.5 | -128.246 | -48.822 -49.195
5 30 | 0.2 | 0.2 | 21.324 -87.631 -87.895 30 | 5 0.5 | 0.7 | -37.675 -63.07 -63.138
5 30 | 0.2 | 0.5 | -83.263 -133.207 | -128.895 30 | 5 0.6 | 0.2 | -192.766 | -26.28 -26.152
5 30 | 0.2 | 0.7 | 1292.766 | -168.866 | -164.89 30 | 5 0.6 | 0.5 | -226.727 | -49.149 -49.239
5 30 | 0.5 | 0.2 | -87.437 -48.346 -48.156 30 | 5 0.6 | 0.7 | 244.26 -50.056 -50.014
5 30 | 0.5 | 0.5 | 114.345 -75.708 -73.846 30 | 10 | 0.2 | 0.2 | 887.138 -40.248 -38.253
5 30 | 0.5 | 0.7 | 129.019 -89.891 -88.584 30 | 10 | 0.2 | 0.5 | 91.978 -90.081 -86.919
5 30 | 0.6 | 0.2 | 203.25 -47.662 -47.134 30 | 10 | 0.2 | 0.7 | -48.618 -107.919 | -104.33
5 30 | 0.6 | 0.5 | 26.482 -68.369 -67.769 30 | 10 | 0.5 | 0.2 | 43.356 -35.66 -34.49

5 30 | 0.6 | 0.7 | -48.218 -79.373 -79.442 30 | 10 | 0.5 | 0.5 | 134.341 -48.188 -46.45

5 40 | 0.2 | 0.2 | -28.181 -70.438 -71.177 30 | 10 | 0.5 | 0.7 | -572.786 | -59.396 -57.443
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5 | 40 | 0.2 | 0.5 | -47.091 | -141.974 | -137.019 30 | 10 | 0.6 | 0.2 | 180.012 | -30.446 | -29.172
5 | 40 | 0.2 | 0.7 | 169.648 | -166.692 | -159.894 30 | 10 | 0.6 | 0.5 | 262.174 | -42.491 | -41.197
5 | 40 | 0.5 | 0.2 | 232.466 | -41.92 -41.522 30 | 10 | 0.6 | 0.7 | -221.584 | -49.66 -48.066
5 | 40 | 05 | 0.5 | -50.815 | -71.833 | -70.561 30 | 20| 0202|1757 -70.202 | -68.437
5 | 40 | 0.5 | 0.7 | -65.781 | -88.633 | -87.188 30 | 20 | 0.2 | 0.5 | -76.648 | -87.522 | -83.764
5 | 40 | 0.6 | 0.2 | 95.755 -41.248 | -41.131 30 | 20 | 0.2 | 0.7 | -102.031 | -105.512 | -102.991
5 | 40 | 0.6 | 0.5 | -337.021 | -62.363 | -61.601 30 | 20 | 05 | 0.2 | -25.786 | -64.208 | -61.509
5 | 40 | 0.6 | 0.7 | 137.401 | -75.084 | -73.927 30 | 20 | 0.5 | 0.5 | -195.755 | -68.995 | -65.967
15 |5 |02 02| 138223 | -66.236 | -65.608 30 | 20 | 0.5 | 0.7 | -12.808 | -75.91 -72.546
155 | 02|05 |-3114.31 | -123.3 -124.703 30 | 20 | 0.6 | 0.2 | 36.709 -60.133 | -57.464
155 | 02|07 |-762222 | -180.02 | -177.251 30 | 20 | 0.6 | 0.5 | -28.893 | -68.769 | -66.26
155 | 05| 02| 312494 | -45271 | -45.203 30 | 20 | 0.6 | 0.7 | -8.648 74745 | -72.346
155 | 05|05 |-158832 | -73.883 | -73.922 30 | 30 | 0.2 | 0.2 | -16.632 | -83.612 | -80.43
155 | 05|07 |-176.129 | -89.463 | -88.718 30 | 30 | 0.2 | 0.5 | -4.256 -84.067 | -81.135
155 | 06|02 |-47.277 | -48.753 | -50.276 30 | 30 | 0.2 | 0.7 | -22.266 | -88.912 | -85.758
155 | 06|05 |-285.822 | -61.179 | -61.678 30 | 30 | 0.5 | 0.2 | 12.282 -75.513 | -72.03
155 | 06|07 |-40.838 | -83.226 | -82.861 30 | 30| 05 | 05 | -12.309 | -79.911 | -76.956
15| 10 | 0.2 | 0.2 | 1266.762 | -41.67 -41.652 30 | 30 | 0.5 | 0.7 | -2.186 -80.325 | -77.784
15| 10 | 0.2 | 0.5 | -21970.6 | -106.428 | -104.369 30 | 30 | 0.6 | 0.2 | 9.385 -74.856 | -71.836
15| 10 | 0.2 | 0.7 | 330.852 | -127.641 | -125.988 30 | 30 | 0.6 | 0.5 | 1.032 -78.497 | -75.826
15 | 10 | 0.5 | 0.2 | 61.867 -30.545 | -30.122 30 | 30 | 0.6 | 0.7 | -8.66 -80.323 | -77.907
15 | 10 | 0.5 | 0.5 | -108.936 | -50.674 | -49.646 30 | 40 | 0.2 | 0.2 | 1.012 -83.597 | -79.347
15| 10 | 0.5 | 0.7 | -55.614 | -64.946 | -64.667 30 | 40 | 0.2 | 0.5 | -35.467 | -86.099 | -83.287
1510 | 0.6 | 0.2 | 311.448 | -32.714 | -32.54 30 | 40 | 0.2 | 0.7 | -22.23 -89.364 | -86.915
15|10 | 0.6 | 0.5 | -19.852 | -49.811 | -49.947 30 | 40 | 0.5 | 0.2 | 2.428 -80.059 | -76.881
15|10 | 0.6 | 0.7 | -67.793 | -60.111 | -59.945 30 | 40 | 0.5 | 0.5 | -0.828 -82.002 | -79.127
15 | 20 | 0.2 | 0.2 | -354.039 | -57.176 | -54.656 30 | 40 | 0.5 | 0.7 | -1.092 -81.837 | -79.248
15 | 20 | 0.2 | 0.5 | -1217.28 | -109.289 | -105.68 30 | 40 | 0.6 | 0.2 | 2.463 -78.273 | -75.699
15 | 20 | 0.2 | 0.7 | 163.248 | -142.24 | -136.652 30 | 40 | 0.6 | 0.5 | 1.436 -79.898 | -77.626
15|20 | 05| 02 | -61.296 | -38.271 | -36.857 30 | 40 | 0.6 | 0.7 | -1.31 -80.875 | -78.575
15 | 20 | 0.5 | 0.5 | -205.614 | -57.65 -55.776

Table 7

Relative bias in % of the ML (Biasyg) and the Bayesian estimators (Biaspg, represents the
Bayesian with By and Biaspyy represents the Bayesian with Bb) for ICCx = 0.1 and different
values of n, J, By, and By

n J B Bw | Biasyr, Biaspay | BiaspmL n J B Bw | Biasymy | Biaspay | BiaspMmL
5 5 0.2 | 0.2 | -180.425 | -97.729 -97.848 15 | 20 | 0.5 | 0.7 | -1.779 -68.523 -65.365
5 5 0.2 | 0.5 | -4085.79 | -296.848 | -296.841 15 | 20 | 0.6 | 0.2 | -44.621 -55.605 -52.813
5 5 0.2 | 0.7 | -1867.08 | -353.484 | -349.919 15 | 20 | 0.6 | 0.5 | 3.034 -60.238 -57.617
5 5 0.5 | 0.2 | 50.618 -49.194 -50.365 15 | 20 | 0.6 | 0.7 | 5.119 -64.958 -62.425
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5 5 0.5 | 0.5 | -112.359 | -99.353 -100.261 15 | 30 | 0.2 | 0.2 | 6.011 -74.512 -69.163
5 5 0.5 | 0.7 | 20.548 -149.938 | -151.061 15 | 30 | 0.2 | 0.5 | -14.988 -81.933 -77.68

5 5 0.6 | 0.2 | -20.156 -42.548 -41.06 15 | 30 | 0.2 | 0.7 | -21.005 -88.347 -85.029
5 5 0.6 | 0.5 | 738.784 -86.14 -86.637 15| 30 | 0.5 | 0.2 | 2.785 -68.067 -64.702
5 5 0.6 | 0.7 | 209.891 -137.535 | -137.512 15| 30 | 0.5 | 0.5 | 7.305 -70.079 -66.955
5 10 | 0.2 | 0.2 | 702.919 -82.189 -81.101 15| 30 | 0.5 | 0.7 | -6.319 -72.935 -70.103
5 10 | 0.2 | 0.5 | 209.136 -182.931 -184.313 15 | 30 | 0.6 | 0.2 | 8.127 -65.341 -62.491
5 10 | 0.2 | 0.7 | 396.677 -250.645 | -246.332 15 | 30 | 0.6 | 0.5 | 5.803 -67.464 -65.019
5 10 | 0.5 | 0.2 | -213.951 | -31.923 -32.773 15 | 30 | 0.6 | 0.7 | -1.144 -69.318 -66.917
5 10 | 0.5 | 0.5 | -608.719 | -70.512 -72.082 15 | 40 | 0.2 | 0.2 | 1.56 -76.63 -71.004
5 10 | 0.5 | 0.7 | 292.342 -107.28 -106.708 15 | 40 | 0.2 | 0.5 | -27.766 -80.567 -76.371
5 10 | 0.6 | 0.2 | -114.348 | -31.499 -33.501 15 | 40 | 0.2 | 0.7 | -132.798 | -82.327 -77.86

5 10 | 0.6 | 0.5 | 37.868 -60.978 -60.269 15 | 40 | 0.5 | 0.2 | 6.269 -70.345 -67.259
5 10 | 0.6 | 0.7 | 322.257 -86.07 -84.107 15 | 40 | 0.5 | 0.5 | 0.227 -71.222 -68.422
5 20 | 0.2 | 0.2 | 5140.523 | -74.28 -73.683 15 | 40 | 0.5 | 0.7 | -2.364 -72.428 -69.788
5 20 | 0.2 | 0.5 | -738.356 | -136.74 -131.187 15 | 40 | 0.6 | 0.2 | 3.306 -68.78 -66.52

5 20 | 0.2 | 0.7 | -973.423 | -193.073 | -183.85 15 | 40 | 0.6 | 0.5 | -0.237 -70.115 -68.227
5 20 | 0.5 | 0.2 | 33.357 -26.839 -26.188 15 | 40 | 0.6 | 0.7 | -1.657 -70.571 -68.814
5 20 | 0.5 | 0.5 | -29.743 -56.85 -55.812 30 | 5 0.2 | 0.2 | -71.264 -30.015 -30.151
5 20 | 0.5 | 0.7 | -293.616 | -80.078 -78.315 30 | 5 0.2 | 0.5 | 203.093 -47.948 -48.552
5 20 | 0.6 | 0.2 | 3064.897 | -23.056 -22.691 30 | 5 0.2 | 0.7 | -162.961 | -57.815 -57.962
5 20 | 0.6 | 0.5 | -141.048 | -49.363 -48.477 30 | 5 0.5 | 0.2 | -65.295 -11.699 -11.46

5 20 | 0.6 | 0.7 | -183.525 | -64.047 -63.43 30 | 5 0.5 | 0.5 | 33.614 -27.163 -27.075
5 30 | 0.2 | 0.2 | -63.151 -54.592 -50.382 30 | 5 0.5 | 0.7 | -52.018 -27.074 -27.23

5 30 | 0.2 | 0.5 | -88.897 -115.98 -108.684 30 | 5 0.6 | 0.2 | -296.281 | -7.696 -7.805

5 30 | 0.2 | 0.7 | -74.222 -156.856 | -147.408 30 | 5 0.6 | 0.5 | -20.843 -17.36 -17.523
5 30 | 0.5 | 0.2 | -5.832 -28.231 -27.638 30 | 5 0.6 | 0.7 | 67.838 -27.974 -27.849
5 30 | 0.5 | 0.5 | -90.982 -51.166 -49.514 30 | 10 | 0.2 | 0.2 | 15.486 -56.606 -52.52

5 30 | 0.5 | 0.7 | 56.225 -65.307 -63.523 30 | 10 | 0.2 | 0.5 | -25.161 -77.947 -74.029
5 30 | 0.6 | 0.2 | 25.728 -26.956 -26.756 30 | 10 | 0.2 | 0.7 | -287.394 | -97.207 -92.745
5 30 | 0.6 | 0.5 | -76.56 -47.217 -46.01 30 | 10 | 0.5 | 0.2 | 23.314 -49.55 -45.933
5 30 | 0.6 | 0.7 | -18.263 -57.962 -56.192 30 | 10 | 0.5 | 0.5 | 64.459 -55.552 -52.107
5 40 | 0.2 | 0.2 | 59.795 -57.455 -52.962 30 | 10 | 0.5 | 0.7 | 4.539 -62.899 -59.47

5 40 | 0.2 | 0.5 | -104.315 | -101.762 | -94.837 30 | 10 | 0.6 | 0.2 | 20.208 -48.932 -46.516
5 40 | 0.2 | 0.7 | -2423.67 | -146.467 | -137.357 30 | 10 | 0.6 | 0.5 | 23.429 -57.004 -54.44

5 40 | 0.5 | 0.2 | 71.194 -34.808 -33.115 30 | 10 | 0.6 | 0.7 | 20.733 -61.414 -58.784
5 40 | 0.5 | 0.5 | 17.511 -56.792 -54.364 30 | 20 | 0.2 | 0.2 | 3.856 -77.33 -71.309
5 40 | 0.5 | 0.7 | -9.612 -68.39 -66.062 30 | 20 | 0.2 | 0.5 | -9.562 -79.292 -74.84

5 40 | 0.6 | 0.2 | 42.379 -30.542 -29.469 30 | 20 | 0.2 | 0.7 | -16.742 -82.423 -78.538
5 40 | 0.6 | 0.5 | -7.197 -48.516 -46.937 30 | 20 | 0.5 | 0.2 | 0.587 -72.727 -69.369
5 40 | 0.6 | 0.7 | 80.748 -59.465 -57.386 30 | 20 | 0.5 | 0.5 | 0.296 -73.087 -69.506
15 | 5 0.2 | 0.2 | -490.349 | -40.138 -39.193 30 | 20 | 0.5 | 0.7 | -1.527 -73.836 -70.474
15 | 5 0.2 | 0.5 | -2803.13 | -93.016 -95.135 30 | 20 | 0.6 | 0.2 | -40.58 -70.874 -68.019
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155 | 02| 07 | -94231.7 | -118.795 | -118.882 30 | 20 | 0.6 | 0.5 | 2.45 71272 | -68.618
155 | 05| 02| -446.312 | -20.598 | -20.48 30 | 20 | 0.6 | 0.7 | -0.147 -72.023 | -69.408
155 | 05|05 | -8.249 -39.589 | -39.418 30 | 30 | 0.2 | 0.2 | -3.493 -77.961 | -72.732
155 | 05| 07 | -68.354 | -50.31 -50.278 30 | 30 | 0.2 | 05 | -1.877 -77.558 | -72.005
155 | 06| 02| -472.988 | -14.685 | -15.161 30 | 30 | 0.2 | 0.7 | -6.558 -78.139 | -73.528
155 | 06| 05 | 187.689 | -26.937 | -27.048 30 [ 30 | 05 | 0.2 | 1.787 -72.357 | -69.404
155 | 06| 07 | 27.892 -51.789 | -51.997 30 | 30 | 05 | 05 | -1.615 -72.959 | -70.207
15| 10 | 0.2 | 0.2 | 230.013 | -35.213 | -31.963 30 [ 30 | 0.5 | 0.7 | -2.106 -72.922 | -70.443
15| 10 | 0.2 | 0.5 | -344.476 | -82.708 | -78.286 30 | 30 | 0.6 | 0.2 | 3.399 -70.612 | -68.31
15| 10 | 0.2 | 0.7 | 15.321 -111.873 | -106.684 30 | 30 | 0.6 | 0.5 | 0.584 -70.95 -68.985
15| 10 | 0.5 | 0.2 | -22.65 -28.692 | -27.291 30 | 30 | 0.6 | 0.7 | -0.895 -71.066 | -69.293
15| 10 | 0.5 | 0.5 | 64.502 -41.437 | -39.689 30 | 40 | 0.2 | 0.2 | -3.362 -77.598 | -72.447
15| 10 | 0.5 | 0.7 | -2.906 -54.824 | -52.782 30 | 40 | 0.2 | 0.5 | 0.231 -76.673 | -71.081
15| 10 | 0.6 | 0.2 | -39.196 | -23.171 | -22.183 30 | 40 | 0.2 | 0.7 | -7.209 -77.56 -72.785
15| 10 | 0.6 | 0.5 | 44.949 -39.477 | -38.189 30 | 40 | 0.5 | 0.2 | 2.468 -70.765 | -68.271
15| 10 | 0.6 | 0.7 | -32.648 | -43.632 | -41.748 30 | 40 | 0.5 | 0.5 | -0.038 -70.983 | -68.802
15|20 | 02| 02 | -39.603 | -64.419 | -58.788 30 | 40 | 0.5 | 0.7 | -0.553 -71.21 -69.095
15|20 | 02| 05 | -114.491 | -90.242 | -86.207 30 | 40 | 0.6 | 0.2 | 0.738 -69.428 | -68.01
1520 | 02| 07 | -81.633 | -97.36 -92.204 30 | 40 | 0.6 | 0.5 | 1.48 -69.411 | -67.777
1520 | 05| 02| 11.16 -57.031 | -53.31 30 | 40 | 0.6 | 0.7 | -0.532 -69.658 | -68.31
15|20 | 05| 05 | -4.442 -63.884 | -60.681
Table 8

Relative bias in % of the ML (Biasyg) and the Bayesian estimators (Biaspa, represents the
Bayesian with By and Biaspy, represents the Bayesian with Bb) for ICCx = 0.3 and different
values of n, J, By, and By

n J Bb | Bw | Biasyr | Biaspay | BiaspwmL n J Bb | Bw | Biasyr | Biaspay | BiaspwmL
5 5 0.2 | 0.2 | -380.903 | -7.31 -5.4 15 | 20 | 0.5 | 0.7 | -0.998 -46.918 -45.141
5 5 0.2 | 0.5 | -297.1 -95.193 -90.933 15 | 20 | 0.6 | 0.2 | 1.699 -44.539 -43.227
5 5 0.2 | 0.7 | 150.267 -143.281 | -141.121 15 | 20 | 0.6 | 0.5 | 0.883 -44.362 -43.218
5 5 0.5 | 0.2 | -56.277 46.127 44.998 15 | 20 | 0.6 | 0.7 | -0.51 -44.749 -43.928
5 5 0.5 | 0.5 | 432.617 0.206 0.453 15 | 30 | 0.2 | 0.2 | 1.117 -56.168 -47.821
5 5 0.5 | 0.7 | 61.206 -27.888 -27.918 15 | 30 | 0.2 | 0.5 | -2.359 -57.306 -50.176
5 5 0.6 | 0.2 | -13.767 43.107 40.977 15 | 30 | 0.2 | 0.7 | -2.578 -56.83 -49.285
5 5 0.6 | 0.5 | -485.798 | 10.824 10.598 15 | 30 | 0.5 | 0.2 | 0.554 -43.555 -42.309
5 5 0.6 | 0.7 | -247.168 | -1.55 -1.634 15 | 30 | 0.5 | 0.5 | -0.128 -43.808 -42.703
5 10 | 0.2 | 0.2 | -131.468 | -35.023 -27.847 15 | 30 | 0.5 | 0.7 | 0.43 -43.752 -42.498
5 10 | 0.2 | 0.5 185.621 -89.478 -77.998 15 |1 30 | 0.6 | 0.2 1.457 -41.903 -41.005
5 10 | 0.2 | 0.7 | -248.119 | -108.161 | -97.15 15 | 30 | 0.6 | 0.5 | 0.287 -41.945 -41.364
5 10 | 0.5 | 0.2 | -31.098 -11.137 -8.976 15 | 30 | 0.6 | 0.7 | -0.033 -42.031 -41.507
5 10 | 0.5 | 0.5 | -26.568 -27.84 -25.328 15 | 40 | 0.2 | 0.2 | 1.409 -54.164 -46.953
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5 10 | 0.5 | 0.7 | -50.187 -40.606 -37.555 15 | 40 | 0.2 | 0.5 | -3.353 -55.342 -49.136
5 10 | 0.6 | 0.2 | -50.377 -4.481 -4.542 15 | 40 | 0.2 | 0.7 | -4.992 -55.617 -49.763
5 10 | 0.6 | 0.5 | 25.482 -23.963 -22.808 15 | 40 | 0.5 | 0.2 | -0.053 -42.134 -41.392
5 10 | 0.6 | 0.7 | 25.378 -35.246 -33.298 15 | 40 | 0.5 | 0.5 | 0.659 -42.045 -41.048
5 20 | 0.2 | 0.2 | 10.828 -51.717 -41.437 15 | 40 | 0.5 | 0.7 | -0.279 -42.07 -41.399
5 20 | 0.2 | 0.5 | -21.449 -68.64 -61.552 15 | 40 | 0.6 | 0.2 | -0.027 -40.787 -40.45
5 20 | 0.2 | 0.7 | -63.852 -83.751 -76.923 15 | 40 | 0.6 | 0.5 | 0.108 -40.644 -40.275
5 20 | 0.5 | 0.2 | 8.852 -40.682 -36.675 15 | 40 | 0.6 | 0.7 | -0.034 -40.829 -40.452
5 20 | 0.5 | 0.5 | 0.077 -46.392 -43.033 30 | 5 0.2 | 0.2 | -4.067 -0.005 0

5 20 | 0.5 | 0.7 | -4.033 -50.636 -47.69 30 | 5 0.2 | 0.5 | 6.026 -8.355 -8.332
5 20 | 06 | 0.2 | 7.13 -37.517 -35.116 30 | 5 0.2 | 0.7 | -381.519 | -18.351 -18.252
5 20 | 0.6 | 0.5 | 2.671 -41.089 -38.967 30 | 5 0.5 | 0.2 | 4.964 5.906 5.869

5 20 | 0.6 | 0.7 | -11.56 -45.502 -43.638 30 | 5 0.5 | 0.5 | -7.468 3.082 3.014
5 30 | 0.2 ] 0.2 | 13.341 -59.329 -49.672 30 | 5 0.5 | 0.7 | -15.179 -0.386 -0.457
5 30 | 0.2 | 0.5 | -17.994 -64.693 -58.182 30 | 5 0.6 | 0.2 | -4.802 8.471 8.463

5 30 | 0.2 | 0.7 | -18 -65.289 -58.525 30 | 5 0.6 | 0.5 | 3.508 4.313 4.291

5 30 | 0.5 | 0.2 | 5.034 -45.253 -41.916 30 | 5 0.6 | 0.7 | -289.118 | 2.066 2.117
5 30 | 0.5 | 0.5 | -1.161 -47.406 -44.7776 30 | 10 | 0.2 | 0.2 | 4.031 -60.499 -50.403
5 30 | 0.5 | 0.7 | -3.027 -48.702 -46.545 30 | 10 | 0.2 | 0.5 | -5.741 -64.16 -56.034
5 30 | 0.6 | 0.2 | 2.359 -42.974 -41.05 30 | 10 | 0.2 | 0.7 | -6.347 -62.99 -55.608
5 30 | 0.6 | 0.5 | -4.503 -44.644 -43.32 30 | 10 | 0.5 | 0.2 | 1.843 -51.672 -48.263
5 30 | 0.6 | 0.7 | -1.451 -45.244 -43.908 30 | 10 | 0.5 | 0.5 | 1.684 -51.568 -48.275
5 40 | 0.2 | 0.2 | -0.984 -58.17 -49.658 30 | 10 | 0.5 | 0.7 | -2.506 -53.068 -50.129
5 40 | 0.2 | 0.5 | -7.897 -59.238 -51.948 30 | 10 | 0.6 | 0.2 | 1.695 -49.025 -47.103
5 40 | 0.2 | 0.7 | -9.097 -60.041 -53.542 30 | 10 | 0.6 | 0.5 | 3.728 -49.251 -47.491
5 40 | 0.5 | 0.2 | 1.26 -45.072 -42.743 30 | 10 | 0.6 | 0.7 | -0.072 -49.626 -48.056
5 40 | 0.5 | 0.5 | -0.797 -46.11 -44.267 30 | 20 | 0.2 | 0.2 | 1.105 -58.467 -49.686
5 40 | 0.5 | 0.7 | -1.807 -46.459 -44.731 30 | 20 | 0.2 | 0.5 | -1.151 -58.733 -50.616
5 40 | 0.6 | 0.2 | 2.136 -43.252 -41.836 30 | 20 | 0.2 | 0.7 | -3.356 -59.335 -51.794
5 40 | 0.6 | 0.5 | 0.334 -43.83 -42.83 30 | 20 | 0.5 | 0.2 | 1.165 -45.931 -44.21
5 40 | 0.6 | 0.7 | -1.045 -44.088 -43.199 30 | 20 | 0.5 | 0.5 | 0.869 -45.997 -44.415
15 | 5 0.2 | 0.2 | -74.931 4.84 5.798 30 | 20 | 0.5 | 0.7 | -0.619 -46.582 -45.336
15 | 5 0.2 | 0.5 | 323.87 -15.23 -15.118 30 | 20 | 06 | 0.2 | 0.58 -44.207 -43.462
15| 5 0.2 | 0.7 | 59.503 -40.264 -40.218 30 | 20 | 0.6 | 0.5 | 0.216 -44.112 -43.436
15 | 5 0.5 | 0.2 | 7.849 15.234 15.098 30 | 20 | 0.6 | 0.7 | -0.147 -44.297 -43.668
15 | 5 0.5 | 0.5 | 120.525 6.303 6.248 30 | 30 | 0.2 | 0.2 | -0.07 -56.129 -48.75
15 | 5 0.5 | 0.7 | -12.943 -2.154 -2.174 30 | 30 | 0.2 | 0.5 | -0.044 -56.139 -48.759
15 | 5 0.6 | 0.2 | 52.143 18.306 18.276 30 | 30 | 0.2 | 0.7 | -0.794 -55.821 -48.806
15 | 5 0.6 | 0.5 | 8.054 9.334 9.369 30 | 30 | 0.5 | 0.2 | -0.122 -43.627 -42.777
15 | 5 0.6 | 0.7 | -2.296 3.754 3.712 30 | 30 | 0.5 | 0.5 | 0.392 -43.329 -42.388
15 | 10 | 0.2 | 0.2 | 4.432 -59.604 -51.105 30 | 30 | 0.5 | 0.7 | -0.284 -43.495 -42.701
15| 10 | 0.2 | 0.5 | -9.53 -63.083 -55.401 30 | 30 | 0.6 | 0.2 | 0.448 -41.879 -41.398
15 | 10 | 0.2 | 0.7 | -22.137 -68.075 -60.897 30 | 30 | 0.6 | 0.5 | -0.18 -42.106 -41.816
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15| 10 | 0.5 | 0.2 | 8.999 -46.317 | -42.314 30 | 30 | 0.6 | 0.7 | 0.22 -42.095 | -41.672
15 | 10 | 0.5 | 0.5 | -0.416 -49.214 | -45.6 30 | 40 | 0.2 | 0.2 | 0.946 -53.592 | -47.014
15| 10 | 0.5 | 0.7 | 2.784 -51.402 | -48.068 30 | 40 | 0.2 | 0.5 | -2.535 -54.666 | -48.894
15 | 10 | 0.6 | 0.2 | 33.381 -44.3 -42.08 30 | 40 | 0.2 | 0.7 | -0.731 -53.616 | -47.618
15| 10 | 0.6 | 0.5 | 6.384 -45.365 | -43.426 30 | 40 | 0.5 | 0.2 | 0.3 -41.79 -41.174
15| 10 | 0.6 | 0.7 | -6.388 -47.913 | -45.969 30 | 40 | 0.5 | 0.5 | 0.022 -41.822 | -41.29
15|20 | 02| 02| 287 -58.865 | -49.359 30 | 40 | 0.5 | 0.7 | -0.688 -42.035 | -41.65
15 | 20 | 0.2 | 0.5 | -3.719 -58.974 | -50.509 30 | 40 | 0.6 | 0.2 | 0.717 -40.913 | -40.456
15| 20 | 0.2 | 0.7 | -6.431 -60.174 | -52.351 30 | 40 | 0.6 | 0.5 | 0.548 -40.653 | -40.245
15 |20 | 0.5 | 0.2 | 0911 -46.634 | -44.514 30 | 40 | 0.6 | 0.7 | 0.013 -40.976 | -40.722
15|20 | 05| 05 | 0.735 -46.989 | -44.938
Table 9

Relative bias in % of the ML (Biasyz) and the Bayesian estimators (Biaspg, represents the
Bayesian with By and Biaspyyg represents the Bayesian with Bb) for ICCx = 0.5 and different
values of n, J, By, and By

n J Bv | Bw | Biaspr | Biaspay | BiaspmL n J Bv | Bw | BiasymL | Biaspay | BiaspmL
5 5 0.2 | 0.2 | -164.985 30.853 30.064 15 | 20 | 0.5 | 0.7 | -0.22 -27.013 -26.284
5 5 0.2 | 0.5 | -91.398 -2.688 -0.009 15 | 20 | 0.6 | 0.2 | 0.573 -24.739 -24.365
5 5 0.2 | 0.7 | -11249.1 | -39.249 -35.45 15 | 20 | 0.6 | 0.5 | 0.168 -24.833 -24.536
5 5 0.5 | 0.2 | 96.408 56.089 56.06 15 | 20 | 0.6 | 0.7 | -0.221 -25.053 -24.896
5 5 0.5 | 0.5 | 22.581 36.746 36.707 15 | 30 | 0.2 | 0.2 | -0.123 -38.818 -31.516
5 5 0.5 | 0.7 | -18.976 28.04 28.119 15 | 30 | 0.2 | 0.5 | -0.124 -38.316 -31.104
5 5 0.6 | 0.2 | -45.493 54.128 53.045 15 | 30 | 0.2 | 0.7 | -1.024 -38.757 -31.716
5 5 0.6 | 0.5 | 85.638 38.771 37.987 15 | 30 | 0.5 | 0.2 | 0.389 -23.985 -23.405
5 5 0.6 | 0.7 | 34.784 31.698 32.092 15 | 30 | 0.5 | 0.5 | -0.225 -24.225 -23.839
5 10 | 0.2 | 0.2 | 3.087 -44.882 -34.243 15 | 30 | 0.5 | 0.7 | -0.651 -24.334 -24.132
5 10 | 0.2 | 0.5 | -24.56 -54.504 -45.425 15 | 30 | 0.6 | 0.2 | 0.225 -22.859 -22.637
5 10 | 0.2 | 0.7 | 264.16 -65.759 -56.246 15 | 30 | 0.6 | 0.5 | 0.318 -22.779 -22.525
5 10 | 0.5 | 0.2 | 4.413 -25.214 -21.39 15 | 30 | 0.6 | 0.7 | 0.038 -22.842 -22.671
5 10 | 0.5 | 0.5 | -1.164 -30.273 -27.212 15 | 40 | 0.2 | 0.2 | 0.72 -35.116 -29.072
5 10 | 0.5 | 0.7 | 25.381 -35.121 -32.221 15 | 40 | 0.2 | 0.5 | 0.026 -35.599 -29.691
5 10 | 0.6 | 0.2 | 431.493 -22.177 -20.11 15 | 40 | 0.2 | 0.7 | -0.6 -35.434 -29.604
5 10 | 0.6 | 0.5 | 0.409 -26.339 -24.864 15 | 40 | 0.5 | 0.2 | 0.182 -22.687 -22.291
5 10 | 0.6 | 0.7 | -5.418 -29.331 -27.934 15 | 40 | 0.5 | 0.5 | -0.056 -22.669 -22.337
5 20 | 0.2 | 0.2 | 2.174 -45.461 -33.726 15 | 40 | 0.5 | 0.7 | -0.256 -22.893 -22.621
5 20 | 0.2 | 0.5 | -5.226 -47.175 -37.32 15 | 40 | 0.6 | 0.2 | 0.251 -21.605 -21.404
5 20 | 0.2 | 0.7 | -13.597 -50.043 -42.321 15 | 40 | 0.6 | 0.5 | -0.315 -21.726 -21.707
5 20 | 0.5 | 0.2 | 2.893 -29.868 -27.276 15 | 40 | 0.6 | 0.7 | 0.027 -21.818 -21.687
5 20 | 0.5 | 0.5 | 0.702 -30.204 -28.086 30 | 5 0.2 | 0.2 | 32.27 12.072 12.191
5 20 | 0.5 | 0.7 | -1.059 -31.021 -29.332 30 | 5 0.2 | 0.5 | -13.866 -2.04 -2.062
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5 20 | 0.6 | 0.2 | 2.823 -27.324 -25.747 30 | 5 0.2 | 0.7 | -2.588 -3.011 -2.939
5 20 | 0.6 | 0.5 | 0.358 -27.984 -27.006 30 | 5 0.5 | 0.2 | 6.004 8.522 8.553

5 20 | 0.6 | 0.7 | -0.622 -28.591 -27.808 30 | 5 0.5 | 0.5 | -1.864 6.028 6.046

5 30 | 0.2 | 0.2 | -1.118 -43.94 -34.55 30 | 5 0.5 | 0.7 | -2.62 3.931 3.91

5 30 | 0.2 | 0.5 | -3.38 -43.802 -35.125 30 | 5 0.6 | 0.2 | 7.629 7.837 7.829

5 30 | 0.2 | 0.7 | -5.405 -44.419 -36.288 30 | 5 0.6 | 0.5 | 0.18 7.132 7.124
5 30 | 0.5 | 0.2 | 1.063 -27.096 -25.587 30 | 5 0.6 | 0.7 | 1.126 6.588 6.579

5 30 | 0.5 | 0.5 | -0.26 -27.139 -26.052 30 | 10 | 0.2 | 0.2 | -1.672 -50.254 -40.083
5 30 | 0.5 | 0.7 | -0.879 -27.124 -26.169 30 | 10 | 0.2 | 0.5 | -2.743 -49.396 -39.691
5 30 | 0.6 | 0.2 | 1.631 -24.597 -23.649 30 | 10 | 0.2 | 0.7 | -3.732 -50.118 -40.716
5 30 | 0.6 | 0.5 | 0.801 -24.669 -23.933 30 | 10 | 0.5 | 0.2 | 0.676 -33.464 -31.932
5 30 | 0.6 | 0.7 | -0.025 -25.092 -24.539 30 | 10 | 0.5 | 0.5 | -0.757 -33.783 -32.615
5 40 | 0.2 | 0.2 | -0.286 -40.655 -32.185 30 | 10 | 0.5 | 0.7 | -0.746 -33.947 -32.733
5 40 | 0.2 | 0.5 | -3.114 -41.373 -33.552 30 | 10 | 0.6 | 0.2 | 1.361 -30.333 -29.705
5 40 | 0.2 | 0.7 | -4.552 -41.592 -34.315 30 | 10 | 0.6 | 0.5 | 0.315 -30.791 -30.359
5 40 | 0.5 | 0.2 | 1.022 -24.608 -23.518 30 | 10 | 0.6 | 0.7 | -0.227 -31.065 -30.802
5 40 | 0.5 | 0.5 | -0.904 -25.201 -24.685 30 | 20 | 0.2 | 0.2 | -0.194 -42.537 -34.137
5 40 | 0.5 | 0.7 | -0.611 -25.064 -24.452 30 | 20 | 0.2 | 0.5 | 0.387 -42.302 -33.956
5 40 | 0.6 | 0.2 | 1.223 -23.036 -22.307 30 | 20 | 0.2 | 0.7 | -0.726 -43.307 -34.829
5 40 | 0.6 | 0.5 | 0.086 -23.63 -23.293 30 | 20 | 0.5 | 0.2 | -0.087 -26.456 -25.927
5 40 | 0.6 | 0.7 | 0.067 -23.325 -22.934 30 | 20 | 0.5 | 0.5 | 0.069 -26.524 -25.956
15| 5 0.2 | 0.2 | -49.017 5.309 5.33 30 | 20 | 0.5 | 0.7 | -0.521 -27.079 -26.677
15 | 5 0.2 | 0.5 | 9.856 5.713 5.599 30 | 20 | 06 | 0.2 | 0.183 -25.035 -24.861
15 | 5 0.2 | 0.7 | -10.242 -4.097 -3.765 30 | 20 | 0.6 | 0.5 | -0.256 -25.187 -25.141
15 | 5 0.5 | 0.2 | 3.634 16.041 16.119 30 | 20 | 06 | 0.7 | 0.1 -25.282 -25.079
15 | 5 0.5 | 0.5 | -1.772 11.103 10.99 30 | 30 | 0.2 | 0.2 | 0.905 -37.67 -30.916
15 | 5 0.5 | 0.7 | -10.997 8.54 8.541 30 | 30 | 0.2 | 0.5 | -0.626 -38.138 -31.72
15 | 5 0.6 | 0.2 | 9.453 15.968 16.075 30 | 30 | 0.2 | 0.7 | -1.574 -38.38 -32.473
15 | 5 0.6 | 0.5 | 5.909 11.696 11.82 30 | 30 | 0.5 | 0.2 | 0.045 -24.436 -24.089
15 | 5 0.6 | 0.7 | 9.654 9.399 9.34 30 | 30 | 0.5 | 0.5 | -0.509 -24.798 -24.617
15 | 10 | 0.2 | 0.2 | 2.597 -48.549 -36.968 30 | 30 | 0.5 | 0.7 | -0.194 -24.503 -24.226
15| 10 | 0.2 | 0.5 | -6.183 -50.589 -41.012 30 | 30 | 0.6 | 0.2 | 0.457 -23.322 -23.08
15 | 10 | 0.2 | 0.7 | -3.402 -49.337 -39.467 30 | 30 | 0.6 | 0.5 | 0.064 -23.224 -23.114
15 | 10 | 0.5 | 0.2 | 2.188 -32.991 -30.545 30 | 30 | 0.6 | 0.7 | -0.076 -23.545 -23.49
15| 10 | 0.5 | 0.5 | 0.793 -33.708 -31.654 30 | 40 | 0.2 | 0.2 | 1.383 -34.375 -28.764
15 | 10 | 0.5 | 0.7 | 0.025 -34.526 -32.589 30 | 40 | 0.2 | 0.5 | -0.421 -35.044 -30.064
15 | 10 | 0.6 | 0.2 | 1.822 -30.649 -29.834 30 | 40 | 0.2 | 0.7 | -1.567 -35.718 -31.128
15| 10 | 0.6 | 0.5 | 1.872 -31.295 -30.632 30 | 40 | 0.5 | 0.2 | -0.076 -23.337 -23.095
15 | 10 | 0.6 | 0.7 | 4.392 -31.398 -30.911 30 | 40 | 0.5 | 0.5 | -0.053 -23.412 -23.18
15|20 | 0.2 | 0.2 | 0.533 -42.985 -33.471 30 | 40 | 0.5 | 0.7 | -0.066 -23.021 -22.781
15| 20 | 0.2 | 0.5 | -3.369 -44.04 -35.625 30 | 40 | 0.6 | 0.2 | 0.231 -22.45 -22.297
15| 20 | 0.2 | 0.7 | 0.616 -42.699 -33.427 30 | 40 | 0.6 | 0.5 | 0.028 -22.813 -22.734
15|20 | 0.5 | 0.2 | 0.972 -26.057 -24.997 30 | 40 | 0.6 | 0.7 | -0.202 -22.456 -22.436
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