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Classical groups over division rings
of characteristic two

William M. Pender

The notion of quadratic form over a field of characteristic two
is extended to an arbitrary division ring of characteristic two
with an involution of the first kind. The resulting isometry
groups are shown to have a simple normal subgroup and the
structure of the factor group is calculated. It is indicated how
one may define and analyse all the classical groups in a unified

manner by means of quadratic forms.

Introduction

Suppose k is a division ring, commutative or not, of characteristic
two with an involution J of the first kind (that is, J is an involutory
or trivial antiautomorphism of k fixing every element of the centre =z
of k ). It is well-known that the definition of the classical groups over
k 1is more complicated than over other types of division rings. Firstly in
division rings of characteristic not two or with involutions of the second

kind, every symmetric element is a trace (a trace is an element of the form

A+ AJ ), but in k there may be symmetric elements which are not traces -
this is certainly the case when k has finite dimension over 2z . The
classical groups over k are always defined in terms of trace-valued
hermitian J-sesquilinear forms (hermitian forms f such that flx, ) is
a trace for all x in the space] because the isometry groups of
non-trace-valued hermitian forms can always be described in terms of

trace-valued forms (Dieudonné [51).
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Furthermore if k 1is a field then symmetric bilinear forms will give
only the symplectic group, and to define the orthogonal group one must use
quadratic forms, each of which is associated with a trace-valued symmetric
bilinear form but not determined by it. This quadratic form may be
defective, that is it may be non-degenerate but have a degenerate symmetric
bilinear form associated with it. The symplectic groups over k may be
regarded as defective orthogonal groups where the defect is as large as

possible (Dieudonné [5]).

The purpose of this paper is to investigate new classical groups which
arise in the case when k is not commutative as the isometry groups of
J-quadratic forms over k . A J-quadratic form is a map from a vector
space over k to the factor group of k modulo the =2-space of traces of
k , and has associated with it a trace-valued hermitian J-sesquilinear
form. As is the case for fields, these forms may be defective and the
usual unitary groups over k (defined in terms of trace-valued hermitian
J-sesquilinear forms alone) may be regarded as isometry groups of

J-quadratic forms whose defect is as large as possible.

A1l the classical groups may be defined in the same way as isometry
groups of J-quadratic forms if this notion is extended to involutions of

the second kind and division rings of characteristic not two using

skew-traces (elements of the form X - AJ ) as well as traces. The
development of the structure theorems given here over Xk does not use
arguments essentially depending on characteristic two, and can easily be
extended to give a unified account of all the indefinite classical groups.
When every symmetric element is a trace, however, the quadratic form is
completely determined by the associated sesquilinear form, in fact for
symplectic groups over fields of characteristic not two the quadratic form

is trivial and the definitions must be reworded in terms of both forms.

The idesa of a J-quadratic form was first developed over a
quaternionic division ring (in which the trace space may be taken as the
centre) by Seip-Hornix [8], so that her treatment of Clifford algebras over
quaternionic division rings would not be restricted by characteristic. The
possibility of generalizing Seip-Hornix's definition is mentioned by Tits

in [9] but without explanation. The algebraic groups he there denotes by
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lD(d) and QD(d)

are said to correspond to isometry groups of non-
n,r n,r

defective J-quadratic forms of Witt index r over a division ring of
finite dimension d2 over the centre.

We shall prove the fundamental structure theorems in the case when the
Witt index is non-zero and k 1is commutative or non-commutative. That is
we shall prove that a certain normal subgroup of the isometry group is
simple, and produce a norm on the isometry group which determines the
structure of the resulting factor group. The-proof of simplicity follows
the method of Iwasawa [7] and the construction of the "Wall norm” is a
simple extension of Wall's paper [10] using the same arguments. The
arguments concerning GF(2) are often omitted, and can usually be found in
Dieudonné [51.

Preliminaries on division rings

With the division ring k as before, it is clear that both the set s
of symmetric elements and the set 1 of trace elements form vector spaces
over 2 . Also themap Tr : k > k mapping each A € k to A+ N is
z-linear with kernel s and image [ , hence the =2z-codimension of &
equals the =2-dimension of I . When k has finite dimension m2 over
2 , then s has dimension 4m(m+l) and so I has dimension #m(m-1) .
When k has infinite dimension over 2 it is easily shown that 1 also

has infinite dimension.

re et

The trace space is closed under inverses, since if a

alez.

J
then a1 is symmetric and so a-lk[a_l)J + [a_ll[a—l]J]

When 1 is a trace similar arguments show that every norm XAJ is a trace
and that I is closed under the operation of squaring. Also when 1 is a
trace, either k is generated by its traces or the trace space coincides
with the centre (the analagous theorem for symmetric elements is proven in
Dieudonné [2]). For then the division subring k' generated by 1 is

invariant under all inner automorphisms of k , since if o € I and
pex” then 1 law = (u’la(u‘l]‘]] (W1) € %' . Now by the Cartan-Brauer-

Hua Theorem (Brauer [1]), k' is either 2z or k.
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1. Quadratic forms

Suppose k 1is a commutative or non-commutative division ring of
characteristic two with an involution J of the first kind. Let 2z be
the centre of k and let & and L be the vector spaces over 2z formed
respectively by the symmetric elements of k and the trace elements of
k . Suppose E is a left vector space of finite or infinite dimension =

over k .

LEMMA 1.1. (a) For each A € k' , the mp k >k defined by

a > Aa)\J for all o €k

i8 a z-linear automorphism of the z-space k leaving invariant the trace
space 1l . Hence the map induces a z-linear automorphism of the factor
space k/l , and we shall denote the image of o + 1 in k/1l by

Aor2)n? .
(b) The map Tr : k » 1 defined by

a-»oz+aJ for all o €k

i8 a z-linear epimorphism from k to 1 with kernel s . Hence the map
induces a z-linear epimorphism Tr : k/1 + L , and we shall denote the
image of o+ 1 in k/L by Tr{a+l) .

(¢) The antiautomorphism J of k regarded as a =z-linear
automorphism of the =z-space k induces the identity map on the factor
space k/1 .

DEFINITION 1.2. A J-quadratic form on E is amap q : E » k/L
satisfying:

(i) for all x € E and all X € k ,

qhz) = A ;

(ii) there exists a J-sesquilinear form f on E such that for all

T, Y €t )
flx, y) € qlzty) + qlz) + qly) .

The form f is unique, since if g 1is another such form then f + g

has all its values in 7 , but 1l is strictly less than k and so f + g
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is the zero form. We call this unique form f +the polar form of gq .

LEMMA 1.3. Suppose q is a dJ-quadratic form on E . Then the

polar form f of q 1is trace-valued hermitian, and for all =z € E ,
flz, z) = Tr(q(=)) .
Proof. When %k is a field, f 1is alternating and the result is
trivial, so assume k is not a field. Suppose &« € E and A, y € k , and
put g{x) =a + 1 . Then

Tr (A, wx)) = Tr (e ran? suad)

and so
Tr (Af(z, z07) = Afara? )i + p(o+a? )27

Hence A(f(x, x)+Tr (q(x)) uJ is symmetric for all A, U € k , and so
flz, ) = Tr(q(x)) since s , since 8§ is strictly less than k .
Suppose x, y € E . Then from the first paragraph
Flary, ory) = Tr(qlary)) »
and so

Trig(z)) + Triqg(y)) + flz, y) + fly, )
= Tr{g(x)) + Tr(qly)) + Tr(flz, y))

Hence f@,x)=f®,yﬁ and f is hermitian.

1.4. Degeneracy and defect. One can easily verify that the abelian

group s/l can be regarded as a left vector space over k with the action

of A€k on a+ 1 €sg/l defined to be A(a+Z)AJ . Suppose that ¢ is
a J-quadratic form on E with polar form f . We define the radical
R(E, q) of (E, q) to be the radical of the polar form f . Then the

g-image of R(E) 1is contained in s/l , and in fact the restriction

algeey * RE) » 871

is k-linear when g/l is regarded as a k-space in the above fashion.
The rank of this map is called the defect of ¢q , and the image is called
the defect space of ¢q . The nullity of the map is called the degeneracy
of g , and the kernel is called the kernel of q , K(E, q)
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The forms f and ¢q induce forms ? and E on the factor space E
of E by K(E) in the canonical way, and clearly f is the polar form

of q . We call (E, q) the corresponding non-degenerate space and form.

LEMMA 1.5. (a) Swppose f is a trace-valued J-hermitian form on
E . Suppose {ei | © € I} is a basis of E and suppose

p: le; | © €I} > k/1l is a map satisfying

Trple;)) = fle;, e;) forall ierI.

Then there is a unique J-quadratic form on E extending p with
polar form f , and if f 1is non-degenerate then this form is

non-defective.

(b) Also if s/l 1is regarded as a k-space in the sense of 1.h, then
there is a unique J-quadratic form on E ® (/1) with polar form the
trivial extension of f whose restriction to E extends p and whose
restriction to s/l 1s the identity, and the defect space of this form is
the whole of s/l .

Proof. We prove the first part, then the second part follows easily.

Define the map ¢q : E + k/l as follows: for each element Z A €E,

%2
1€F

where F 1is a finite subset of I ordered arbitrarily by < , define
J J
A.e.| = A.ple.JA. + A.fle., e. )\.+Z]
q[iZF 7 7,] izF zp( 1,) 7 LEJ zf( z? J) d ’

then it is straightforward to verify that g is a J-quadratic form on E
with polar form f . Furthermore any such J-quadratic form must satisfy

the above equation, and so ¢q 1is unique.

1.6 Singular points and spaces. Suppose ¢ 1is a J-quadratic form
on E with polar form f . A vector x € £ is called singular if
q(x) = 0 , and a subspace V of E is called singular if every vector in
V is singular. The Witt index of q 1is defined to be the maximum
dimension of a singular subspace of (E, q) disjoint fram R(E) , that is
the maximum dimension of a singular subspace of (E, E) . We call q

definite if it has Witt index zero, and indefinite otherwise.

A subspace UV of E is singular if and only if
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(a) V is isotropic, and

(b) V nas a basis of singular vectors.
In particular, the Witt index of ¢ 1is at most half the rank of f .

LEMMA 1.7. (a) Swpose q is a J-quadratic form on E with polar
form f . Suppose (el, cees er) is a basis of a finite dimensional

singular subspace of (E, q) disjoint from R(E) . Then we can choose
dl, vees dr € £ such that

(Z) (dl, e, dp) is singular;

(i) fle,, dJ.) =8

(b) If q 1is indefinite and f is not the zero form, them (E, q)

has a basis of singular vectors outside R(E) .

Proof. (a) Since f is trace-valued we can chocse d.

1 ..,drEE

] 1} . . . ] -
such that (dl, e dr) is isotropic and f(ei, dj) = 6113' . For each .

R : —_ ] !
=1, ..., r define di = di +a.e. vhere o € q(di]
(b) Choose e € E\R(E) singular. Choose a basis {xi | ¢ €I} of

i .
¢ with x) = e , and choose y € E\e . Then {y+xi | © €I} u {e}

spans E and is linearly independent, so is a basis of E . For each

i € I the plane (e, y+xi> is an f-non-degenerate subspace of (E, g)
and so by (a) contains a singular vector e, such that fle, ei) =1.

Now {ei | ¢ €I} u {e} is a basis of (E, q) outside R(E) .

1.8 Semi-singular points and spaces. Suppose q is a J-quadratic
form on E with polar form f . A vector x € E is called semi-singular
if q(x) € q(R) , and a subspace V of E is called semi-singular if

every vector in V is semi-singular and V is isotropic.
Thus a subspace V of E is semi-singular if and only if
(a) V 1is isotropic, and

(b) V has a basis of semi-singular vectors.
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If g is non-defective, then semi-singular and singular coincide. If
the defect space of g is the whole of s , then semi-singular and
isotropic coincide. If J # 1 , or if k is a field and ¢g(R) < k , then
a subspace V is semi-singular if and only if every vector of V is
semi-singular (for if every vector of V is semi-singular, then all the

values of f|v lie in the defect space of g which here is strictly less
than %k , and so V is isotropic).

Suppose V 1is a semi-singular subspace of (E, q) disjoint from

R(E) . Choose a basis le; | © €I} of V , and for each i € I choose

t; € R(E) so that Q(ti) = q(ei) . Then the subspace (e +t; l i €I is

singular of the same ‘dimension as V . We conclude that the Witt index of
q equals the maximum dimension of a semi-singular subspace of (E, q)

disjoint from R(E) .

1.9 Hyperbolic planes. Suppose ¢ is a J-quadratic form on £
with polar form f . A hyperbolic pair in (E, q) is a pair (e, d) of
singular vectors such that fl(e, d) =1 . The subspace spanned by a
hyperbolic pair is called a hyperbolic plane of (E, q) . By Lemma 1.6
every f-non-degenerate subplane of (E, q) containing non-zero singular

vectors is a hyperbolic plane.

LEMMA 1.10. (a) Suppose q 1is a J-quadratic form on E with
polar form f . If k +is a field then every hyperbolic plane of (E, q)
contains exactly two singular lines. If k 1is not a field then every
hyperbolic plane of (E, q) contains infinitely many singular lines.

(b) If q <is indefinite and n 2 3 and k is mot GF(2) , then
every line of E outside R(E) 1is the intersection of two hyperbolic

planes.

Proof. If (e, d) is a hyperbolic pair then the line <{et+Ad) is
singular if and only if A € 1 . Part (a) now follows easily. The proof
of (b) is well-known when k 1is a field (Dieudonné [5]) so we assume k

is not a field.
Suppose x € E\R(E) 1is singular. Choose y € £ singular so (z, y)

L
is a hyperbolic pair. Choose 2z €{x, y) , z#0 . Then (x, y) and

{x, y*z) are distinct hyperbolic planes containing (z) .
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Suppose x € E\R(E) is non-singular. Since E has a basis of
singular vectors we can choose y € E singular so f(x, y) =1 . Put

4 4 L
z=x+ flz, x)y , then 2z €x and 2 fy . Choose t €{(z,y)

non-zero, then 2z + t € £ end z+t 3 y1 . By part (a) and the
assumption that X is not a field, the hyperbolic plane (z+t, y)
contains a singular line (e) distinct from both (y) and (z+t) , and
hence not orthogonal to (x) nor in (x, y)>. Now (x, y) and (x, e?

are distinct hyperbolic planes containing {(x) .

2. Unitary groups

Suppose that the division ring k and the vector space E are as in
the first section. Suppose that q is a J-quadratic formon E of Witt

index Vv with polar form f and defect space m .

2.1 Images and multiples of quadratic forms. Suppose k' is a
division ring isomorphic to k% eand E' 4is a left vector space over k' .

Suppose O : k' » k is an isomorphism and X : E' * E is a O~linear map.

Define the involution J' of k' +to be GJc_l; then J' 1is of the

-1
first kind and the trace space I' of k' is 2° . Define the map

& E K/ by
-1
g (z) = q(zx)°

then qX is a J'-quadratic form on E' with polar form the J'-hermitian
1

form fx on E' defined by fx(x, y) = flzx, yX)O

Suppose p € k# . Then right multiplication of k by p is a

z-linear automorphism of k mepping ! to Ip , and K = o Yo is an
antiautomorphism of % . Define the map qp : & » k/Ilp by

go(x) = qlz)p for all =z € E .

If p is symmetric, then X 1is an involution of k of the first
kind with trace space Ip , and ¢gp is & K-quadratic form on E with
polar form fp . Conversely if q is non-zero and qp is an [L-quadratic

form on E for some involution L of k , them L =K , so K is an
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involution and so p is symmetric.

2.2 Isometries. Suppose k' is a division ring with involution
J' , E' is a left vector space over k' and q' is a J'-quadratic form
on E' with polar form f' . A semi-isomorphism X : E' - E with
isomorphism © : k' + k is called a gemi-similarity from (E', q¢') to
(E, q) if

ip =q'
for some non-zero p € k' . Provided g is not the zero form, the element
p is unique and we call it the multiplier of X . By (2.1) the multiplier
is symmetric and is related to 0 by

1,000 %

J' -
=p A p for ell A€k

A
Suppose now that k' = k . A semi-similarity form (E', q') to
(E, q) with identity automorphism of % is called a similarity, and a
similerity with trivial multiplier is called an isometry. We say that the
forms q and q' are equivalent if there exists an isometry from
(E', q') to (E, q) .

2.3 Unitary groups. Define TU(E, q) to be the set of all
semi-similarities of (E, q) , define GU(E, q) to be the set of all
similarities of (E, q) , and define U(E, q) to be the set of all
isometries of (E, q) . Then it is easily verified that TU(E, q) is a
subgroup of the full semi-automorphism group TIL(E) of E , and that
GU(E, q) and U(E, q) are normal subgroups of TU(E, q) .

We call an isometry X of (E, q) finite dimensional if the space
E(I+X) is finite dimensional, and define U(p(E, g) to be the set of all

finite dimensional iscmetries of (E, q) . Then again U(P(E’ q) is a
normal subgroup of TU(E, q) .

We denote the images of these groups in the full collineation group
PTL(E) of the projective space P(E) respectively by PIU(E, q) ,
PGU(E, q) , PU(E, q) and PU(p(E, q) . Every homothety A of E , with

A€ k# , is clearly a semi-similarity of (E, q) with multiplier

()\JA)-l . Hence the intersection of U(E, q) with the group of
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homotheties of E 1is trivial, and we may regard U(E, q) as being
faithfully represented on the projective space P(E) .

Suppose ¢ 1is non-degenerate with defect space the whole of 8/l ,
and let (E, ?) be the space E/R(E) with the canonical non-degenerate
image of f . Then it is straightforward to show that the canonical

epimorphism from E to E  induces an isomorphism

v : TU(E, q) + TU(E, )
carrying GU(E, q), U(E, q) and U¢(E, q) onto GU(E, F), U(E, ) and
U(p(-f, ?) respectively. This and Lemma 1.5 show that unitary groups of

J-hermitian forms over k may be regarded alternatively as unitary groups
of J-quadratic forms over k of maximal defect (ef. Dieudonné [51],
p. 35).

If p € k# is any symmetric element, then gqp is a p—lJp—quadra.tic
form and the various unitary groups of (E, gp) are equal to the

corresponding unitary groups of (E, q) . Now if k is not a field and
p =X+ )\J € Z# , then 1 is a trace with respect to p_lJp , since

- -1, -1,/
o) l)\ + 0 l(p 1)‘) p =1 , hence we may replace q by qp and assume that
1 is a trace. Also when k is a field and q is defective, we may

assume that 1 lies in the defect space of g .

2.4 Cayley parametrization. In this section we construct the usual
parametrization of the finite-dimensional isometries of (E, q) by means
of Cayley spaces and forms. We shall assume the discussion of the process
for sesquilinear forms given in Wa!l [171] and adapt it to J-quadratic

forms in the same way as is done there for quadratic forms over fields.

Suppose that X is an isometry of (E, q) and put X =1+ N . We
define the Cayley space and form (EX’ fX) of X to be the Cayley space

and form of X with respect to the polar form f . We recall then from
[17] that EX is the image EN of N , and fX is the J-sesquilinear

form on EX uniquely defined by

fX(xN, yN) = f(z, y#) for all =z, y € E .
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Then the Cayley form satisfies
J
Fylu, v) + £ (v, w)° = fu, v) for all u, v € E, .

If the Cayley space E_, is disjoint from R(E) , then the Cayley form fX

X
Y
is non-degenerate and the fixed point space ker¥N of X is EX . If EX
is finite dimensional and disjoint from R(E) , and if (el, cees er) is

any basis of EX and (eij) is the inverse of the matrix (f(ei, ej)] of

fX with respect to this basis, then the isometry X can be written

X=1+ e.0..e,
i,g=1 * Y97
meaning
r
xX—x+7’§._ fla, ei)eijej for all x € E .
o=

In our case X satisfies the further condition that g(xX) = q(x)
for all z € E , and so f(x, aF) € q(xN) for all x € E . So the Cayley

form satisfies
fx(u, u) € q(u) for all wu € Ey -
Suppose xN € R(E) . Then f(x, 2N) =0 and so g{xN) = 0 and
xN € K(E) . We conclude that
EX n R(E) = EX n K(E) .
In particular if g is non-degenerate then the Cayley space of X is
disjoint from R(E) .
LEMMA 2.5. (a) Suppose X 1is an isometry of (E, q) with Cayley
space and form (V, g) . Then
(1) glu, v) + g(v, u)J = flu, v) for all wu, v eV,
(2) g(v, v) €q(v) forall v eV,
VnR(E)=VnK(E).
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(b) Conversely suppose g is a non-degenerate dJ-sesquilinear form
on a finite dimensional subspace V of E disjoint from R(E) satisfying
(2). Then there exists a unique isometry of (E, q) with Cayley space and
form (V, g) .

(c) Suppose g 1is a J-sesquilinear form on a subspace V of E
with basis {e; | © € I} satisfying

.) forall 1,5 €1,

g(ei: e;) + g(ej, ei)J = f(e.,;s €;

J

gle;» e;) €qle;) forall 2 €I.

Then g satisfies (1) and (2).

Proof. (b) We first show that g satisfies (1). This follows
easily from (2) when k 1is a field, so we assume Xk is not a field. From

(2) it follows that
Tr(g(v, v)) = flv, v) for all v €V .
If u, v €V and A, y € k then substituting Au + W 1in this equation
gives
oJ J J
Tr (Ag(u, v/ +ug(v, wA’) = Tr(Af(u, v)v’) ,

and so

Af(u, v)+glu, vi+glv, u)J)uJ €8 .

Condition (1) now follows easily. Hence there is a unique isometry X of
(E, f) with Cayley space and form (V, g) (see Wall [17]), and we must

show that X preserves ¢ .

Suppose x € E and put X =1+ N . Then

q(z) + qlaw) + (flz, =¥)+1)
qlx) + (glav, av)+1) + (g(aN, xl)+1)
qlz) .

q(xzXx)

(¢) Condition (1) follows easily by J-sesquilinearity, and the proof

of (2) involves a straightforward expansion of q[tz Aiei wvhere F is a
e

finite subset of I and Ai €k for all % €F .
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LEMMA 2.6, Suppose X is a finite-dimensional isometry of (E, q)
with Cayley space and form (V, g) such that V is disjoint from R(E) .
Suppose (el, Cees € eens es) ig8 a basis of V with respect to which ¢

has the partitioned form

Then X 1is the product YZ , where Y and Z are the isometries of

(E, q) whose Cayley spaces are respectively (el, <ees e, and
(ep+1, -«+s €,) and vhose forms are the corresponding restrictions of g .
2.7 One-dimensional isometries. Suppose a € E\R(E) . Then the

isometries of (E, q) with Cayley space {(a) are all the isometries of
the form

1+ a0 e,

wvhere o € g(a) is non-zero. If k is a field, then either aq is

singular and there is no isometry with Cayley space (a’) , or a is

non-singular and there is a unique isometry 1 + aq(a)-la with Cayley
space (a) . If k 1is not a field, then there are infinitely many

isometries with Cayley space (a) , since the trace space I is infinite.

Suppose P =1 + aa_la is a one-dimensional isometry of (E, q) ,
where a € E\R(E) and a € g{a) is non-zero. If a is isotropic then P
is a transvection of E and we call P a transvection of (E, q) . If a
is non-isotropic then P 1is a dilatation of E and we call P a
quasi-symmetry of (E, q) . Clearly there are quasi-symmetries of (E, q)

if and only if k is not a field and f is non-zero.

WITT'S THEOREM 2.8. Swppose that V and W are finite dimensional
subspaces of E disjoint from R(E) and that X : V+ W <s an isometry
from (V, q]v) to (W, q|w) . Then X can be extended to a finite

dimensional isometry of (E, q) .
Proof (ef. Wall [11], proof of 1.2.1). We prove the theorem by

induction on the dimension of V . Choose x € V# and choose Vl <V so
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that V = Vl ®{(x). Then W = V1X @® (xX) , and by the induction
hypothesis we may assume that VlX = Vl and that X acts trivially on
Vl .
Suppose xX # x (or else the identity map on E extends X ) and put
y =x +xX . Then
L
y €V,

f(.’L‘, y) + f(y’ .7.‘) = f(ya y) s
flz, y) €qly) .
Suppose f(x, y) # 0 . Since f(x, y) € qly) we may define an
isometry T of (E, q) by
-1
T=1+yflx, y) 'y,
and then clearly T extends X .

Suppose f(x, y) = 0 ; then qly) =0 . If y € K(E) , choose U a

complement of (x) in E containing Vl and define an isometry T of
(E, q) by
xXFr=x+y ,
ul = u , for all u € U .
So we assume y f K(E) , and so y f R(E) .

If y fV then x and y are independent modulo Vl , B0 we can

1

choose =z € Vl so thet flx, z) =1 and fly, z) #1 . If y €V then
1

y does not lie in the coset x + Vl since zX § Vl » 80 we choose =z € Vl

so that f(z, 2) =1 and then f(y, z) # 1 . Choose A € q(2) and then

0 1 0 1}Y° ¢ fly, y) Ffly, 2)
+ =
(z, y)*1 A (z, y)¥1 A (z, y) fFflz, =)

Also 0 € qly) , XA € g(z) , and the first matrix is non-degenerate. So
there is a unique isometry T of (E, q) whose Cayley space is (y, 2)

and whose Cayley form is given by the first matrix above with respect to
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the basis (y, z) . Taking the inverse of this matrix and using
flz, y) =0, flz, 3) =1 gives

v1T= vy for all v, € Vl ,

xI'=x+y ,
and so T extends X .

COROLLARY 2.9. Every fimite-dimensional singular subspace of (E, q)
disjoint from R(E) <s contained in a singular subspace of (E, q)

disjoint from R(E) of dimension equal to the Witt index of q .

THEOREM  2.10. Suppose q is non-degenerate and f is not the zero

form.

(a) The centralizer of U¢>(E’ q) in TL(E) <s the growp of
homotheties of E , except for 0(1)(2, 2) , 0(1)(2, h) and 0(3, 2) .

(b) The centre of UCP(E’ q) 1is trivial, except for 0(1)(2, 2) .

Proof. Every isometry of (E, gq) is k-linear and so commutes with
every homothety of E . Conversely suppose X 1is a semi-automorphism of

E centralizing U(p(E, q) . Then X commutes with every one-dimensional

isometry of (£, q) and so fixes every line (x) of E outside R(E)
such that ¢{x) contains a non-zero scalar. When ¢ is definite or k
is not a field, then X fixes every line of E outside R(E) , so as
R(E) < E, X fixes every line of E and is a homothety. When k is not
GF(2) , every hyperbolic plane contains at least two non-singular lines and
so is fixed by X , hence if also n 2 3 and g 1is indefinite, X fixes
every line of E outside R(E) by Lemma 1.10. We shall omit the

remeining cases (see Dieudonné [5], p. 63).
Part (b) follows now since the intersection of U‘P(E’ q) with the

group of homotheties is trivial, except in the three exceptional cases

which we shall omit.

LEMMA 2.11. Swpose g is a non-degenerate J-sesquilinear form on

a left vector space V of finite dimension r over Kk .

(a) If k is a field but not GF(2) , then either g is an
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alternating form or V has a basis wpper triangularizing the matriz of
g .

(b) If k is not a field, then V has a basis upper triangular-
iaing the matrix of g , and unless g(x, x) <is symmetric for all x €V,

this basis can be so chosen that every diagonal element is non-symmetric.

Proof. (1) First we prove by induction on the dimension of V ,
assuming that k is not GF(2) , that if g is non-alternating then the
matrix of g can be upper triangularized. Suppose by way of contradiction
that g 1s non-alternating but cannot be upper triangularized. Then if =«
is any non-isotropic vector of V , it follows by the induction hypothesis
that the restriction of g to the (r-1)-space left orthogonal to z is
alternating and that this space is non-zero (end hence J =1 ). Choose
a € V non-isotropic; then we can choose a hyperbolic pair (b, e¢) in the
space left orthogonal to a , and the matrix of the restriction of g +to

the 3-space with basis (a, b, e} has the form

, where a # 0 .

[oNele]
= O W
or=

We can choose b both left and right orthogonal to a and replace a by
any non-zero multiple of a , so we can assume that B = 0 and (since k
is not GF(2) ) that Y#a . Put x=a+0b and y=a+c , then x
and y are both non-isotropic but y is left orthogonal to x , a

contradiction.

(2) We prove the second part of (b) by induction on the dimension of

V . Suppose then that V contains vectors x so that g(x, x) is
non-symmetric, but g cannot be upper triangularized so that every
diagonal element is non-symmetric. Then if & is any vector of V so
g(x, x) 1is non-symmetric, it follows by the induction hypothesis, that if
y is any vector in the (r-1)-space left orthogonal to x then fl(y, ¥)
'is symmetric, and that this (r-1)-space is non-zero. Choose a € V so
g(a, a) is non-symmetric; then we can choose b non-isotropic in the
space left orthogonal to a , and the matrix of the restriction of g to
the 2-space with basis (a, b) has the form

E; g] , where B8 € s# and o fs .
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We can replace b by any non-zero multiple of b , so we can assume that

B# 1 (if B = 1 choose u € k# so that ou # 1 , and replace b by

ub ) We can replace a by any non-zero multiple of a , so we can assume

that Yy =0 or Yy=1. If Y=0 put z=a+B8 b end y=a+ob ,
then both g(x, x) and g(y, y) liein a + 8 and y is left orthogonal

to x . BSo we assume that y =1 .

#

Suppose A € k' andput z=a+ A and y = a + W where

p = [a()\-l)J+l]B-l . Then y 1is left orthogonal to x and

glz, x) € [a+)\J] +8 ,
gly, y) € [am[)\_l]JB-l] +s,

where we have used §& € iJ +8 for all £ € k. First put A = OLJB-l .

Then g(y, y) is non-symmetric, hence a + 87la is symmetric and so
(18 Ha = o’ (2487)

Secondly, put A =1 . Then g(:c, x) is non-symmetric, hence o + aB-l

is symmetric and so
a(1+87) = (1+871)o .

Combining these gives the result that @ commutes with 1 + 6_2 .
Thirdly, put A =B . Then g(z, ) is non-symmetric hence a + a8-2 is

symmetric. But o commutes with [l+8—2] , 80 1+ B2-0 and B=1.
This contradicts the construction of b .

THEOREM 2.12 (ef. Dieudonné [4]). Suppose q <is non-degenerate,
and suppose X is a non-trivial isometry of (E, q) with Cayley space V
of finite dimension r .

(a) If k 1is not a field, then either V <8 non-igotropic and X
ig the product of r quasi-symmetries of (E, q) and no fewer, or V dis

isotropic and X 1is the product of r + 2 quasi-symmetries and no fewer.

(b) (Dieudonné [4], Theorems 6 and 7). (%) If k s a field but
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not GF(2) , then either V <is non-singular and X is the product of r
transvections of (E, q) and no fewer, or V 4is singular and X is the
product of r + 2 transvections and no fewer.

(i1) If k is GF(2) then X 1is the product of transvections of
(E, q) , except that if n=4 and v =2 then X <is the product of

transvections and 2-transvections With singular Cayley space.

Proof. (a) If V is isotropic, choose « € E non-isotropic, choose

a €qlx) and put P =1+ 2o Yz . Then the Cayley space of XP is

V®(x) of dimension » + 1 , so we can assume V is non-isotropic. Then
the Cayley space V of X contains vectors v so that g(v, v) is not

symmetric (where g 1is the Cayley form of X ), and so by Lemma 2.11 we

can choose a basis [el, e er) of UV wupper triangularizing g so that
g(ei’ ei) is not symmetric, for all < . Now by Lemma 2.6,
_ -1 -1
X = [1+elg(el, el) el] cet (1+erg[er, e,) er]

is the product of r quasi-symmetries.

(b) Part (b) is proven in Dieudonné [4] (the case when k is not
GF(2) follows easily from the previous lemma).

3. A simple subgroup of the unitary group

Suppose that the division ring k and the vector space E are as in
the first section. Suppose that g 1s a non-degenerate indefinite
J-quadratic form on E of Witt index Vv with polar form f and defect
space m , and if k 1is a field suppose that E has dimension at least
3 . Suppose that 1 is a trace when k is not a field and that 1 1lies

in the defect space when ¢q 1is defective and k is a field.

We shall define a normal subgroup of TU(E, q) inside Uw(E, q)
which coincides with the commutator subgroup QE, q) when k is a field
(except for 0(3, 2) , 0(2)(h, 2) and 0(5, 2) ), and prove the

simplicity of this group (except for 0(3, 2) , 0(5, 2) and 0(2)(h, k)
vhen k is a field).

3.1 Transvections and quasi-transvections. We recall that an
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r-transvection of E is an automorphism P of E whose Cayley space has
finite dimension r and is centralized by P , and that transvections are
l-transvections. A singular r-transvection of (E, q) is an
r-transvection of (£, q) whose Cayley space is singular. Thus a singular

transvection P can be written
P=1+eadte,
# . . # .
where e € E' is singular and o € 1" . Clearly (E, gq) has singular

transvections if and only if Kk is not a field.

A semi-singular r-transvection of (E, q) is an r-transvection of
(E, g) whose Ceyley space is semi-singular. Thus a semi-singular

transvection P can be written
_ -1
P =1+ (eta)a (eta) ,

where e € E# is singular, a € R(E) and a € g(a) is non-zero. Every
singular transvection is a semi-singular transvection, and (E, ¢) has

non-singular semi-singular transvections if and only if g is defective.

A quasi-transvection of (E, q) 1is a two-dimensionel isometry P of
(E, q) of the form

P=1+e0g +ea+ a,
# o . L
where e €L is singular, a € e is isotropic and independent modulo
R(E) of e , and o € gqla) . Thus a quasi-transvection is a

2-transvection of (E, q) and has order 2 . Clearly (E, ¢) has

quasi-transvections if and only if the Witt index of f 1is at least 2 .

If P is a semi-singular transvection of (E, g) , then by replacing

e by oeg in the expression for P sabove, we can write P as

P=1+¢0eg +ea+ a ,

vhere e € E# is singular, a € R(E) and a € g(a) is non-zero.

If k is a field then every singular 2-transvection is a

quasi-transvection, but when % is not a field there may be singular

2-transvections which are not quasi-transvections.

DEFINITION 3.2. fhe set of singular transvections, the set of
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semi-singular transvections, and the set of quasi-transvections is each a
normal subset of TU(E, q) and so each generates a normal subgroup of
TU(E, q) inside U¢(E, q) . We define the normal subgroup 7(E, q) of

Tu(E, q) to be the subgroup of Uw(E, q) generated by 2ll singular

transvections, semi-singular transvections and quasi-transvections of

(E, q) . Once it is shown that T(E, q) is simple it will follow that
each of the three sets is either empty or generates T(E, g) . However,
the proof of this need not be so indirect; in particular quasi-
transvections are fairly readily shown directly to be products of
semi-singular transvections whenever these last exist. Our definition is

intended to show the unity amongst the various cases.

LEMMA 3.3. (a) If an automorphism X of E fizes every singular
tine of (E, q) then X <is a central homothety, except when k is

quaternionic and n = 2 .

(b) The group T(E, q) <is faithfully represented as a permutation
group on the set of singular lines of (E, q) .

Proof. (a) 1If k is GF(2) then by Lemma 1.6, X fixes a basis
of E and so is trivial. If k is not GF(2) and n = 3 , then since X
fixes every hyperbolic plane of (E, q) , X fixes every line of E
outside R(E) by Lemma 1.9 and so X fixes every line of E and is a

central homothety. So we assume 7 = 2 and so k 1is not a field.

Choose a hyperbolic basis (e, d) of (E, gq) ; then a line (e+Ad)
where A € k¥ 1is singular if and only if X € 7 . Since X fixes both
(e) and (d) we may put

eX = oe ,

dx = Bd ,

where o, B € k# . Foreach X € 1, X fixes the line ({(e+Ad) and so

B = alod . we have assumed 1 is a trace and so o =B , and thus o
commutes with every trace of k . HNow when k is not quaternionic, the
traces generate k and so & 1lies in the centre of k as required.
However when Kk is quaternionic then 7 coincides with 2z and the

condition is vacuous, and in fact every automorphism of & defined by
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e > 0e and d -+ oad,where o € k#, fixes every singular line of (E, ¢q) .

(b) We assume n =2 and k is quaternionic, for otherwise the
result follows from the first part. Choose a hyperbolic basis (e, d) of
(E, q) ; then every singular transvection P of (E, g) has the form

1+ (Ae+ud)g(de+pd) ,

where A, y € 3 and ;ez#. Now

eP = (1+pgdle + woud ,
dP = Aghe + (L+Azu)d ,

and so T(E, q) fixes the set of all 3z-~linear combinations of e and
d . Hence again by the first part, the only isometry of (&, q) in

T(E, q) fixing every singular line of (E, ¢q) is the identity. (This
argument is a very special case of the Wall norm to be introduced in the

next chapter. )
LEMMA 3.4. (a) Suppose (e, d) is a hyperbolic pair in (E, q) ,

suppose a € (e, d) is isotropic (possibly zero) and suppose o € qla)

is non-zero. Then T(E, q) contains the isometry X of (E, q) defined

by
eX = ad ,
& =qa e,
-1 L
xX =z + (z, a)a “a forall x €{e, d) .
(b) Suppose A € k# 18 a product of an even number of elements
IS
o € k" such that o € qla) for some isotropic vector a €f{e, d) . Then

T(E, q) contains the isometry with Cayley space (e, d) defined by
eX = e ,
a = (4.
(Note that the restriction "even number" is relevant only when k is

a field and ¢q 1is nondefective, for otherwise we have assumed that 1

lies in the defect space.)
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Proof. It will suffice to prove the first part. Define isometries P

and @ , generators of T(E, q) by

1

P=1+c¢gq e+ e{a_la) + (ot_la]e s

Q=1+dod + da + ad .
Then PQP 1is the required isometry in T(E, q) .
LEMMA 3.5. (a) Suppose V and W are singular subspaces of
(E, q) so that V + W <s non-degenerate with respect to f . Then every

transveetion of V can be extended to a singular 2-transvection of

(E, q) with Cayley space in V + W .

(b) Every automorphism of V <in the group SL(V) generated by
transvections of V can be extended to an isometry in T(E, q) with
Cayley space in V + W .

Proof. It will suffice to prove the first part. Suppose T =1 + €¢

is a transvection of V , where e € V# and € 1is & non-zero linear form
on V annihilating e . Choose d € W so that for all v € V ,

flv, d) =(v, €) . Then the singular 2-transvection P =1 + ed + de
extends T .

LEMMA 3.6. (a) For every finite r =v , the growp T(E, q) acts
faithfully on the set of singular r-subspaces of (E, q) .

(b) For every finite r = v , the group T(E, q) acts transitively
on the set of singular r-subspaces of (E, q) , except possibly when
r=v and n=2v and k is a field (in this case the set divides into

two orbits under T(E, q) , see Dieudonné [5]).

{c) For every finite r < v - 1 , every isomorphism between two
singular r-subspaces of (E, q) can be extended to an isometry in
T(E, q) .

Proof. (a) Suppose X € T(E, q) fixes every singular r-subspace of

(E, q) , and suppose e € E# is singular. Extend e to a basis

(el =e, €5 -0 er) of a singular »r-subspace of (E, q) containing
e , and choose & complementary set (d s cees dr) according to Lemma 1.6;

then (e) is the intersection of the two singular r-subspaces
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(el, e.5 e,) and (e, d,, ""dr) of (E, q) and so is fixed by X .

So X fixes every singular line of (E, g) and so by 3.3 is trivial.
(b) We prove transitivity by induction on r . Suppose V and W

are singular r-subspaces of (E, g) ; then by the induction hypothesis we

may assume that V n (0 has dimension » - 1 and put

V= (Vl)B<(e),

w

(V) ®(a> .

If e¢ and d are orthogonal, then V + W is a singular (r+l)-space and
the result follows by Lemma 3.5 (since for any vector space E , the
transvection subgroup SL(E) is transitive on the set of all r-subspaces
of E , for all finite » < @mf ). If e and d are not orthogonal
then the result follows by Lemma 3.4, provided that either the trace space

is non-zero, or we can choose an isotropic non-singular vector a in

L
(V+¢) . This is always possible except when k 1is a field, » =V and
n=2v .

(c) Choose X € T(E, q) sothat VX =W and choose a singular
(r+1)-subspace U of (E, q) conteaining W . Now the result follows by
Lemma 3.5, since for any vector space E every isomorphism between two
r-subspaces of E can be extended to an automorphism in the transvection
subgroup SL(E) , for all finite r < dimE - 1 .

LEMMA 3.7. (a) The stabilizer in T(E, q) of a singular line (e)
of (E, q) 1is tramnsitive on the singular lines of (E, q) not orthogonal
to it.

(b) Suppose v = 2, and if k 118 a field suppose n =2 5 . Then the
stabilizer in T(E, q) of a singular line (e) of (E, q) is transitive

on the remaining singular lines of (E, q) orthogonal to it.

(e) The group T(E, q) acts doubly transitively on the singular
lines of (E, q) if and only if v = 1. Unless perhaps k 18 a field
and n=V4 and v =2, the grow T(E, q) acts primitively on the
singular lines of (E, q) .

Proof. (a) Suppose (x) and (y) are distinct singular lines of
(E, q) not orthogonal to (e, and suppose fle, z) = fle, y}) =1 . Then
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L
x+y €e and flx, y) € glz+y) , so we may define the isometry
P=1+eflx, yle + elzty) + (z+yle ,

a generator of T(E, q) (P is a singular transvection if x +y €{e) ,
a semi-singular transvection if x +y € (e)+ R(E) , and a Quasi-

transvection otherwise). Now eP = e and xP = y as required.

(b) Suppose (x) and (y) are distinct singular lines of (E, q)
distinet from and orthogonal to (e} . Choose X € T(E, q) such that
(e, x)X¥ ={e, y) by Lemma 3.6. Choose an automorphism T of (e, y) in
SL{e, y? such that eXl = e and xXT € {y) , and extend by Lemma 3.5 to
an isometry Y of (E, q) in T(E, q) . Then XY is the required

isometry.

(¢) It follows now that T(E, q) is doubly tramsitive if and only if
V=1 . Suppose then V = 2 , and suppose that A is a set of singular
lines of (E, q) of order at least 2 such that for all X € T(E, q) ,

AX=A8 or AXnb=¢.
Choose (e) in A , choose d € E so (e, d) is a hyperbolic pair, and
L
choose a € (e, d) singular and non-zero.

If A contains a singular line not orthogonal to (e) , then A4
contains all singular lines not orthogonal to (e} by part (a) and so
contains (d) . Again A contains all singular lines not orthogonal to
(d) and so contains f(e+a) . But {(e+a’) is orthogonal to and distinct

from (e) .

If A contains a singular line orthogonal to and distinct from (e} ,
then A contains all such singular lines by part (b) and so contains
(a) . Again A contains all singular lines orthogonal to {(a’) and so
contains (d) . But (d) is not orthogonal to (e).

The order of A is at least two, so A contains all singular lines
of (E, q) . So T(E, q) acts primitively on the singular lines of
(E, q) .

LEMMA 3.8. (a) Suppose k is not GF(2) . Then every singular
transvection, non-singular semi-gingular transvection and quasi-

transvection respectively is the product of two commuting singular

https://doi.org/10.1017/5000497270004497X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270004497X

216 William M. Pender

transvections, non-singular semi-singular transvections or quasi-

transvections respectively, conjugate in T(E, q) .

(b) The growp T(E, q) tis perfect, except when k is GF(2) and

n=3, n=5,0r n=4 and v =2.
Proof. (a) Let the isometry P in question be written

P=1+e¢0e + ea + ae ,

n
where e € E# is singular, a € e is isotropic, a € g(a) , and

a=0 and a # 0 {singular transvection), or

a € R(E)# (noﬁ—singular semi~singular transvection), or

a ¢t (e, R(E)) (quasi-transvection).

When oo #0 or 1 ,put A=a . When =0 or 1 and k is not
a field, choose )\GZ# so that A # 1 . When =0 or 1 and k is a

field, choose A € k# so that A # 1 . By Lemma 3.4 we can choose
X € T(E, q) so that

(when k is a field then n = 3, so we ean choose D € eL non-singular,
then A° = q(B—lb)q(}\b) where B = qg(b) ; when k is not a field then
already A €q(a) ). Put = (3%+1)™1; then W #0 or 1 and
)\211 +u=1, Also A, g and 0 commute in pairs, and are symmetric.
Define the isometry @ in T(E, q) by
Q=1+ (vela(ue) + (ve)a + a(ye) ,

then

Q¥ = 1+ (1+)ea(i+n)e + (1+nea + a(l+ule .

Now & and QX commute, and are isometries of the same type as P
(singular transvections, etc). Finally, QQX =P.

(b) When k is not GF(2) , the first part shows that every
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generator of T(E, q) is itself a commutator of elements of T(E, q) , and
so T(E, q) is perfect. When %k is GF{2) , the exhibition of the
quasi-transvections and the semi-singular transvections as commutators of

elements of T(E, q) is more complicated, and we shall omit it.

THEOREM 3.9. The growp T(E, q) is simple, except possibly when k
is GF(2) and n=3 or n=5 and when k is a fieldand v =2 and

n =4 (when in fact T(E, q) <s not simple, see Dieudonnd [5]).

Proof. By a lemma of Iwasawa [7] (see also Huppert [6]) a permutation

group is simple if
(i) it is perfect, and
(ii) it is primitive, and
(iii) the stabilizer of a létter has a soluble normal subgroup whose

normal closure in the whole group is the whole group.

Except in the cases excluded, we have proved that T(E, q) is faithfully
repredented as a permutation group on the singular lines of (E, gq) (Lemma

3.3) and as such is primitive (Lemma 3.7) and perfect (Lemma 3.8).

Suppose (e} is a singular line of (E, q) and let N be the set of
all isometries of (E, q) of the form

Pla, @) = 1 + ee + ea + ae

L
where a € ¢ and a € g(a) . Then
P(a, o).P(b, B) = P(a+b, a+B+fla, b)) ,

P(a, a)-l = P(aa aJ) >

and so N 1is a subgroup of U(E, q) , clearly a normal subgroup of the
stebilizer in U(E, q) of {e) . Furthermore

[P(a, a), P>, 8)] = P[0, T(fla, b)) .
and so the commutator subgroup of N is a subgroup of the abelian group of
all singular transvections of (£, ¢) with line (e); so N is soluble.

Hence N n T(E, q) 1is a soluble normal subgroup of the stabilizer of
(e) in T(E, q) (in fact N = T(E, q) , but this fact is not necessary
here). Since T(E, q) is transitive on the singular lines of (E, q) ,
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the normel closure of N n T(E, q) in T(E, q) 1is the whole of T(E, q) .

So by Iwasawa's Lemma, T(E, q) is a simple group. //

COROLLARY 3.10. The set of singular transvections, the set of
non-singular semi-singular transvections, and the set of quasi-

transvections are each either empty or generating sets of T(E, q) .

Proof. The result is trivial when T(E, q) is simple, and trivial in
all the exceptional cases except when k is GF(2) and n =5 . This
case is easily settled by direct calculation.

4. The Wall norm

Suppose that the division ring k and the vector space & are as in
the first section. Suppose that ¢ 1is a non-degenerate definite or
indefinite J-quadratic form on E of Witt index Vv with polar form f
and defect space m . Suppose that 1 is a trace when k is not a field
and that 1 1lies in the defect space when ¢ 1is defective and k is a
field.

Denote by A the multiplicative group of the division ring k .
J
Denote by Y +the subgroup of A generated by all non-zero norms AA

with A € k# ; then ¥ is normal in A , since if Y € A then
oy = ) [u—l)\]J.uJu € ¥ . Denote by I the subgroup of A

generated by the non-zero elements o € k# such that o + 7 1lies in the
defect space of g ; then I is a normal subgroup of A . Also I
contains ¥ , unless k is a field and g is non-defectjve, wvhen I is
trivial.

Suppose that w is any (possibly zero) vector of E , and denote by

Qw the subgroup of A generated by all elements o € k# such that

L
o € q(a) for some vector a €w ; then Qw is a normal subgroup of
and contains L . Hence the commutator subgroup [A, Qw] is normal in A

and is contained in Qw . When q 1is indefinite, denote by & the

subgroup of A generated by all a € k# such that a € g(a) for some
vector a € E orthogonal to some hyperbolic plane of (E, q) ; then &
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coincides with Qe for every singular vector e € E# .
We shall extend the norm introduced by Wall [10] to the present case
and construct a homomorphism Nw : Uw(E, q) ~ A/ZW[}, Qw] which coincides

with the spinor norm when k 1is a field and ¢q is non-defective and with
the Wall norm when the defect space is the whole of & ; then we shall use
it to determine the structure of the factor group of U¢(E’ q) modulo

T(E, q) . Much of the argument is identical to the corresponding argument
in [10] and will be omitted.

4.1 w-bases. A w-basis of a finite dimensional subspace V of E

is a basis [el, cees er) of V satisfying:

. i
for each Z =1, ..., r» either e; €w or f(ei, w) =1.

LEMMA 4.2. Suppose that P 1is a finite dimensional isometry of
(E, q) with Cayley space and form (V, g) . Suppose that (al, cees ar]

and {bys ---» br) are two w-bases of V upper triangularising g , so

that
% By
AY * \\ *
gl v=| and [g) - \
[ai) 0 \\ (bi) 0 \‘
\a B
r / r

Then the elements ail ceva and Bil e B;l are equal modulo
¥[a, 9] -

Proof. When k 1is a field, this follows from the invariance of the
discriminant of g modulo ¥ (notice that in this case A/Y has exponent

2 , so the inverses in the last sentence are irrelevant).

When k is not a field, the proof is identical, line by line, to the
proof of the corresponding Lemma 5 in Wall {10].

DEFINITION 4.3. Ve define amsp N, from U (E, q) to a/e¥[a, o ]

as follows:
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(i) define Nw(l) =1 ;

(ii) when k 1is a field and P ¢ U(p(E, q)# , define

Nw(P) = (aiscrg)I¥[a, Qw] ;
(iii) when k is not a field and P € U‘P(E" q)# » define

N, (B) = flays a)™h ol fole,. a)TiEY[s, 0],
where (al, cees ar) is any w-basis of the Cayley space of P
upper triangularizing f? .
Then by Lemma 4.2 and Lemms 2.11, Nw is well-defined on every
element of U¢(E, g) . We call Nw the Wall norm on U‘p(E, q) with
respect to w , and prove in the following theorem that Nw is a

homcmorphism. (When % is a field and g is non-defective it is well
known that there is another norm involvéd, the Dickson norm
D: 0¢(E, q) » 22 . For every P € qu(E’ q) , D(P) is defined to be the

parity of the Cayley dimension of P ; then P 1is an epimorphism whose
kernel is denoted by SO(E, q) . The following proof that Nw is a
homomorphism shows also that D is a homomorphism, except that 0(2)(h, 2)
must be treated separately. See Dieudonné [5].)

THEOREM 4.4. The Wall norm Nw : U‘P(E’ q) »> A/Z‘P[A, Qw] i8 a
homomorphism.

Proof. (A) When k is GF(2) the factor group is trivial, so we
may assume that U(E, q) is not 0(2)(14, 2) and that U(p(l:', q) is

generated by transvections when k is a field and by quasi-symmetries when

k is not a field (Lemma 2.12). So it will suffice to prove the following:

"Suppose X is a finite dimensional isometry of (E, ¢q) and P
is a transvection or quasi-symmetry of (E, q) according as k

is or is not a field. Then

Nw(PX) = Nw(P)Nw(X) ",
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Put P =1+ aa_la , where a € E# is isotropic or non-isotropic according

as k is or is not a field, and f(a,w) =0 or 1, and o € gqla) .
Then Nw(P) = (x—lZ‘i’[A, Qw] . Let (V, g) be the Cayley space and form of
X .

(B) Suppose a § V + R(E) . Choose [al, cees ar] , any basis of V

(when % 1is a field) or any w-basis of V upper triangularizing g

(wvhen k 1is not a field) and put
[gl =4 or [g]-= N

- _ -1 -1
So Nw(X) = detd or Nw(X) =a;” ... @, modulo zy[a, Qw] . By Lemma

2.11, the Cayley form of PX has the form

o
#
td - ol = |
f = |71 T 7| or R
Px- O: 4 PX- .
o
T
So N (PXx) = o(detd) or N (PX) = oc—lot-l a—l , modulo ZI¥[A, © .
w w 1 r
So Nw(PX) = Nw(P)Nw(X) .

(C) Suppose a € V+ R(E) . Put a=Db + t where b € v and
t € R(E) and suppose first that b 1is not g-isotropic. Then we can

complete b to a w-basis (b, Ay ees ar) of UV so that g has the

form
o
[ 02 *
[gl=]"7" " 7| or Igl= AN ,
or 4 0
a
P
-1 -1 -1
where (o#B) + 7 € m . So Nw(X) = B(detd) or B a, - @ modulo
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Z‘Y[A, Qw] . Let Y be the isometry with space (a ar) and form

STIRER
the corresponding restriction of g ; then X = [1+b8'lb)y .
_d _ _ ~1,~1
When B =0 then t =0 and PX =Y, also o B €Y and so

N (PX) = N_(PIN_(X) . Wnen B8 # o/ then

X = {1+(a+>\t)a—l(u+8+f(a, a)]B—l(a*r)\t)IY s

where A = B{a+B+f(a, a))_l(a+f'(a, a))B"l . Now
o Ha+Bfla, @))871 € aT'BTIE and again N (PX) = N_(PIN_(X) .

(D) Suppose now that g(b, b) = 0 so that b is singular. Hence
#

a 1s isotropic and by assumption k 1is a field, also a € m and so
Nw(P) =1 . Choose ¢ €V sothat gle, b) =1 and g(b, e) # 0 , and

complete (b, ¢} to a basis (b, e, ass ...,ar] of V so that g has

the form

where B =1+ f(b, ¢) and v =gqg{(e) . So Nw(X) = R{detd) modulo

Z‘P[A, Qw] . Let Y be the isometry with space (a3, -5 @,) and form

-1, -
the corresponding restriction of g ; then X = (1+bYR “b+betceB lb)Y and
so

PX = (1+b (8™ a8 beb (c+a'lt)+(c+a'lt]8"lb}y .

Hence the matrix of the form of PX with respect to the basis
b, et Y, a, ..., a is
3 b 3’ 3 r

o B,
~1

= }-Yia-..&__‘
[fPX] o | 4

and so Nm(PX) = Nw(X) as required.
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THEOREM 4.5. Swppose q 1is indefinite and e € e is singular. If

k is not a field or if q 1is defective, then the Wall norm Ne 18 an
epimorphism with kernel T(E, q) and so

U¢(E, q)/T(E, q) = 8/Z[4, Q] .
If k is a field and q is non-defective then the restriction of the Wall

norm (spinor norm) to SO(E, q) 1is an epimorphism onto A/Y , and if

n = 3 this restriction has kermel T(E, q) and
0¢(E, q)/T(E, q) = (A/¥) x Z, .

Proof. (A) The final isomorphism follows from the earlier statements
since the factor group of 0¢(E, q) modulo the intersection of SO(E, q)
with kernel of the spinor norm has exponent 2 .

Choose (e, d) a hyperbolic pair in (E, q) ; then for all X € A

the isometry 1 + (A_le+d)A(X-le+d) has Wall norm AZ¥[A, 2] with respect
to e . When Xk is a field and ¢q is non-defective, the product of this

isometry with 1 + (e+d)(e+d) 1lies in SO(E, g¢) and has spinor norm AY .

When k 1is not a field then T(E, q) is generated by semi-singular
transvections, and it is clear that each of these has trivial Wall norm.
When k 1is a field every semi-singular transvection and quasi-transvection
has trivial Wall norm, and if also ¢q is non-defective, every quasi-

transvection lies in SO(E, q) , having dimension 2 .
It remains to show that the kernel of Ne , intersected with SO(E, q)

in the case when k 1is a field and q is non-defective, lies in
T(E, q) .

(B) For eall xek#, A # 1 , we calculate the Wall norm with
respect to e of the isometry P with Cayley space (e, d) defined by

eP = Xl ,
®=(0Ya,

by using the w-basis (a, b) of (e, d)> upper triangularizing the
Cayley form of P , where
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a=("Y41)e + 4,

b= (A+l)e +d .

=1\J
Now P =1 + e((A 1) +1]d + d(A1l)e and so with respect to this new basis

7 - () (1) ta *

-1
0 1+[(A‘1)J+1] (/+1)
Hence Ne(P) = AZY¥Y[A, Q] (after calculation).
Suppose the rank of f is 2 , so that I¥[A, Q] =Z¥ . If P 1lies
in the kernel of Ne , and also in SO(E, q) 1in the case when k is a

field and ¢ 1is non-defective, then we can choose X € T(E, q) by Lemma
3.7 so that PX fixes both (e) and {(d) . By the above calculation and
Lemma 3.4, it follows that PX and hence P 1lies in T(E, q) as

required.

(C) The proof when the rank of f is greater than 2 can now be
followed in Wall [70], §5. We have already proven (a) in Lemma 3.7. The
proof of (B) given on page 210 will suffice when a 1is non-isotropic;

wvhen a 1is isotropic thern o is symmetric and so
ot (A_I)J € q(k—la_la) . So by Lemma 3.4 we can choose @ € T(E, q)
with Cayley space in (e, d) so that

e@ = a0 e

dg = Yara la s

and then by part (B),

Né*(Q) = k-la—l[)\_l)‘]az =[A, ol .

Finally in the proof of the theorem from (o) and (B) on page 208, it

will suffice to express R as any product of one-dimensional isometries

. 2 .
rather than as a semi-direct product (the exceptional case 0( )(h, 2) is
generated by transvections and singular 2-transvections, but the singular

2-transvections already lie in T(E, q) ).

COROLLARY 4.6 (a) (ef. Dieudonné [2] and [3], §13). If the Witt
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index of q 18 at least 2 , then the factor group of Uw(E, q) modulo
T(E, q) 1is abelian.

(b) (ef. Seip-Hornix [8], 9.5 and Dieudonné [2], §15). If k is a
quaternionic division ring and n =2 and q is indefinite, then the
factor grouwp of U(E, q) modulo T(E, q) <is isomorphic to the factor

group of A modulo the multiplicative group of z , and so is not abelian.

(e) (ef. Wall [10], Theorem 2, and Seip-Hornix [§], 11.4 and Remarks)
If k is a finite dimensional algebra over =z and q <s indefinite and

n = 3, then the factor group of U¢(E, q) modulo T(E, q) has exponent
2 and so is abelian.

Proof. We need only prove part (¢) when Xk 1is not a field - the
argument is the same as Wall [10], part 2, and involves showing that
A/Z[A, Q] has exponent 2 . Choose a € E non-singular orthogonal to
some hyperbolic plane of (E, q) and choose o € q(a) ; then o f I .
Then the spaces 03 + L and & have z-dimensions 1 + %m(m-1) and

Em(m+1) respectively, and § contains every non-zero element of az + L .
Suppose U € A . Since the z-dimension of k& is only m2 , the
spaces u(az+l) and s intersect non-trivially. Choose pX in this

J J
intersection; then YA = A'p and so
-1 -1y 2 -1.J. J
(T e = AT W
Also the spaces As and s both have z-dimension %m(m+l) , so we can

R . J
choose Av non-zero in the intersection. Then Av = vA and so

O = e

Since X €  , we conclude that u2 € I[A, Q) and so I[A, Q] has
exponent 2 .
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