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METRICS OF POSITIVE SCALAR CURVATURE 
ON SPHERICAL SPACE FORMS 

BORIS BOTVINNIK AND PETER B. GILKEY 

ABSTRACT. We use the eta invariant to show every non-simply connected spherical 
space form of dimension m > 5 has a countable family of non bordant metrics of 
positive scalar curvature. 

0. Introduction. Let Mbe a compact Riemannian manifold of dimension m. One of 
the most elementary local invariants of Mis the scalar curvature. Let %^{M) be the space 
of metrics on M with positive scalar curvature. There are several ways to distinguish 
metrics. Following Gromov and Stolz, we say two metrics g, G ^ + (M) are concordant 
if there exists h £ 1{?(M x I) which is product near the boundary such that h\Mx^ = g, 
for / = 0,1. If go and g\ are in the same arc component of H{^(M), then go and g\ are 
concordant; it is not known if the converse holds. We shall define bordism of metrics 
presently; concordant metrics are necessarily bordant but the converse need not hold. 

The group of diffeomorphisms Diff(M) acts naturally on the space of metrics of pos
itive scalar curvature H^+(M); we denote the moduli space by 

(0.1) M{M) := $C(M)/ Diff(M). 

We say that M is a spherical space form if M is a compact manifold which admits 
a metric of constant sectional curvature +1; these manifolds have been classified by 
Wolf [19] and form a natural family to study. 

THEOREM 0.1. Let Mbe a spherical space form of dimension m > 5 which is not 
simply connected. There exists a countable family of metrics gj on M of positive scalar 
curvature so that g, is not concordant to gj, so that g/ is not bordant to gj, and so that g, 
andgj belong to different arc components of ^{(M) for i ^j. 

It is possible to use the index theorem to construct metrics which are bordant but not 
concordant in a very general context, see for example Kreck and Stolz [ 12]. In this paper, 
we will use the eta invariant. At present, this is the only invariant which is known that 
distinguishes bordism classes of metrics. It uses the fundamental group in an essential 
fashion and has no counterpart in the simply connected context. 

In [2], we used the eta invariant to detect non bordant metrics for spin manifolds 
with finite fundamental groups under certain conditions. Not all spherical space forms 
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admit spin structures so the results of [2] do not suffice to prove Theorem 0.1. However, 
the spherical space forms do admit twisted spin structures in odd dimensions and pin 
structures in even dimensions. In this paper, we generalize the results of [2] to these 
structures in Theorems 0.2 and 0.3. 

We learned in discussions with Stolz that he had independently considered these struc
tures in a more general context; see [18]. We define these structures below. First recall 
some necessary definitions. Let G be & finite group henceforth and let a:M —•> BG be a 
G structure on a closed manifold M of dimension m. If s is a spin structure on M, let 

(0.2) [(M,s,a)]eMSpinm(BG) 

be the bordism class. Ifwe are given g £ ^+(M), then the bordism group MSpin^(BG) is 
defined by introducing the equivalence relation (M,g,s, a) ~ 0 if there exists a compact 
Riemannian manifold N with boundary M such that o and s extend over N and so that 
the metric g extends over N as a metric of positive scalar curvature which is product near 
the boundary. We say that metrics of positive scalar curvature go and g\ on a manifold 
M are bordant if 

(0.3) W,g0,s,(T)] = W,gus,(T)] in MSpin^(BG). 

Now we define twisted spin structures. Let Z2 = {±1} be the multiplicative group 
with 2 elements. Let 

(0.4) 1 —> Z2 — > g - ^ > G —> 1. 

be a central extension. This gives an action of Z2 on Q by group multiplication. Define 
the twisted spinor group 

(0.5) J = J(g,^G):=SpinxZ2g 

by identifying (0, A) = (—0, —A) for 9 £ Spin and A £ Q. The group Spin is a double 
cover of SO; J is a double cover of SO x G. A J structure on a manifold M is a lift of the 
transition functions of the tangent bundle of M from the special orthogonal group to J. 
The bordism groups M% and MX are defined in the obvious way. In Theorem 1.1 we 
will show that M always admits a suitable twisted spin structure if M is orientable and if 
the universal cover of M admits a spin structure. 

Let s be a J structure on M. The map \i defines an extension 

(0.6) 1 —> Spin — > J ^ G —> 1. 

Then s and /1 induce a G structure \i\ TT\ (M) —• G; M% is an equivariant bordism theory. 

THEOREM 0.2. Let G be a non-trivial finite group and let J — J(Cj, /i, G). Let M 
be a connected manifold of odd dimension m > 5 which admits a J structure s so 
jl{s)\ 7ri (M) —• G is an isomorphism. Assume M admits at least one metric of positive 
scalar curvature. 
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(1) Ifm = 3 (4), assume Q contains an element A ̂  ±1 so that A is not conjugate 
to either —A or to —A-1. 

(2) Ifm = 1 (4), assume Q contains an element A ̂  ±1 so that A is not conjugate 
to —A or to A"1. 

Then there exists a countable family of metrics gi on M of positive scalar curvature so 
that gi is not J bordant to gj and so that gt and gj belong to different arc components of 
the moduli space M(M)for i ^j. 

REMARK. Suppose that M admits a spin structure s. Let G = 7ri(M) and let Q — 
Ta 0 G be the trivial extension. Use the natural G structure on M to define a new structure 
Js with jl{s) the identity map. The hypothesis of (1) hold trivially in this setting; the 
hypothesis of (2) hold if and only if G contains an element A which is not conjugate to 
A -1. This shows that the results of [2] are a special case of Theorem 0.2. 

Let M be a spherical space form of dimension m. If m is odd, then M admits a twisted 
spin structure with G = TT\(M) and Theorem 0.1 follows from Theorem 0.2 in this case. 
However, ifm is even and if ir\(M) ^ 0, then 

(0.7) M = R P m =ST/Z2 

is not orientable and we must consider different structures. Recall that the orthogonal 
group is not connected and has two different simply connected universal covering groups 
^Pin. A manifold M admits a +pin structure if and only if wi{M) = 0; a manifold M 
admits a ~ pin structure if and only if (w\ +W2)(M) = 0. Thus RP4* admits a + pin structure 
and RP4*+2 admits a ~ pin structure; we refer to Giambalvo [6] for details. We define the 
bordism groups M^Pin)* and M^Pin)* in the obvious way. Let finr^M) —• Z2 be 
defined by the orientation line bundle. The remaining cases of Theorem 0.1 will follow 
from the following result. 

THEOREM 0.3. Let M be a connected manifold of even dimension m = 21 > 6 
which admits at least one metric of positive scalar curvature. Let e = (— l)E and assume 
M admits a cpin structure such that the orientation (1: ir\(M) —> Z2 is an isomorphism. 
Then there exists a countable family of metrics gi on M of positive scalar curvature so 
that gi is not cPin bordant to gj and so that gt andgj belong to different arc components 
ofM(M)fori±j. 

REMARK. We will show in Theorems 4.1 and 4.2 that the structures which satisfy 
the assumptions of Theorems 0.2 and 0.3 are exactly those where the eta invariant is 
non-zero. 

Here is a brief outline to the paper. In Section 1, we will construct twisted spinor struc
tures and show it is possible to push metrics of positive scalar curvature across suitable 
bordisms. In Section 2 we will use the Lichnerowicz formula [13] to show there are no 
harmonic twisted spinors or pinors if the metric has positive scalar curvature. We will 
use the Atiyah-Patodi-Singer index theorem [1] to lift the eta invariant from R / Z to R 
and to define real valued bordism invariants. In Section 3, we will prove Theorems 0.1, 
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0.2 and 0.3 by pushing metrics across bordisms and by using the eta invariant to distin
guish the resulting metrics. In Section 4, we will establish vanishing theorems for the eta 
invariant. 

It is a pleasure to acknowledge helpful conversations with G. Seitz and S. Stolz. We 
also acknowledge with gratitude helpful suggestions by the referee. 

1. Generalized spin structures. The following theorem shows that twisted spin 
structures arise naturally. Recall that if s is a J(Q,//, G) structure, then fi: -K\(M) —> G 
gives MdiG structure. 

THEOREM 1.1. Let M be a connected oriented manifold with finite fundamental 
group whose universal cover admits a spin structure. Then there exists a canon
ical _7(^,/i,7ri(A/)) structure s on M so that fi is the identity map. The extension 
( Q, /i, 7ri (A/)) is split if and only ifM admits a spin structure. 

PROOF. We prove the theorem by constructing s. Let M be the universal cover of 
M and let G = 7Ti(M) be the deck group. Lift the Riemannian metric on M to define a 
G invariant metric on M. Since M is orientable, the deck group action of G on M is by 
orientation preserving isometries. Let PSO(M) be the principal SO bundle of oriented 
orthonormal frames for the tangent bundle of M. Let PSPIN(A/) be the principal Spin 
bundle over M defined by the spin structure s on M. Let IT be the associated double cover 

(1.1) TT: PSPIN(M) - • PSO(M). 

If P is a principal bundle with structure group H, let 9{{P) be the group of diffeomor-
phisms of the total space P which commute with the action of if. Since M is simply 
connected, the spin structure is unique and the map 7r of (1.1) induces a central Ta ex
tension 

(1.2) Z2 —• #(PSPIN(M)) -^ #"(PSO(M)). 

Let Q — 7r_1(G); the restriction of 7r to Q defines a central extension 

(1.3) 1 — > Z 2 — > g - ^ G — > 1 

which is independent of the metric on M which is chosen; M is spin if and only if the 
extension (1.3) is split. Let J = J{(j, /i, G). 

We use the natural inclusion Spin —> J to induce a J structure on M from s; the 
associated principal bundle is defined by 

(1.4) PJ(M) := PSPIN(M) xZ2 J. 

The diagonal lift of G to ^/*(PSPIN(M)) x Q is not well defined since there is a Z2 
ambiguity. It is, however, well defined in the quotient group 9([PJ(M)\. If £ G G, let 
lTl (£) = {±A} C Q. We define s with the necessary properties by 

(1.5) s(Q := (A, A) = (-A, -A) G ̂ {PJ{M))- • 

We will use the following lemma to push metrics through a bordism. 
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LEMMA 1.2. Let 3 = ±Pin or let 3 = J{Q, /x, G)for \G\ < oo. Let Mt be closed 
manifolds of dimension m>5 with 3 structures Sj so that 

[(Musl)] = [(M2,s2)] inMJm. 

Assume thatM\ is connected and that (L\\ 7ri(M\) —> G is an isomorphism. Assume that 
M2 admits a metric g2 of positive scalar curvature. Then there exists a 3 bordism N and 
metrics of positive scalar curvature gx on N and g\ on M\ so that (N, M\) is 2 connected 
and so that 

d(N,gN,sN) = (Mugus\) - (M2,g2,52). 

PROOF. We generalize the argument of Miyazaki [14] and Rosenberg [15] to twisted 
spin structures to prove the Lemma. Let Af be a bordism so 

(1.6) d(N,sN) = (Musi) - (M2,s2). 

By taking connected sum, we may assume N is connected. Since M\ is connected, (N, M\) 
is O-connected. 

Let N^Nbe the principal G bundle over N defined by /i. Then 

1 >7Tl(A0 • 7ri(7V) -^U G >1 

(1.7) JOO* o | = 

7Ti(Mi) - ^ G ^1 

Since N is compact, TT\ (N) is finitely generated. We choose embedded circles 

(1.8) c ^ S 1 - ^ 

as generators for TT\(N) in n\(N). Since /x(or/) = 1, the G structure defined by the J 
structure on the tubular neighborhood Ut of at in M is trivial. This is a critical point. 
If 3 — ±Pin, the /i structure is trivial means that the normal bundle is orientable. If 
3 = 3(Q, M, G), the /i structure reflects the twisting by G. Thus in either case, the 3 
structure on (7/ is in fact a spin structure. Thus the normal bundle is trivial; we choose 
the trivialization 

(1.9) Ut = Sl x / T " 1 

to preserve the spin and hence the 3 structure. We can now do surgery on the at to kill 
7T\(N) while preserving the 3 structure. This shows that we may choose the 3 bordism 
so (N9M\) is 1-connected. 

Since 7ri(JV) = ir\(M) is finite, ir2(N) is finitely generated. We can choose embedded 
spheres ft: Si2 —> Was generators for 7r2(A0. Since S2 is simply connected, the 3 structure 
on the normal neighborhood U( of ft is in fact a spin structure. Therefore the normal 
bundle has trivial second Stieffel-Whitney class. This implies the normal bundle is trivial 
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so Uf = S2 xLf1'2. We do surgery on Ut to kill 7r2(Ar) and choose the J bordism so (N9 M\) 
is 2-connected. 

We can choose a handle body decomposition so that N is obtained from M\ by attach
ing handles of dimension at least 3; dually, N is obtained fromM2 by attaching handles of 
codimension at least 3. Results of Gajer [5], Gromov and Lawson [10], and Schoen and 
Yau [17] then permit us to push the metric of positive scalar curvature from M2 through 
the bordism N to define the desired metric on Mi. • 

REMARK. The referee has pointed out to us that this result may also be derived 
from the Bordism Theorem 3.3 of Rosenberg and Stolz [16]; we have presented a self-
contained argument here for the convenience of the reader and to illustrate the geometry 
involved. 

We shall need the following technical lemma later. 

LEMMA 1.3. (a) Ifm is odd, | MSpin^tfZ,,)! < 00. 
(b) Let m = 21 and let e = (—1)*. Ifm is even and ifs is a cpin structure on RPm, 

then [(RPm,^)] is an element of finite order in M(6Pin)m. 

PROOF. Assertion (a) follows as the reduced bordism groups are rationally trivial for 
any space whose rational reduced homology groups vanish; assertion (b) follows from 
Giambalvo [6, Theorem 3.4] who computed the orders of RP2* in the appropriate pin 
bordism groups. • 

2. Analytic bordism invariants. In this section, we use the eta invariant to con
struct bordism invariants. We first review some facts concerning operators of Dirac type. 
Let M be a compact Riemannian manifold without boundary of dimension m > 2, let V 
be a smooth vector bundle over M, and let Q be an operator of Dirac type on the space 
of smooth sections to V. For Re(z) » 0, let 

(2.1) rKz,0:=M0(^)-<*+1>/2) 

be the eta function defined by Atiyah etal. [1]. This has a meromorphic extension to 
C. The origin is a regular value and we define the following measure of the spectral 
asymmetry of Q: 

(2.2) rj(Q) := ^{77(2, Q) + dimker(0}|z = o . 

Let X be a compact oriented manifold with smooth (possibly empty) boundary Y. Let 
J = J{(j, /1, G) and let s be a J structure on X. Let a be a unitary representation of Q 
so that a(—A) = — a(X) for all A E Q\ such representations always exist. Let A be the 
fundamental spin representation; A(—6) = — A(0) for 6 e Spin. Since 

(2.3) A(0) ® a(A) = A(-0) ® a(-A) V0 € Spin, A € £, 

A ® a extends to a unitary representation of J. Let W(X,s, A, a) be the unitary bundle 
over X defined by s; this is a bundle of twisted spinors. Let C(X) be the Clifford module 

https://doi.org/10.4153/CJM-1996-003-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-003-0


70 B. BOTVINNIK AND P. B. GILKEY 

bundle of the tangent bundle; Clifford multiplication gives W(X, s, A, a) a natural C(X) 
module structure 7. Since the principal bundle PJ(X) is a finite cover of PSO(X), the 
Levi-Civita connection lifts to define a connection V on PJ and on W(X,s, A, a). We 
define the Dirac operator on C°°(W(X9s9 A, a)) by the formula 

(2.4) D(X,gx,s,a):=loV. 

Similarly, if X admits a ±pin structure s, let A be the pinor representation, let Wbc the 
bundle of pinors, let V be the ±pin connection on W, and let 7 give W a C(X) module 
structure; see Section 4 for further details. We define the Dirac operator on C°°(W) by 
the formula 

(2.5) D(X9gx,s):=loV. 

If the boundary of X is empty, then D = D(X, gx, s, a) or D = D(X9 gx, s) is a self-
adjoint first order elliptic partial differential operator. If the boundary Y ofXis non-empty, 
we impose Atiyah-Patodi-Singer boundary conditions. Let v be the inward pointing unit 
normal. Near Y, we decompose 

(2-6) D = l7(y7+A) 

where A is a self-adjoint tangential operator of Dirac type. Let IT be the spectral projection 
on the non-negative eigenspaces of A; <j> G C°°(FF(-)) satisfies our boundary conditions 
if no/>|y) = o. 

LEMMA 2.1. Lets be a J structure on Xfor 3 = _?(£,//, G) or J = ±pin. Let gx 

be a metric of positive scalar curvature on X; ifdX ^ 0 we assume gx is product near 
the boundary. We impose Atiyah-Patodi-Singer boundary conditions on the operator D 
of Dirac type defined above. Then ker(Z>) = {0}. 

PROOF. Let Rx be the scalar curvature of gx. Locally, the twisting defined by a if 
3 — J(Q, /i, G) or by the orientation if 3 = ^pin does not play a role so we can use the 
Lichnerowicz formula [13] to see that if <\> G Cco(FT()), then 

(2.7) D20 = - T r ( V 2 < / > ) + ^ . 

Let D<j) = 0, let dx be the Riemannian measure on X, and let dy be the Riemannian 
measure on the boundary Y. We integrate by parts to compute that 

0= [afhtftdx 
(2.8) , 

= Ĵ {(V</>, Vc/0 + - J W , (/>)} dx + jr<Stf9 4) dy. 

In the usual argument that there are no harmonic spinors, the boundary integral does not 
appear. Here we must control the sign of this term, the boundary conditions are critical 
for this. Since D<j> = 0, (4>$)\Y = -^(</>|r). Since n'(0|y) = 0, 

(2.9) JY(A^<t>)dy<0 so / ( ^ ) < f y > 0 . 
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Since Rx > 0, all the terms appearing in (2.8) are non-negative so <j> = 0. • 
Let Cl(^) denote the ring of complex class functions on Q. The map a —» Tr(a) 

associates to each representation the corresponding character; the characters of the irre
ducible representations of J form a basis for Cl(^); we shall identify a representation 
with its character henceforth. Let 

(2.10) Clo(£) := {</> e Cl(£) : <j>{\) = 0}. 

There are two different actions of Z2 = {±1} on (7 defined byg—» ±gandg—• g^1 

which induce corresponding Z2 module structures on Cl(^) and Clo(^). We use the first 
action to decompose 

(2.11) Cl(£) = C f ( £ ) e C r ( £ ) 

where we define 

(2.12) CX^g) := {</> G Cl(£): 0(-A) = ±</>(A) VA G £ } , 

aJ(0:=Oo(#n (**(£). 

Let s be a ^ = _7((j, /1, G) structure on M and let g be a metric of positive scalar 
curvature onM. If a satisfies a(—A) = — a(A), we may extend A ® a to a representation 
of .7 and define the associated eta invariant 

(2.13) i?(Mg,5,a) := ri(D(M,g,s,a)) G R. 

Since the eta invariant is real valued and additive with respect to direct sums, we may 
extend the eta invariant to a linear map 

(2.14) fi(M9g9s,.):CT(g)-+C. 

The class functions in C\+((j) play no role since the corresponding representations do 
not extend to J. 

LEMMA 2.2. Let m be odd and let J = J(Q, //, G). The eta invariant extends to a 
map in bordism 

tj:MLC«feCljr(£)-*C 

REMARK. In Section 4, we will decompose Cl^~(£) = &(§) 0 S(£) into the ±1 
eigenspaces with respect to the Z2 module structure induced by the action g—^g^1. We 
will show in Lemma 4.4 that 77 is trivial on $ if m = 3 (4) and trivial on A if m = 1 (4). 

PROOF. We use the index theorem for manifolds with boundary of Atiyah, Patodi, 
and Singer [1]. Let [(M,g,s)] = 0 in M ^ . This means there is a manifold N whose 
boundary is M so that the structure s extends over AT and so the metric g extends over N 
as a metric of positive scalar curvature g# which is product near the boundary M. 
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We must show that if at are representations of Q so that dim(o:i) = dim(a2) and so 
that a/(—A) = — a,(A), then 

(2.15) r\(D(M9g9s9axj) - r](D(M9g9s9a2)) = 0. 

We decompose the bundle W over N into the half spin bundles 

(2.16) W(N,s,A,ai) = W(N,s,A+,ai)^W(N,s,A-,ai) 

and decompose the corresponding Dirac operators over N in the form 

(2.17) IXN9gN9s9ai) = D+(N9gN9s,ai) + D-(N,gN,s9ai) for 

D±:(?°(W(N9s9A
±

9ai))^C"(W(N9s9A
T

9ccij). 

Near the boundary M, we decompose the corresponding tangential operators 

(2.18) A(N9gN9s9ai)=A++A; for 

A±:C^(W(N9s9A
±

9ai))\M^C^(W(N9s9A
±

9ad)\M. 

We identify W(N, s9 A
±, C*/)|A/ = W(M9 s9 A, a,-); under this identification 

(2.19) Af = 6D(M9gM,s9ai) 

where e = e(m) = ±1 is universally defined and reflects certain normalizing sign con
ventions which are not relevant to our argument. The boundary conditions decouple and 
define elliptic boundary conditions for D^. We use Lemma 2.1 to see that ker(4) = {0} 
so 

(2.20) (Z)±)*=Z) : f. 

Let A(gN) be the differential form on N defined by the metric g# whose representative 
in de Rham cohomology gives the A -genus. The index theorem of Atiyah, Patodi, and 
Singer [1] then yields 

(2.21) index{£>+(Af,giv,.s, at)} = dim(a,) f A(gN) - er](M9g9s9 a,). 
JN 

Since dim(ai) — dim(a2) = 0, 
(2.22) 
-e{r](M9g9s, ax)-7](M9g9s9 a2)} = index{D+(N9gN9s9 ai)}-index{Z)+(Ar,gAr,s, a2)}. 

By Lemma 2.1, there are no harmonic spinors and the index vanishes since gN is a metric 
of positive scalar curvature. • 

If s is a ±pin structure on an even dimensional manifold M9 let 

(2.23) ri(M9g9s) := rf(D(M9g9s)) G R. 

LEMMA 2.3. Let m be even. The eta invariant extends to a map in bordism 

7 ? :M(±Pin):- ,R. 
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PROOF. We use the ±pin complex; this elliptic complex is defined for odd dimen
sional ±pin manifolds with even dimensional boundary. Since the dimension of AT is odd, 
there is no interior integrand in the Atiyah Patodi Singer index formula; 

(2.24) mdex{D+(N,gN,s)} = er](M9g9s). 

The theorem follows since there are no harmonic pinors by Lemma 2.1. • 

REMARK. The crucial difference between J{Q9^x9G) and ±pin lies in (a) the parity of 
the dimensions and (b) there is no need to twist with a representation of virtual dimension 
0. 

3. Constructing metrics of positive scalar curvature. Let M admit a J structure s 
and a metric of positive scalar curvature g. If J — J(Q9 /i, G) and if m is odd, we say the 
eta invariant of (M, g, s) is non-zero if there exists </> G Cl^ (Gf) so that rj(M9 g, s, </>) ^ 0. If 
3 = ±pin and if m is even, we say the eta invariant of (M,g, s) is non-zero if r\(M9g9 s) =fi 
0. 

THEOREM 3.1. LetJ = J(Cf,ii, G)for Gfinite and let m be odd or let 3 = =bPin and 
let m be even. Assume there exists (M, g, s) so that [(M, s)] has finite order in MJm and so 
that the eta invariant of(M, g, s) is non zero. Let Mbe a connected manifold of dimension 
m>5 which admits a J structure so that p, is an isomorphism. Assume M admits a metric 
of positive scalar curvature. Then there exists a countable family of metrics g/ on M of 
positive scalar curvature so that gt is not J bordant to gj and so that g/ andgj belong to 
different arc components ofM{M)for i ^j. 

PROOF. Let J = 7(£,M> G); the argument for J = ±Pin is similar. Choose <j> G 
Cl^(^) so that 

(3.1) r/(M,g,i,(/>)^0. 

Choose v so i/[(M,s)] = 0 in MJm. Let / G Z. Use Lemma 1.2 to push the metric of 
positive scalar curvature on 

(3.2) (M,go,^)Ui//(M,g,i) 

across a bordism 

(3.3) [(M,5)] = [(M,^)] + z//[(M,i)] 

to define a new metric g, of positive scalar curvature on M. Then 

(3.4) 7](M, gi9 s, 4>) = 7j(M, go, s, 4) + J//T/(M, g, S9 <j>) so 

f](M9gJ9s9(j)) - r)(M9gJ9s9<j)) = v(i -j)r](M9g9s9(j)) ^ 0 for/ ^j. 

This shows that g, is not bordant to gy for / =^y. 

https://doi.org/10.4153/CJM-1996-003-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-003-0


74 B. BOTVINNIK AND P. B. GILKEY 

Let Diff-^(M) be the subgroup of diffeomorphisms of M which preserve the J struc
ture, the orientation, and act as the identity on the fundamental group. It is immediate 
from the definition that 

(3.5) viMXgXsA) = fl(M9g,s,<l>). 

Ifhe Diff-^(Af)>tnen h*s = s. Consequently h*gt and h*gj give different eta invariants 
and hence are not concordant metrics for / ^ j . Consequently g and g7 are in different 
arc components of ^+(A/) / Diff^(A/) for / ^j. 

Since M is compact and since J is a finite extension of SO, the set of inequivalent 
J structures on M is finite. Since the fundamental group of M is finite, Diff^(A/) is a 
subgroup of finite index of Diff(M). The theorem now follows. • 

PROOF OF THEOREM 0.3. We embed cpin in the complexification cpin to define a 
cpin structure on KP2e; every cpin structure on RP2£ is the complexification of a epin 
structure. We computed the eta invariant of the cpin operator in [7, Lemma 1.3.8 and 
Theorem 3.2.12]; this operator is the cpin operator for RP2i. We showed that that if the 
cpin structure s on RP2£ is chosen suitably, then 

(3.6) j](RP2e,s) = 2~i-1 ^ 0 . 

By Lemma 1.3, (RP2£,s) has finite order in M(cPin). Since RP2i admits a metric of con
stant positive scalar curvature, Theorem 0.3 follows from Theorem 3.1. • 

REMARK. There are two inequivalent cpin or cpin structures on RP2i which are re
lated by twisting with the orientation line bundle. This twisting replaces the pinor opera
tor D by — D and changes the sign of the eta invariant but not the fact that it is non-zero. 

PROOF OF THEOREM 0.2. Let H = (A) be the cyclic subgroup of Q generated by A. 
The natural map O: Spin xH —• J induces a natural map of bordism groups 

(3.7) 0:MSpinm(5fl) —M^m . 

By Lemma 1.3, MSpinm(£#) is finite. Thus if [(M,s,a)] <E MSpinJtftf), then 
®([(M9s9&)]) has finite order in MJm. If a G Cl^(^), let r(a) e C\Q(H) be the re
striction. Then 

(3.8) j] (M, S9 a9 r(a)) = 77 (0(M, s9 or), a ) . 

We complete the proof by finding M which admits a metric of positive scalar curvature 
and which has non-vanishing eta invariant. 

Suppose first m = Ak — 1. Choose i l ^ A G ^ s o A i s not conjugate to — A or — A~l. 
This implies A-1 is not conjugate to —A or to —A-1. Thus we can find a G C\Q((J) which 
takes values in {0, ±1} such that 

(3.9) a(A) = a(A~1)= 1. 
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Let I2k G U(2k) be the identity matrix, let n be the order of A, and let 

(3.10) r(A) := e27"/" • llk\H - • U{2k) 

define a fixed point free representation of// = (A). Let 

(3.11) M:=S*k-l/r(H) 

be the resulting spherical space form. The manifold M admits a unique spin structure 
if n is odd and admits two inequivalent spin structures if n is even, see for example [3, 
Section 4]. We used a suitably chosen spin structure and the natural H structure a together 
with work of Donnelly [4] in [2, Lemma 2.2] to show that 

(3.12) T](M,s,(j,a) = n-1 £ a(V)|l -<?™Jln\-2k. 
\<j<n 

We also showed, [2, Lemma 4.1], that if l > 3, then 

(3.13) £ |1 -<>W/»|-* < 2 | l _ « ^ / » | - « . 
2</</i-2 

Since a(A) = a(—A) = 1 and since a(A') G {0,±1}, the values in (3.12) wheny = 1 
andy = n — 1 swamp the remaining values so rj is non-zero. This completes the proof if 
m = 4k- 1. 

Suppose next /w = 4£+1. Choose ±1 ^ A G ^ so A is not conjugate to A-1 or to —A; 
this implies A-1 is not conjugate to A or to —A-1. Thus we can find a G C\^(J) taking 
values in {0, ± 1} so that 

(3.14) a(A) = 1 and ^A" 1 ) = - 1 . 

Let L be the tautological complex line bundle over CP1 and let V be the trivial complex 
bundle of dimension v over CP1. Let 

(3.15) M : = 5 ( Z 0 I 0 1 2 ( W ) ) 

be the sphere bundle of fiber dimension 4k — 1 over CP1. We use the complex structure 
on L 0 L © l2^-1) to define a natural Sl action on M. By shrinking the size of the fiber 
spheres, we can give M a metric of positive scalar curvature which is Sl invariant. Since 
the underlying real vector bundle o f ! © L is trivial, M is diffeomorphic to CP1 xS4* -1 

and admits a unique spin structure s. 
Let n be the order of A and let r(A) = e2™/" define a fixed point free action of// = (A) 

on M. Let 

(3.16) M:=M/T(H). 

We give M the natural spin structure s and H structure cr, see [3, Section 4]. We complete 
the proof of Theorem 0.2 by showing the eta invariant of M is non-zero. Let 

PQ,n,k) := (1 +el7Tij/n)(l - ^lnyx\\ - e
2iriJ/n\-2k. 
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In [2, Lemma 4.2] we showed that if m = 5 and k = 2, then 

(3.17) 71(M,s,a,a) = -n~l £ a(M)[3(j\n9k). 
1 </<#!-1 

A similar calculation shows that this identity holds for general k. Since a(X) = 
—a(—A) = 1, since a(M) G {0,:L1}, and since/?(/', «,&) = — /3(« — j\n,k) we may 
use (3.13) to see 77 is non-zero. • 

PROOF OF THEOREM 0.1. Let M be a spherical space form of dimension m > 5 with 
non trivial fundamental group. If m = 0 (4), then M = RPW admits a +pin structure; 
if m = 2 (4), then M = RPW admits a "pin structure. Therefore Theorem 0.1 follows 
from Theorem 0.3 if m is even. If m = 3 (4), then M is spin and the conditions of 
Theorem 0.2 are satisfied. If m = 1 (4) and if \G\ is odd, then M is spin and no non-
trivial element of G is conjugate to its inverse so the conditions of Theorem 0.2 are 
satisfied. If m = 1 (4) and if \G\ is even, then the 2-Sylow subgroup G2 of TT\(M) is cyclic 
and non-trivial; see Wolf [19] for details. We use Theorem 1.1 to give M a canonical 
J = 3{Q, \i, G) structure. Since M is not spin, the extension is not split so the 2-Sylow 
subgroup Q2 = M_1 (G2) of Q is cyclic. It now follows that no two different elements of 
Q2 are conjugate in Q and the conditions of Theorem 0.2 are satisfied. Thus Theorem 0.1 
follows from Theorem 0.2 if m is odd. • 

4. Vanishing theorems for the eta invariant. The hypothesis of Theorems 0.2 and 
0.3 are exactly those where the eta invariant is non-zero. More precisely 

THEOREM 4.1. Let Mbea closed manifold of dimension m which admits a metric of 
positive scalar curvature and a J = J((j,n,G) structure sfor Gfinite. 

(1) Ifm = 3 (4), assume every element \^±lof(jis conjugate to either —Xorto 
-A"1 . 

(2) Ifm = 1 (4), assume every element \=fi±\ofQis conjugate to either —A or to 
A"1. 

Then r](M,g,s, a) = Ofor all a G Cl^"(£). 

THEOREM 4.2. Let Mbea closed manifold of dimension m which admits a metric of 
positive scalar curvature and a epin structure s. 

(1) Ifm = 0 (4), assume s is a ~pin structure. 

(2) Ifm = 2 (4), assume s is a +pin structure. 

Then r](M, g, s) = 0. 

We shall need several technical lemmas to prove Theorems 4.1 and 4.2. We shall say 
D ^ ±D if there is a natural unitary equivalence between these two operators. 

LEMMA 4.3. Let D be the (s)pinor operator defined by a 3 structure s on M. 
(a) If(m, J) e {(4k - 1, Spin), (4k, +Pin), (4k + 2, "Pin)}, then D~D. 
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(b) If(m, J) E {(4k + 1, Spin), (4k + 2,+ Pin), (4k, ~ Pin)}, then D ~ -D. 

PROOF. Let m = 21 — 1. There are two inequivalent irreducible left C(Rm) modules 
(A^,7^). If oj is the orientation class, then 

(4.1) 7j(w) = ± e ( 0 - / 

where e(l) = ±1 if I is even and e(f) = ±i if £ is odd; the precise sign convention is 
irrelevant here. Thus 

(4.2) ( A ; , - 7 ; ) - ( A - , 7 - ) . 

Furthermore, if we take the complex conjugate, 

(4 3} f£± ^ = ( ( 4 ^ ) if I = 0(2% 

Since the spin operator is defined by 

(4.4) D = l+
moV\ 

we conclude/) ~ D if m = 4k— 1 and/) ~ —Z) if w = 4£+1. This completes the proof 
of the lemma if m is odd. 

Let m — It and let e = ± be a choice of sign; the Clifford algebra (^(W) is defined 
by the identity 

(4.5) v * w + w * v = e(v, w) • 7. 

In our previous discussion, we have taken e = — so C — C~\ this distinction was 
inessential previously since we were working with spinors but becomes crucial now that 
we are working with pinors. Let Tin be the subgroup of C£(Rm) generated by the unit 
sphere of Rm under Clifford multiplication. Let \ be the orientation representation; this 
is defined by 

(A c\ ra\. I 1 i { 0 e SPin> 
( 4 6 ) X ( 0 ) = ( _ i i f 0 € Tin-Spin. 

The canonical representation p of Tin on Rm is then defined by 

(4.7) p(0)v:=x(O)O*v*O-1. 

Let a(0)t, = 0 * £ define the canonical representation of Tin on Ce. 
Let {et} be an orthonormal basis for Rm and let 

(4.8) u := iMex * • • • * em G C(Rm). 

Then J1 = - 1 and 0 * u = \(0)v * 0. Let 

(4.9) 7(v)£ := v * UJ * £ 
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define a map 7: Rw —> End(C). We compute that 

7(v)7(w) + 7(w)7(v) = v*o;*w*a; + w*a ;*v*a ; 
(4.10) ? r 

= — ur\v * w + w * v} = e(v, w) • /. 

This shows 7 defines a Ce module structure on C. We show that 7 intertwines p ® a and 
a by computing that 

l(p(9)v) (a(0)£) = x{0)e *v*d~x *u*0*i 

= x2(0)0 * v * u) * £ = <K0)(7(v)£). 

Let a(M) be the bundle defined by the cpin structure and let 

(4.12) 7: TM® o(M) -> a(M) 

be the Clifford module structure. If A is the fundamental pinor representation, 2l A ~ 
a(M). 

Let m = 2£ and let 6 = /£+1 be the normalizing constant of (4.8). If e = —, let 
D = 7 o V; modulo a possible sign convention and a factor of 2*, this is the pinor 
operator described in Section 2. Since a(M) is a real vector bundle over M, V = V. If 
7w = 4k, then £ is imaginary so 7 = — 7 and D = —D. lfm = 4k + 2, then 8 is real so 
7 = 7 and D = —D. If e = +, let D = /7 o V; the factor of/ ensures that D is self-adjoint. 
If m = 4£ + 2,7 = 7 and/) = -D. If m = 4k, then 7 = - 7 and/) = Z). • 

PROOF OF THEOREM 4.2. Let m = 2£ be even. Since 77 G R, 

(4.13) <q(D) = 77OD) = 770) = e*7(£) for e = ± 1. 

The desired vanishing now follows from Lemma 4.3. • 
We shall need one additional technical fact before proving Theorem 4.1. Decompose 

Cl^(£) = A(g) 0 # (£ ) where 

(4.14) SVJj) := {a G Cl^(£) : a(X~l) = a(A) VA G Q} 

$($) := {a G C£(£ ) : ^A" 1 ) = -a(A) VA G £ } . 

LEMMA 4.4. (a) Ifm = 3 (4) a«</ z/a G $(£), f/*ew r](M,g,s, a) = 0. 
(b) Ifm~\ (4) a/n/i/a G .#(£), */*e« 77(M,g,s,a) = 0. 

PROOF. Let jl: TT\(M) —• G be the associated G structure. Let Mi be the principal 
G bundle defined by jx\ M\ inherits a natural spin structure. Let D\ be the spin operator 
on M\ and let Da be the twisted spin operator on M. By Lemma 4.3, D\ ~ eD\ where 
e = e(w) = ± 1 . Let £i(0 be the eigenspaces of Dx. If 0 G #(PSpin(Afi)), let <?i(f,0) 
be the induced unitary morphism of E\(t). We define the equivariant eta function by 

(4.15) i,(0,D,) := {Esign(0k|-z Tr(e,(*,6)) j ^ . 
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If £ G G, let /i-'CO = (0, A). Note that 

(4.16) r](-9,Di) = -r](0,Di) and a(-A) = -a(A). 

Thus ry(0(O, A(£)) is independent of the lift chosen. We compute that 

(4.17) //(A*) = \G\~l £ ri(m,Di)«{KO). 

Since the complex conjugate of Tx(e\(t, 9)) is Tr(e\(t, 0_1))? 

(4.18) r1(0,Dl) = r](O-\D[). 

Since A = eZ>i, 

t,(D)=^(tj(£>) + eij0)) 

(4 19) = ? l G r ' E M * ( 0 > A ) a ( A ( 0 ) +£t j ( r 1 (0 ,A)or(A(0)} 

= i l C r ' £ »?(^),£».){«(A(0) +ea(A(0- ' )} . 
Z £<EG 

Thus the eta invariant is trivial if a(A) + ea(A-1) = 0. • 
The converse of Lemma 4.4 holds. As we shall not need this result, we omit the proof; 

it follows from the same arguments used to prove [2, Lemma 4.2]. 

LEMMA4.5. (a) Ifm = 3 (4) andifr](M,g,s, a) = Oforall(M,g,s), then a G <B(Q). 
(b) Ifm=l (4)andifri(M,g9s,a) = Ofor all (M,g,s), then a G ft(Q). 

REMARK. Let %.{§)* and #(£)* be the dual vector spaces. Lemma 4.5 shows that 
the eta invariant can be interpreted as defining a surjective map 

77: AfJ&-1 ®z C -> .#(£)* -* 0, and 

*7:MX, + 1 ® z C-+#(£)*-+0. 

PROOF OF THEOREM 4.1. Let m = 2£ - 1. The group Q satisfies the assumptions 
of Theorem 4.1(1) if and only if .#(£) = 0 or equivalently Cl^(£) = <B{Q). Similarly, 
M satisfies the assumptions of Theorem 4.1(2) if and only if 'B(Q) = 0 or equivalently 
0 ^ ( 0 = -# (0 . Theorem 4.1 now follows from Lemma 4.4. • 
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