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Classical groups over division rings

of characteristic two

William M. Pender

The notion of quadratic form over a field of characteristic two

is extended to an arbitrary division ring of characteristic two

with an involution of the first kind. The resulting isometry

groups are shown to have a simple normal subgroup and the

structure of the factor group is calculated. It is indicated how

one may define and analyse all the classical groups in a unified

manner by means of quadratic forms.

Introduction

Suppose k is a division ring, commutative or not, of characteristic

two with an involution J of the first kind (that i s , J is an involutory

or t r ivial antiautomorphism of k fixing every element of the centre z

of k ). It is well-known that the definition of the classical groups over

k is more complicated than over other types of division rings. Firstly in

division rings of characteristic not two or with involutions of the second

kind, every symmetric element is a trace (a trace is an element of the form

X + X ) , but in k there may be symmetric elements which are not traces -

this is certainly the case when k has finite dimension over z . The

classical groups over k are always defined in terms of trace-valued

hermitian J-sesquilinear forms (hermitian forms / such that fix, x) is

a trace for al l x in the space) because the isometry groups of

non-trace-valued hermitian forms can always be described in terms of

trace-valued forms (Dieudonne [5]).
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192 WfI Ii am M. Pender

Furthermore i f k i s a field then symmetric b i l inea r forms wi l l give

only the symplectic group, and to define the orthogonal group one must use

quadratic forms, each of which is associated with a trace-valued symmetric

b i l i n e a r form but not determined by i t . This quadratic form may be

defect ive, tha t i s i t may be non-degenerate but have a degenerate symmetric

b i l i n e a r form associated with i t . The symplectic groups over k may be

regarded as defective orthogonal groups where the defect i s as large as

possible (Dieudonne [5 ] ) .

The purpose of t h i s paper is t o investigate new c lass ica l groups which

a r i s e in the case when k i s not commutative as the isometry groups of

J-quadra t ic forms over k . A J-quadratic form is a map from a vector

space over k t o the factor group of k modulo the 2-space of t races of

k , and has associated with i t a trace-valued hermitian t7-sesquilinear

form. As i s the case for f i e l d s , these forms may be defective and the

usual unitary groups over k (defined in terms of trace-valued hermitian

e7-sesquilinear forms alone) may be regarded as isometry groups of

J-quadrat ic forms whose defect is as large as possible .

All the c l a s s i ca l groups may be defined in the same way as isometry

groups of e/-quadratic forms i f th is notion i s extended to involutions of

the second kind and division rings of charac ter i s t ic not two using

skew-traces (elements of the form X - \ J as well as t r aces . The

development of the s t ruc tu re theorems given here over k does not use

arguments e s sen t i a l ly depending on charac te r i s t i c two, and can easi ly be

extended to give a unified account of a l l the indef ini te c lass ica l groups.

When every symmetric element i s a t r a c e , however, the quadratic form i s

completely determined by the associated sesquil inear form, in fact for

symplectic groups over f ie lds of charac te r i s t ic not two the quadratic form

i s t r i v i a l and the def ini t ions must be reworded in terms of both forms.

The idea of a ^-quadrat ic form was f i r s t developed over a

quaternionic division r ing (in which the trace space may be taken as the

centre) by Seip-Hornix LSI, so that her treatment of Clifford algebras over

quaternionic divis ion rings would not be r e s t r i c t ed by cha rac te r i s t i c . The

p o s s i b i l i t y of general izing Seip-Horn i x 's definit ion i s mentioned by Tits

in [9] but without explanation. The algebraic groups he there denotes by
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D and D are said to correspond to isometry groups of non-

defective (/-quadratic forms of Witt index r over a division ring of

f ini te dimension a over the centre.

We shall prove the fundamental structure theorems in the case when the

Witt index i s non-zero and k i s commutative or non-commutative. That is

we shal l prove that a certain normal subgroup of the isometry group is

simple, and produce a norm on the isometry group which determines the

structure of the resul t ing factor group. Theproof of simplicity follows

the method of Iwasawa [7] and the construction of the "Wall norm" i s a

simple extension of Wall's paper [70] using the same arguments. The

arguments concerning GF(2) are often omitted, and can usually be found in

Dieudonne [5] .

Preliminaries on division rings

With the division ring k as before, i t i s clear that both the set s

of symmetric elements and the set Z of trace elements form vector spaces

over s . Also the map Tr : k •*• k mapping each X € fc to X + X is

s-l inear with kernel s and image I , hence the s-codimension of e
2

equals the 3-dimension of I . When k has f in i te dimension m over

s , then s has dimension %m{m+l) and so I has dimension ^n(m-l) .

When k has inf in i te dimension over z i t i s easily shown that I also

has inf ini te dimension.

T a
The trace space i s closed under inverses, since i f ct = X + X € Z

then a"1 i s symmetric and so a" X(of ) + a" A(cf ) = a" € I .

When 1 i s a t race similar arguments show that every norm XX i s a trace

and that I i s closed under the operation of squaring. Also when 1 is a

t r ace , e i ther k i s generated by i t s traces or the trace space coincides

with the centre (the analagous theorem for symmetric elements is proven in

Dieudonne [2] ) . For then the division subring k' generated by I i s

invariant under a l l inner automorphisms of k , since i f a € I and

U € k then U^au = j u " ^ ^ " 1 ) (l/u) € k' . Now by the Cartan-Brauer-

Hua Theorem (Brauer [ / ] ) , k' i s ei ther z or k .
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1. Quadrati c forms

Suppose It is a commutative or non-commutative division ring of

characteristic two with an involution J of the first kind. Let z be

the centre of k and let s and I be the vector spaces over z formed

respectively by the symmetric elements of k and the trace elements of

k . Suppose E is a left vector space of finite or infinite dimension n

over k .

LEMMA 1.1. (a) For each X € fe# , the map k -* k defined by

a -*• XaX for all a (. k

ie a z-linear automorphism of the z-spaee k leaving invariant the trace

space I . Henae the map induces a z-linear automorphism of the factor

space k/l , and we shall denote the image of a + I in k/l by

X(a+l)XJ .

(b) The map Tr : k -*• I defined by

a -*• a + a for all a € k

is a z-linear epimorphism from k to I with kernel s . Hence the map

induces a z-linear epimorphism Tr : k/l •*• I ., and we shall denote the

image of a + I in k/l by Tr(a+l) .

(c) The antiautomorphism J of k regarded as a z-linear

automorphism of the z-space k induces' the identity map on the factor

space k/l .

DEFINITION 1.2. A J-quadratic form on E is a map q : E -»• k/l

satisfying:

( i ) for a l l x € E and all X (. k ,

q(Xx) = Xq(x)XJ ;

(ii) there exists a J-sesquilinear form / on E such that for all

x, y € E ,

f{x, y) € q(x+y) + q{x) + q{y) .

The form / is unique, since if g is another such form then f + g

has »n its values in I , but I is strictly less than k and so / + g
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i s the zero form. We cal l th i s unique form / the polar form of q .

LEMMA 1.3. Suppose q is a J'-quadratic form on E . Then the

polar form f of q is trace-valued hermitian^ and for all x € E ,

fix, x) = Tr[q(x)) .

Proof. When k is a f ield, / i s al ternating and the resul t i s

t r i v i a l , so assume k i s not a f ield. Suppose x € E and X, y € k , and

put q{x) = a + I . Then

and so

Tr(X/(x, x)/) = X(a+c / ) / + v[a+aJ)\J .

Hence X\f{x, x)+Tr[q(x)) \\i is symmetric for a l l X, u € k , and so

f(x, x) = Tr[q(x)) since s , since s i s s t r i c t l y less than k .

Suppose x, y 6 E . Then from the f i r s t paragraph

f(x+y, x+y) = 1r[q(x+y)) ,

and so

Tr(<?(x)) + Tr [q(y)) + fix, y) + fiy, x)

Tr( fU, y)) .

Hence fiy, x) = fix, y) and / i s hermitian.

1.4. Degeneracy and defect. One can easily verify that the abelian

group s/l can be regarded as a le f t vector space over k with the action

of X€fe on a + I € s/l defined to be X(a+Z)X . Suppose that q is

a ^-quadratic form on E with polar form / . We define the radical

R(E, q) of (E, q) to be the radical of the polar form / . Then the

q-image of R(E) is contained in s/l , and in fact the res t r ic t ion

>• s/l

is fe-linear when s/l i s regarded as a fe-space in the above fashion.

The rank of th i s map is called the defect of q , and the image is called

the defect space of q . The nul l i ty of the map is called the degeneracy

of q , and the kernel i s called the kemnel of q , K(E, q) .
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196 Wi I l iam M. Pender

The forms / and q induce forms / and q on the factor space E

of E by K(E) in the canonical way, and clearly / i s the polar form

of q . We cal l (E, q) the corresponding non-degenerate space and form.

LEMMA 1.5. (a) Suppose f is a trace-valued J-hermitian form on

E . Suppose ie- \ i € 1} is a basis of E and suppose

p : {e. | i € 1} •* k/l is a map satisfying

Then there is a unique J-quadratic form on E extending p with

polar form f > and if f is non-degenerate then this form is

non-defective.

(b) Also if s/l is regarded as a k-space in the sense of l.h3 then

there is a unique J-quadratic form on E © {s/l) with polar form the

trivial extension of f whose restriction to E extends p and whose

restriction to s/l is the identity, and the defect space of this form is

the whole of s/l .

Proof. We prove the f i r s t par t , then the second part follows easi ly .

Define the map q : E •+ k/l as follows: for each element J \.e. i E ,
i V %

where F is a f in i t e subset of I ordered a rb i t ra r i ly by < , define

then i t i s straightforward to verify that q i s a J-quadratic form on E

with polar form / . Furthermore any such J-quadratic form must satisfy

the above equation, and so q i s unique.

1.6 Singular points and spaces. Suppose q i s a J-quadratic form

on E with polar form / . A vector x € E i s called singular i f

q(x) = 0 , and a subspace V of E i s called singular i f every vector in

V i s s ingular. The Witt index of q i s defined to be the maximum

dimension of a singular subspace of (E, q*) disjoint from R(E) , that i s

the maximum dimension of a singular subspace of (E, q) . We ca l l q

definite i f i t has Witt index zero, and indefinite otherwise.

A subspace V of E is singular if and only i f
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(a) V is isotropic, and

(b) V has a basis of singular vectors.

In particular, the Witt index of q is at most half the rank of / .

LEMMA 1.7. (a) Suppose q is a J-quadratic form on E with polar

form f . Suppose [e , ... , e } is a basis of a finite dimensional

singular subspace of (E, q) disjoint from R(E) . Then we can choose

d. , • • • , dr € E such that

(i) < d. , . . . , d ) is singular;

(ii) f[e., d.) - 6.. .

(b) If q is indefinite and f is not the zero form, then (E, q)

has a basis of singular vectors outside R(E) .

Proof. (a) Since / i s t r a c e - v a l u e d we can choose d', . . . , d' € E

such t h a t < d! , . . . , d' > i s i s o t r o p i c and f[e. , d'.) = 6 . . . For each .
1 r 1*0 "^0

i = 1 , . . . , r define d. = d'. + a.e. where a . € q[d'.) .

(b) Choose e d E\R(E) s i n g u l a r . Choose a b a s i s {x. \ i € 1} of

e with x = e , and choose y € E\e . Then {y+x. | i € I) u {e}

spans E and i s l i n e a r l y independent , so i s a b a s i s of E . For each

i i. I the p lane <e , y+x. > i s an / -non-degenera te subspace of (E, q)

and so by (a) conta ins a s i n g u l a r vec tor e . such t h a t / ( e , e.J = 1 .

Now ( e , | i E l } u {e} i s a bas i s of (E, q) ou ts ide R(E) .
tr

1.8 Semi-singular points and spaces. Suppose q is a (/-quadratic

form on E with polar form / . A vector x € E is called semi-singular

if q(x) Z <?(R) , and a subspace V of E is called semi-singular if

every vector in V is semi-singular and f is isotropic.

Thus a subspace V of E is semi-singular if and only if

(a) V is isotropic, and

(b) U has a basis of semi-singular vectors.
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If q i s non-defective, then semi-singular and singular coincide. If

the defect space of q i s the whole of s , then semi-singular and

isot ropic coincide. If J i- 1 , or i f k i s a field and q{R) < k , then

a subspace V i s semi-singular if and only i f every vector of V i s

semi-singular (for i f every vector of V is semi-singular, then a l l the

values of f\ y l i e in the defect space of q which here i s s t r i c t l y less

than k , and so V i s i so t ropic) .

Suppose f i s a semi-singular subspace of (E, q) disjoint from

R(E) . Choose a basis {«. | t ( 1 } of V , and for each i £ I choose

t . £ R(E) so that q[t.) = q [e.) . Then the subspace <e.+£. | i £ I) i s

singular of the same dimension as V . We conclude that the Witt index of

q equals the maximum dimension of a semi-singular subspace of (E, q)

dis joint from R(E) .

1.9 Hyperbolic planes. Suppose q is a (/-quadratic form on E

with polar form / . A hyperbolic pair in (E, q) i s a pair (e , d) of

singular vectors such that fie, d) = 1 . The subspace spanned by a

hyperbolic pair i s called a hyperbolic plane of (E, q) . 5y Lemma 1.6

every /-non-degenerate subplane of (E, q) containing non-zero singular

vectors i s a hyperbolic plane.

LEMMA 1.10. (a) Suppose q is a J-quadratie form on E with

polar form f . If k is a field then every hyperbolic plane of (E, q)

contains exactly two singular lines. If k is not a field then every

hyperbolic plane of (E, q) contains infinitely many singular lines.

(b) If q is indefinite and n i 3 and k is not GF(2) , then

every line of E outside R(E) is the intersection of two hyperbolic

planes.

Proof. If (e , d) i s a hyperbolic pair then the l ine < e+Xd) is

singular i f and only i f A € I . Part (a) now follows easi ly . The proof

of (b) i s well-known when k i s a f ie ld (Dieudonn€ [5]) so we assume k

i s not a f ield.

Suppose x £ E\R(E) i s singular. Choose i/ f E singular so (x, y)

i s a hyperbolic pa i r . Choose z i <x, y) , z + 0 . Then <x, y) and

ix, y+z> are d i s t inc t hyperbolic planes containing <a;> .
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Suppose x (. E\R(E) i s non-s ingu la r . Since E has a b a s i s of

s i n g u l a r vec to r s we can choose y € E s i n g u l a r so fix, y) = 1 . Put

2 = x + fix, x)y , then z (. x and z \ y . Choose t € <x , y)

non-zero , then z + t € x and z + t f y . By p a r t (a) and the

assumption t h a t k i s not a f i e l d , t h e hyperbol ic plane < z+t, y >

conta ins a s i n g u l a r l i n e <e> d i s t i n c t from both <y > and <z+t> , and

hence not orthogonal t o <x> nor i n < x , y > . Now <x, y) and <x, e>

are d i s t i n c t hyperbo l ic p lanes conta in ing <x> .

2. Unitary groups

Suppose that the division ring k and the vector space E are as in

the f i r s t section. Suppose that q i s a t7-quadratic form on E of Witt

index v with polar form / and defect space m .

2.1 Images and multiples of quadratic forms. Suppose k' i s a

division ring isomorphic to k and E' i s a le f t vector space over k' .

Suppose 0 :&'-»• k i s an isomorphism and X : E' •*• E i s a O-linear map.

Define the involution J' of k' to be oJa~ ; then J' i s of the

f i r s t kind and the trace space I' of k' i s I . Define the map

qX : E' - k' IV by

qX(x) = qixxf ;

then q is a J1-quadratic form on E' with polar form the t/ '-hermitian

form / * on E' defined by /*(x , i/) = f(xX, yX)°

Suppose p € k . Then right multiplication of k by p is a

a-linear automorphism of k mapping I to Zp , and K = p Jp is an

antiautomorphism of fc . Define the map qp : E -»• fc/Zp by

<?p(x) = q{x)p for a l l x € E .

If p i s symmetric, then K i s an involution of k of the f i r s t

kind with trace space Zp , and qp i s a X-quadratic form on E with

polar form fp . Conversely i f q i s non-zero and qp i s an L-quadratic

form on E for some involution L of k , then £ = X , so X is an
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involution and so p i s symmetric.

2.2 Isometries. Suppose k' i s a division ring with involution

J' , E' i s a l e f t vector space over k' and q' i s a J'-quadratic form

on E' with polar form / ' . A semi-isomorphism X : E' -»• E with

isomorphism a : k' -*• k i s called a semi-similarity from (E1, q') to

(E, <f) i f

for some non-zero p € &' . Provided q is not the zero form, the element

p i s unique and we ca l l i t the multiplier of X . Sy (2.1) the multiplier

i s symmetric and i s re la ted to 0 by

\J' = p-1XOt7° p for a l l A € *' .

Suppose now that k' = k . A semi-similarity form (E1, q') to

(E, <?) with ident i ty automorphism of k i s called a similarity, and a

s imi lar i ty with t r i v i a l multiplier i s called an isometry. We say that the

forms q and q' are equivalent i f there exists an isometry from

(E1, q') t o (E, <f) .

2.3 Unitary groups. Define rt/(E, <?) to be the set of a l l

semi-similar i t ies of (E, q) , define GU{E, q) to be the set of a l l

s imi l a r i t i e s of (E, q) , and define U(E, q) to be the set of a l l

isometries of (E, q) . Then i t i s easily verified that Ti/(E, q) i s a

subgroup of the fu l l semi-automorphism group FZ/(E) of E , and that

GU{E, q) and V{E, q) are normal subgroups of TU(E, q) .

We cal l an isometry X of (E, q) finite dimensional i f the space

E(I+X) is f in i t e dimensional, and define V (E, q) to be the set of a l l

f i n i t e dimensional isometries of (E, q) . Then again U (E, q) is a

normal subgroup of rt/(E, q) .

We denote the images of these groups in the full collineation group

PTL(E) of the projective space P(E) respectively by PTU{E, q) ,

PGU(E, q) , PU{E, q) and PU (E, q) . Every homothety XI of E , with

u

A € k , is clearly a semi-similarity of (E, q) with multiplier

(A Aj~ . Hence the intersection of f(E, q) with the group of
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homotheties of E is t r i v i a l , and we may regard U(E, q) as being

faithfully represented on the projective space P(E) .

Suppose q is non-degenerate with defect space the whole of sIt ,

and l e t (E, / ) be the space E/R(E) with the canonical non-degenerate

image of f . Then i t i s straightforward to show that the canonical

epimorphism from E to E induces an isomorphism

<|> : n/(E, q) H. n/(E, / )

car ry ing GU{E, q), U{E, q) and U (E, q) onto GU{E, f), U{E, J) and

II (E, / ) respectively. This and Lemma 1.5 show that unitary groups of

i/-hermitian forms over k may be regarded al ternat ively as unitary groups

of ^-quadratic forms over k of maximal defect (of. Dieudonne" [ 5 ] ,

p. 35).

# —1
If p ( It i s any symmetric element, then qp is a p Jp-quadratic

form and the various unitary groups of (E, qp) are equal to the

corresponding unitary groups of (E, q) . Now if k is not a f ield and
T a i

p = A + A i I , then 1 i s a trace with respect to p Jp , since
p X + p [p AJp = l , hence we may replace q by qp and assume that

1 i s a t race . Also when k i s a field and q i s defective, we may

assume that 1 l i e s in the defect space of q .

2.4 Cayley parametrization. In th is section we construct the usual

parametrization of the finite-dimensional isometries of (E, q) by means

of Cayley spaces and forms. We shal l assume the discussion of the process

for sesquilinear forms given in Wai I [77] and adapt i t to J-quadratic

forms in the same way as is done there for quadratic forms over f ie lds .

Suppose that X i s an isometry of (E, q) and put X = 1 + N . We

define the Cayley space and form (E^, f ) of X t o be the Cayley space

and form of X with respect to the polar form / . We reca l l then from

[7 7] that E is the image Etf of N , and fx i s the »7-sesquilinear

form on E« uniquely defined by

fy(xN, yN) = f(x, yll) for a l l x, y 6 E .
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Then the Cayley form satisfies

fxiu, v) + fx(v, uf = f(u, v) for all u, v € Ê  .

If the Cayley space E is disjoint from R(E) , then the Cayley form /

is non-degenerate and the fixed point space kertf of Jf is E . If E
A A

i s f inite dimensional and disjoint from R(E) , and if (e.. , . . . , e ) is

any basis of E and (0. .1 is the inverse of the matrix / ( e . , e .) of
A "UQ \ % Q J

fv with respect to this basiss then the isometry X can be written
A

r
* = 1 + I e.6..e.

meaning

r
xX = x + I f[x, e . l e . .e . for a l l x € E .

i,j=l z v° 3

In oxir case X sat isf ies the further condition that q(xX) = q{x)

for a l l x € E , and so / (x , xtf) € q(a^) for a l l x € E . So the Cayley

form satisfies

fxiu, u) € <?(M) for a l l u € E^ .

Suppose x/tf € R(E) . Then fix, xN) = 0 and so q(xN) = 0 and

xN € K(E) . We conclude that

E^ n R(E) = Ex n K(E) .

In particular if q is non-degenerate then the Cayley space of X is

disjoint from R(E) .

LEMMA 2 . 5 . (a) Suppose X is an isometry of (E, q) with Cayley

space and form (V, g) . Then

(1) g{u, v) + g(v, uf = f(u, u) for all u, v € V ,

(2) g(v, v) € q(v) for all v € V ,

\J n R(E) = 1/ n K(E) .
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(b) Conversely suppose g is a non-degenerate J-sesquilinear form

on a finite dimensional subspace V of E disjoint from R(E) satisfying

(2). Then there exists a unique isometry of (E, q) with Cayley space and

form (I/, g) .

(a) Suppose g is a J-sesquilinear form on a subspace V of E

with basis {e- | i E 1} satisfying

g[e,, e.) + g[e., e.J = fie-, e.) for all i , j (. I ,

g[e., e.) € q[e-) for all i € J .

Then g satisfies (l) and (2).

Proof. (b) We first show that g satisfies (l). This follows

easily from (2) when A: is a field, so we assume k is not a field. From

(2) it follows that

Tr(^(y, v)) = f(v, v) for all v € V .

If u, V € V and X, u € k then substituting Xu + W in this equation

gives

T T T

Tr[\g(u, v)\l +\ig(v, u)X J = Tr(X/(w, v)\i J ,

and so

X(/(u, v)+g(u, v)+g{v, u) )u € 8 .

Condition (l) now follows easily. Hence there is a unique isometry X of

(E, /) with Cayley space and form (V, g) (see Wai I [ H ] ) , and we must

show that X preserves q .

Suppose x d E and put X = 1 + N . Then

q(xX) = q(x) + q(xN) + [f(x, xN)+l)

= <?(x) •

(c) Condition (l) follows easily by e7-sesquilinearity, and the proof

of (2) involves a straightforward expansion of q £ ^{fA w h e r e f is a

finite subset of I and X. € k for all i € F .
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LEMMA 2.6. Suppose X is a finite-dimensional isometry of (E, q)

with Cayley space and form (I/, g) such that V is disjoint from R(E) .

Suppose [e , . . . , e , ... , e ) is a basis of V with respect to which g
A. JP 8

has the partitioned form

~ A I B
[g] = i

0 , CJ

Then X is the product YZ , where Y and Z are the isometries of

(E, q) whose Cayley spaces are respectively < e . , •••> e > and

( e , . . . , e g > and whose forms are the corresponding restrictions of g .

2.7 One-dimensional i s o m e t r i e s . Suppose a £ E\R(E) . Then t h e

i s o m e t r i e s of (E, q) wi th Cayley space <a> axe a l l t he i some t r i e s of

t h e form

1 + aoT a ,

where a € q{a) i s non-zero. If k i s a f ie ld , then ei ther a i s

singular and there i s no isometry with Cayley space ( a > , or a i s

non-singular and there i s a unique isometry 1 + aq(a) a with Cayley

space <a> . If k i s not a f ie ld , then there are inf in i te ly many

isometries with Cayley space <a> , since the t race space I i s in f in i t e .

Suppose P = 1 + aoT a is a one-dimensional isometry of (E, q) ,

where a € E\R(E) and a € q(a) is non-zero. If a i s isotropic then P

i s a transvection of E and we cal l P a transvection of (E, q) . If a

i s non-isotroplc then P i s a d i la ta t ion of E and we ca l l P a

quasi-symmetry of (E, q) . Clearly there are quasi-symmetries of (E, q)

i f and only i f k i s not a field and / i s non-zero.

WITT'S THEOREM 2 . 8 . Suppose that V and W are finite dimensional

suhspaces of E disjoint from R(E) and that X :( /->• 01 is an isometry

from [V, q\ti) to (W, q\w) . Then X can be extended to a finite

dimensional isometry of (E, q) .

Proof {cf. Wall [ H ] , proof of 1 . 2 . 1 ) . We prove t h e theorem by

induc t ion on the dimension of V . Choose x € \r and choose 1/^5 1/ so

https://doi.org/10.1017/S000497270004497X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270004497X


Classical groups 205

that V = V ©<x> . Then W = V X © < xX) , and by the induction

hypothesis we may assume that V^X = (/. and that X acts t r i v i a l l y on

Suppose xX + x (or else the ident i ty map on E extends X ) and put

y = x + xX . Then

fix, y) + f(y, x) = f(y, y) ,

fix, y) f q(y) .

Suppose f(x, y) f 0 . Since fix, y) € q(y) we may define an

isometry T of (E, £7) by

21 = 1 + yf(x, y^y ,

and then clearly T extends X .

Suppose f(x, y) = 0 ; then qiy) = 0 . If j ( K(E) , choose U a

complement of < x > in E containing V and define an isometry T of

(E, <?) by

xT = x + y ,

iff = u , for a l l u € U .

So we assume y \ K(E) , and so y $ R(E) .

If y {: 1/ then x and t/ are independent modulo V , HO we can

choose z € l/̂  so that f (x , 2) = 1 and f(y,z)*l. It y (. V then

2/ does not l i e in the coset x + V, since x^ ^ 1/ , so we choose z € V

so that ,f(x, s) = 1 and then fiy, z) t 1 • Choose X € qiz) and then

fiz, fiz,

~fiy, y) fiy, *)

fiz, y) fiz, z\

Also 0 € qiy) , X € qiz) , and the f i r s t matrix i s non-degenerate. So

there i s a unique isometry T of (E, q) whose Cayley space i s (y, 3>

and whose Cayley form is given by the f i r s t matrix above with respect to
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the basis (y, z) . Taking the inverse of this matrix and using

fix, y) = 0 , fix, z) = 1 gives

V±T = y for all y € l^ ,

xT = x + y ,

and so T extends X .

COROLLARY 2.9. Every finite-dimensional singular subspace of (E, q)

disjoint from R(E) is contained in a singular subspace of (E, q)

disjoint from R(E) of dimension equal to the Witt index of q .

THEOREM 2.10. Suppose q is non-degenerate and f is not the zero

form.

(a) The centralizer of U (E, q) in FL(E) is the group of

homotheties of E , except for 0 ^ ( 2 , 2) , 0 ( 1 ' ( 2 , U) and 0(3 , 2) .

(b) The centre of U (E, q) is trivial, except for 0 (2, 2) .

Proof. Every isometry of (E, q) i s /c-linear and so commutes with

every homothety of E . Conversely suppose X i s a semi-automorphism of

E central izing U (E, q) . Then X commutes with every one-dimensional

isometry of (E, q) and so fixes every l ine < x > of E outside R(E)

such that qix) contains a non-zero scalar. When q is definite or k

i s not a f ie ld , then X fixes every line of E outside R(E) , so as

R(E) < E , X fixes every l ine of E and is a homothety. When k i s not

GF(2) , every hyperbolic plane contains at least two non-singular lines and

so is fixed by X , hence i f also n - 3 and q i s indef in i te , X fixes

every line of E outside R(E) by Lemma 1.10. We shal l omit the

remaining cases (see Dieudonne [5 ] , p. 63)-

Part (b) follows now since the intersection of U (E, q) with the

group of homotheties i s t r i v i a l , except in the three exceptional cases

which we shal l omit.

LEMMA 2.11. Suppose g is a non-degenerate J-sesquilinear form on

a left vector space V of finite dimension r over k .

(a) If k is a field but not GF (2) 3 then either g is an
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alternating form or 1/ has a basis upper triangularizing the matrix of

9 •

(b) If k is not a field, then V has a basis upper triangular-

izing the matrix of g 3 and unless g(x, x) is symmetric for all x € 1/ ,

this basis can be so chosen that every diagonal element is non-symmetric.

Proof. (l) First we prove by induction on the dimension of V ,

assuming that k is not GF(2) , that if g is non-alternating then the

matrix of g can be upper triangularized. Suppose by way of contradiction

that g is non-alternating but cannot be upper triangularized. Then if x

is any non-isotropic vector of V , i t follows by the induction hypothesis

that the restriction of g to the (r-l)-space left orthogonal to x is

alternating and that this space is non-zero (and hence J = 1 ). Choose

a (. V non-isotropic; then we can choose a hyperbolic pair (£>, c) in the

space left orthogonal to a , and the matrix of the restriction of g to

the 3-space with basis (a, b, c) has the form

a g Y
0 0 1
0 1 0

where a

We can choose b both left and right orthogonal to a and replace a by

any non-zero multiple of a , so we can assume that 3 = 0 and (since k

is not GF(2) ) that Y * « . Put x = a + ab and y = a + a , then x

and y are both non-isotropic but y is left orthogonal to x , a

contradiction.

(2) We prove the second part of (b) by induction on the dimension of

V . Suppose then that V contains vectors x so that j ( i , x) is

non-symmetric, but g cannot be upper triangularized so that every

diagonal element is non-symmetric. Then if x is any vector of V so

g(x, x) is non-symmetric, i t follows by the induction hypothesis, that if

y is any vector in the (r-l)-space left orthogonal to x then f(y, y)

is symmetric, and that this (2"-l)-space is non-zero. Choose a € 1/ so

g(a, a) is non-symmetric; then we can choose b non-isotropic in the

space left orthogonal to a , and the matrix of the restriction of g to

the 2-space with basis (a, b) has the form

« Yl
o ej •

where & € s # and a f e
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We can replace b by any non-zero multiple of b , so we can assume that

6 * 1 (if 0 = 1 choose p € k so that WJ * 1 , and replace b by

u£> J . We can replace a by any non-zero multiple of a , so we can assume

tha t y = 0 or y = 1 • If y = 0 put x = a + B"1^ and y = a + ab ,

then both g(x, x) and ^ ( j / , j/) l i e in a + s and j / i s lef t orthogonal

to x . So we assume tha t y = X .

Suppose X € k and put x = a + At and y = a + vb where

p = ct(X~ ) +1 3~ . Then y is le f t orthogonal to x and

g{x, x) € (ot+X )̂ + s ,

tX-yfT1] +s ,

where we have used £ € £T + e for a l l C € fc . Fi rs t put X = a 8~

Then g{y, y) i s non-symmetric, hence a + (3~ a i s symmetric and so

Secondly, put X = 1 . Then g'tx, x) i s non-symmetric, hence a + aB

i s symmetric and so

_2
Combining these gives the resu l t tha t a commutes with 1 + B

_o
Thirdly, put X = B . Then g{x, x) i s non-symmetric hence a + aB i s

symmetric. But a commutes with (l+B~ ) , so 1 + B~ = 0 and B = 1 .

This contradicts the construction of b .

THEOREM 2.12 {of. Dieudonne [4]) . Suppose q is non-degenerate,

and suppose X is a non-trivial isometry of (E, q) with Cayley space V

of finite dimension r .

(a) If k is not a field,' then either V is non-isotropio and X

is the product of r quasi-symmetries of (E, q) and no fewer, or V is

isotropic and X is the product of r + 2 quasi-symmetries and no fewer.

(b) (Dieudonne [ 4 ] , Theorems 6 and 7)- (i) If k is a field but
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not GF{2) j then either 1/ is non-singular and X is the product of r

transvections of (E, q) and no fewer, or V is singular and X is the

product of r + 2 transvections and no fewer.

(ii) If k is GF(2) then X is the product of transvections of

(E, q) , except that if n = h and v = 2 then X is the product of

transvections and 2-transvections with singular Cayley space.

Proof. (a) If V i s i so t ropic , choose a; € E non-isotropic, choose

a € q(x) and put P = 1 + xaT x . Then the Cayley space of XV i s

1/ © < x > of dimension r + 1 , so we can assume f i s non-isotropic. Then

the Cayley space V of X contains vectors v so that g{v, v) is not

symmetric (where g i s the Cayley form of X ) , and so by Lemma 2.11 we

can choose a basis (e , ..., ep) of V upper t r iangularizing g so that

g[e •, e.) i s not symmetric, for a l l i . Now by Lemma 2.6,

X=

is the product of r quasi-symmetries.

(b) Part (b) is proven in Dieudonne" [4] (the case when k i s not

GF{2) follows easily from the previous lemma).

3. A simple subgroup of the unitary group

Suppose that the division ring k and the vector space E are as in

the f i r s t section. Suppose that q i s a non-degenerate indefinite

•/-quadratic form on E of Witt index v with polar form f and defect

space m , and i f k i s a f ie ld suppose that E has dimension at least

3 . Suppose that 1 i s a trace when k i s not a f ield and that 1 l ies

in the defect space when q i s defective and k i s a f ield.

We shall define a normal subgroup of TU(E, q) inside U (E, q)

which coincides with the commutator subgroup J2(E, q) when It i s a f ield

(except for 0(3 , 2) , O^Hk, 2) and 0(5, 2) ) , and prove the

simplicity of th i s group (except for 0(3 , 2) , 0(5, 2) and 0v (h, k)

when k is a f i e ld ) .

3.1 Transvections and quasi-transvections. We reca l l that an
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r-transvection of E is an automorphism P of E whose Cayley space has

finite dimension r and is centralized by P , and that transvections are

1 - t r a n s v e c t i o n s . A singular r-transvection o f (E, q) i s an

r-transvection of (E, q) whose Cayley space is singular. Thus a singular

transvection P can be written

P = 1 + ecT^e ,

ti u

where e £ E is singular and a (. I . Clearly (E, q) has singular

transvections i f and only i f k i s not a f ie ld .

A semi-singular r-transvection of (E, q) i s an r-transvection of

(E, q) whose Cayley space is semi-singular. Thus a semi-singular

transvection P can be written

P = 1 + {e+a)a~1(e+a) ,

where e € E i s s ingular , a € R(E) and a € q(a) i s non-zero. Every

singular transvection i s a semi-singular transvection, and (E, q) has

non-singular semi-singular transvections i f and only i f q i s defective.

k quasi-transvection of (E, q) is a two-dimensional isometry P of

(E, q) of the form

P = 1 + eae + ea + ae ,

§ •*•

where e (. E is s ingular , a (. e is isotropic and independent modulo
R(E) of e , and a € q(a) • Thus a quasi-transvection is a

2-transvection of (E, q) and has order 2 . Clearly (E, q) has

quasi-transvections i f and only if the Witt index of f i s at least 2 .

If P is a semi-singular transvection of (E, q) , then by replacing

e by ae in the expression for P above, we can write P as

P = 1 + eae + ea + ae ,

u
where e € E is singular, a € R(E) and a € £?(a) is non-zero.

If k is a field then every singular 2-transvection is a

quasi-transvection, but when k is not a field there may be singular

2-transvections which are not quasi-transvections.

DEFINITION 3.2. The set of singular transvections, the set of
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semi-singular transvections, and the set of quasi-transvections is each a

normal subset of TU(E, q) and so each generates a normal subgroup of

n/(E, q) inside U (E, q) . We define the normal subgroup T(E, q) of

F£/(E, q) to be the subgroup of U (E, q) generated by all singular

transvections, semi-singular transvections and quasi-transvections of

(E, q) . Once i t is shown that T(E, q) is simple i t will follow that

each of the three sets is either empty or generates T(E, q) . However,

the proof of this need not be so indirect; in particular quasi-

transvections are fairly readily shown directly to be products of

semi-singular transvections whenever these last exist. Our definition is

intended to show the unity amongst the various cases.

LEMMA 3.3. (a) If an automorphism X of E fixes every singular

line of (E, q) then X is a central homothety, except when k is

quaternionic and n = 2 .

(b) The group T(E, q) is faithfully represented as a permutation

group on the set of singular lines of (E, q) .

Proof. (a) If k i s GF(2) then by Lemma 1.6, X fixes a basis

of E and so is t r i v i a l . If k i s not GF(2) and n > 3 , then since X

fixes every hyperbolic plane of (E, q) , X fixes every l ine of E

outside R(E) by Lemma 1.9 and so X fixes every l ine of E and is a

central homothety. So we assume n = 2 and so k i s not a f ield.

Choose a hyperbolic basis (e, d) of (E, q) ; then a l ine <e+Xd>

where X € k i s singular i f and only i f X € I . Since X fixes both

< e ) and < d > we may put

eX = ae ,

dX = 3d ,

where a, 6 € k . For each X € I , X fixes the line <e+\d) and so

3 = X aX . We have assumed 1 is a trace and so a = 3 , and thus ot

commutes with every trace of k . Now when k is not quaternionic, the

traces generate k and so a lies in the centre of k as required.

However when k is quaternionic then I coincides with z and the

condition is vacuous, and in fact every automorphism of E defined by
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u
e -*• ae and d •* ad , where a f k , fixes every singular l ine of (E, q) .

(b) We assume n = 2 and fc i s quaternionic, for otherwise the

re su l t follows from the f i r s t part . Choose a hyperbolic basis (e , d) of

(E, q) ; then every singular transvection P of (E, q) has the form

where X, p € s and £ £ z . Now

and so T{E, q) fixes the set of a l l s- l inear combinations of e and

d . Hence again by the f i r s t part , the only isometry of (E, q) in

T(E, q) fixing every singular line of (E, q) is the ident i ty . (This

argument i s a very special case of the Wall norm to be introduced in the

next chapter.)

LEMMA 3 .4 . (a) Suppose (e, d) is a hyperbolic pair in (E, q) ,

suppose a 6 < e, d) is isotropie (possibly zero) and suppose a € qia)

is non-zero. Then T{E, q) contains the isometry X of (E, q) defined

by

eX = ad ,

dX = a~1e ,

xX = x + (x , a ) a a for all x € < e , d) .

(b) Suppose X € k is a product of an even number of elements
u •*•

a € k such that a € q{a) for some isotropic vector a € < e, d"> . Then
T{E, q) contains the isometry with. Cay ley space < e , d~> defined by

eX = Xe ,

dX = (X-Yd .

(Note that the restriction "even number" is relevant only when k is

a field and q is nondefective, for otherwise we have assumed that 1

lies in the defect space.)
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Proof. I t wi l l suffice to prove the f i r s t par t . Define isometries P

and Q , generators of T(E, q) by

P = 1 + ea^e + e{oT1a) + [a^aje ,

Q = 1 + dad + da + ad .

Then PQP is the required isometry in T(E, q) .

LEMMA 3.5. (a) Suppose V and to are singular subspaaes of

(E, q) so that V + to is non-degenerate with respeat to f . Then every

transveotion of V can be extended to a singular 2-transveation of

(E, q) with Cay ley space in 1/ + W .

(b) Every automorphism of V in the group SL(V) generated by

transveotions of V can be extended to an isometry in T(E, q) with

Cay ley space in V + to .

Proof. I t wil l suffice to prove the f i r s t par t . Suppose T = 1 + ee

is a transvection of V , where e € V and e i s a non-zero l inear form

on V annihilating e . Choose d € to so that for a l l v € V ,

f(v, d) = (v, z > . Then the singular 2-transvection P = 1 + ed + de

extends T .

LEMMA 3.6. (a) For every finite r S v , the group T(E, q) acts

faithfully on the set of singular r-subspaces of (E, q) .

(b) For every finite r < v , the group T(E, q) acts transitively

on the set of singular r-subspaces of (E, q) , except possibly when

r = v and n = 2v and k is a field (in this case the set divides into

two orbits under T(E, q) , see Dieudonne [5],).

(c) For every finite r £ v - 1 3 every isomorphism between two

singular r-subspaces of (E, q) can be extended to an isometry in

T(E, q) .

Proof, (a) Suppose X € T{E, q) fixes every singular r-subspace of

(E, q) , and suppose e € E is singular. Extend e to a basis

[e = e, e~, . . . , e ] of a singular r-subspace of (E, q) containing

e , and choose a complementary set (d, , . . . , d ) according to Lemma 1.6;

then < e > i s the intersection of the two singular r-subspaces
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< e , . . . , e^ > and < e , d^, . .. , d > of (E, q) and so is fixed by # .

So X fixes every singular l ine of (E, q) and so by 3.3 is t r i v i a l .

(b) We prove t r a n s i t i v i t y by induction on r . Suppose V and W

are singular r-subspaces of (E, q) ; then by the induction hypothesis we

may assume tha t V n W has dimension r - 1 and put

V = (VrW) © < e > ,

W = ( VrU) © < d > .

I f e and d are orthogonal, then 1/ + W i s a singular (r+l)-space and

the resul t follows by Lemma 3- 5 (since for any vector space E , the

transvection subgroup SL(E) i s t ransi t ive on the set of a l l r-subspaces

of E , for a l l f in i t e r 5 dimE ) . If e and d are not orthogonal

then the resul t follows by Lemma 3-k, provided that ei ther the trace space

i s non-zero, or we can choose an isotropic non-singular vector a in

(1/+W) . This i s always possible except when It is a f ie ld , r = V and

n = 2v .

(a) Choose X £ T(E, q) so that VX = W and choose a singular

(r+1 )-subspace U of (E, q) containing W . Now the resul t follows by

Lemma 3.5, since for any vector space E every isomorphism between two

2*-subspaces of E can be extended to an automorphism in the transvection

subgroup SL(E) , for a l l f in i te r S dimE - 1 .

LEMMA 3 . 7 . (a) The stabilizer in T(E, q) of a singular line <e>

of ( E , q) is transitive on the singular lines of ( E , q) not orthogonal

to it.

(b) Suppose v > 2 j and if k is a field suppose n > 5 . Then the

stabilizer in T(E, q) of a singular line <e> of (E, q) is transitive

on the remaining singular lines of (E, q) orthogonal to it.

(a) The group T(E, q) acts doubly transitively on the singular

lines of (E, q) if and only if v = 1 . Unless perhaps k is a field

and n = h and v = 2 , -the group T(E, q) acts primitively on the

singular lines of (E, q) .

Proof . (a) Suppose <x> and < y > a r e d i s t i n c t s i n g u l a r l i n e s o f

( E , q) n o t o r t h o g o n a l t o < e > , and s u p p o s e f(e, x) = f(e, y) = 1 . Then
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x + y (. e and f(x, y) € q(x+y) , so we may define the isometry

P = 1 + ef(x, y)e + e(x+y) + (x+y)e ,

a genera tor of T(E, q) (P i s a s i n g u l a r t r a n s v e c t i o n i f x + y € <e> ,

a semi - s ingu la r t r a n s v e c t i o n i f x + i / € < e > + R(E) , and a q u a s i -

t r a n s v e c t i o n o the rwi se ) . Now eP = e and xP = y as r eq u i r ed .

(b) Suppose < x > and <i/> a re d i s t i n c t s i n g u l a r l i n e s of (E, 3)

d i s t i n c t from and orthogonal t o <e> . Choose X € T(E, q) such t h a t

< e , x)X = < e , z/ > by Lemma 3-6. Choose an automorphism T of < e , y> i n

SL(e, y) such t h a t eXF = e and xXT £ < 1/ > , and extend by Lemma 3-5 t o

an isometry Y of (E, q) in T(E, q) . Then ^Y i s t h e r equ i r ed

isometry.

(0) I t follows now t h a t T(E, <?) i s doubly t r a n s i t i v e i f and only i f

v = 1 . Suppose then V > 2 , and suppose t h a t A i s a s e t of s i n g u l a r

l i n e s of (E, q) of order a t l e a s t 2 such t h a t for a l l X £ T(E, q) ,

Choose (e > in A , choose d € E so (e, d) i s a hyperbolic pa i r , and

choose a € <e, d) singular and non-zero.

If A contains a singular line not orthogonal to < e > , then A

contains a l l singular l ines not orthogonal to < e > by part (a) and so

contains ( d> . Again A contains a l l singular l ines not orthogonal to

< d > and so contains < e+a > . But < e+a > i s orthogonal to and dis t inct

from < e > .

If A contains a singular l ine orthogonal to and dis t inct from <e > ,

then A contains a l l such singular l ines by part (b) and so contains

<a> . Again A contains a l l singular l ines orthogonal to <a> and so

contains <d> . But id) i s not orthogonal to <e> .

The order of A is at least two, so A contains a l l singular l ines

of (E, q) . So r(E, q) acts primitively on the singular l ines of

(E. q) •

LEMMA 3.8. (a) Suppose k is not GF(2) . ITien every singular

transvection, non-singular semi-singular transvection and quasi-

transvection respectively is the product of two commuting singular
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transvections, non-singular semi-singular transveotions or quasi-

transvections respectively, conjugate in T(E, q) .

(b) The group T(E, q) is perfect, except when k is GF(2) and

n = 3 , n = 5 , or n = h and v = 2 .

Proof. (a) Let the isometry P in question toe written

P = 1 + eae + ea + ae ,

where e 6 E i s s ingular , a € e is i so t ropic , a 6 q(a) , and

a = 0 and a # 0 (singular t ransvect ion) , or

a € R(E) (non-singular semi-singular transvection), or

a \<e, R(E)> (quasi-transvection).

When a + 0 or 1 , put X = a . When a = 0 or 1 and k is not

a f i e ld , choose X (. I so that X ̂  1 . When a = 0 or 1 and k is a

f i e ld , choose X € & so that X # 1 . Ely Lemma 3-^ we can choose

X € T(E, q) so tha t

eX = X2e ,

a* = a ,

(when k i s a f ie ld then n > 3 , so we can choose b d e non-singular,

then X2 = £7(B~12>)q(Xfe) where g = q{b) ; when fc i s not a f ield then

already X € q{a) ) . Put U = ( X ^ l ) " 1 ; then u t 0 or 1 and
p

X u + y = 1 • Also X, \i and a commute in pa i r s , and are symmetric.

Define the isometry Q in T(E, q) by

Q = 1 + (ye)ct(ue) + (ye)a + a(\ie) ,

then

* a(l+y)e .

y

Now Q and Q commute, and are isometries of the same type as P

(singular t ransvect ions, e t c ) . Finally, QH - P •
(b) When k i s not GF(2) , the f i r s t part shows that every
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generator of T(.E, q) is i tself a commutator of elements of T(E, q) , and

so T{E, q) is perfect. When k is GF(2) , the exhibition of the

quasi-transvections and the semi-singular transvections as commutators of

elements of T(E, q) is more complicated, and we shall omit i t .

THEOREM 3.9. The group T(E, q) is simple, except possibly when k

is GF(2) and n = 3 or n = 5 and when k is a field and v = 2 and

n = h (when in fact T(E, q) is not simple, see Dieudonne [5],).

Proof. By a lemma of Iwasawa [7] (see also Huppert [6]) a permutation

group is simple i f

( i ) i t i s perfect , and

( i i ) i t i s primitive, and

( i i i ) the s tab i l i ze r of a l e t t e r has a soluble normal subgroup whose

normal closure in the whole group is the whole group.

Except in th^ cases excluded, we have proved tha t T(E, q) i s faithfully

represented as a permutation group on the singular lines of (E, q) (Lemma

3.3) and as such is primitive (Lemma 3.7) and perfect (Lemma 3-8).

Suppose <e> is a singular l ine of (E, q) and le t N be the set of

a l l isometries of (E, q) of the form

P{a, a) = l + eae + ea + ae

where a t e and a € q(a) . Then

P(a, a).P(b, B) = P{a+b, a+6+/(a, b)) ,

P(a, a)'1 = P[a, </) ,

and so M i s a subgroup of U(.E, q) , clearly a normal subgroup of the

s tab i l izer in U(E, q) of <e> . Furthermore

[P(a, a ) , P(b, 6)] = P ( O , Tr(f(a, i

and so the commutator subgroup of W i s a subgroup of the abelian group of

a l l singular transvections of (E, q) with l ine <e> ; so W is soluble.

Hence H n T{E, q) i s a soluble normal subgroup of the s tab i l i ze r of

<e> in T(E, q) (in fact W £ T(E, q) , but th is fact is not necessary

here). Since T{E, q) is t rans i t ive on the singular l ines of (E, q) ,
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the normal closure of N n T(E, q) in T(E, q) is the whole of T(E, q) .

So by Iwasawa's Lemma, T(E, q) is a simple group. / /

COROLLARY 3.10. The set of singular transveotions, the set of

non-singular semi-singular transvections, and the set of quasi-

transveotione are eaah either empty or generating sets of T{E, q) .

Proof. The result is t r ivial when T(E, q) is simple, and tr ivial in

al l the exceptional cases except when k is GF(2) and n = 5 . This

case is easily settled by direct calculation.

4 . The Wall norm

Suppose that the division ring k and the vector space E are as in

the first section. Suppose that q is a non-degenerate definite or

indefinite ./-quadratic form on E of Witt index v with polar form /

and defect space m . Suppose that 1 is a trace when k is not a field

and that 1 l ies in the defect space when q is defective and ft is a

field.

Denote by A the multiplicative group of the division ring k .

Denote by ¥ the subgroup of A generated by all non-zero norms XX
u

with X d k ; then V is normal in A , since i f y € A then

y~1XAJ\i = [y~1X) (u~1X)t/.uJu € ¥ . Denote by E the subgroup of A
If

generated by the non-zero elements a. (. k such that a + I lies in the

defect space of q ; then £ is a normal subgroup of A . Also I

contains ¥ , unless J: is a field and q is non-defective, when I is

t r iv ia l .

Suppose that w is any (possibly zero) vector of E , and denote by
u

fi the subgroup of A generated by all elements a (. k such thatw

a € q(a) for some vector a € w ; then ft i s a normal subgroup of

and contains £ . Hence the commutator subgroup [A, Q J is normal in A

and i s contained in fi . When q i s indef in i te , denote by ft the

subgroup of A generated by a l l a € k such that a € q(a) for some
vector a (. E orthogonal to some hyperbolic plane of (E, q) ; then ft
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coincides with Q for every singular vector e r #

We shall extend the norm introduced by Wai I [J0] to the present case

and construct a homomorphism W : U (E, q) -*• A/IVfA, ft } which coincides

with the spinor norm when k i s a f ield and q is non-defective and with

the Wall norm when the defect space is the whole of s ; then we shal l use

i t to determine the structure of the factor group of U (E, q) modulo

T(E, q) . Much of the argument i s identical to the corresponding argument

in [JO] and wil l be omitted.

4.1 u-bases. A w-basis of a f in i te dimensional subspace 1/ of E

is a basis [e^, ..., e } of V sat isfying:

for each i = 1, . . . , r either e. € w or f[e-, u) = 1 .

LEMMA 4.2. Suppose that P is a finite dimensional isometry of

(E, q) with Cayley apace and form {V, g) . Suppose that (a , , . - . , a )

and [b^, . . . , b ) are two w-bases of V upper triangularising g , so

that

\

and

Then the elements a and „ - ! are equal modulo

Proof. When k i s a f ie ld , th is follows from the invariance of the

discriminant of g modulo V (notice that in th is case A/V has exponent

2 , so the inverses in the las t sentence are i r re levant ) .

When k i s not a f ie ld , the proof i s iden t i ca l , l ine by l i n e , to the

proof of the corresponding Lemma 5 in WaI I [70].

DEFINITION 4.3. We define a map N^ from U (E, q) to A/If[A, fij

as follows:
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( i ) define W ( l ) = 1 ;
w

( i i ) when k i s a f i e l d and P € V (E, q) , define

NJP) = (discrp )£¥[>, «J ;

( i i i ) when fc i s not a f i e l d and P € V (E, q ) , def ine

where (a a ) i s any u-basis of the Cayley space of P

upper t r iangularizing f .

Then by Lemma k.2 and Lemma 2 .11 , N is well-defined on every

element of U (E, q) . We cal l W the Wall norm on tf (E, <?) with

respect to W , and prove in the following theorem that N is a

w

homomorphism. (When k i s a field and q i s non-defective i t i s well

known that there i s another norm involved, the Dicks on norm

V : 0 (E, q) •* 1^ . For every P € 0 (E, q) , V{P) is defined to be the

par i ty of the Cayley dimension of P ; then V i s an epimorphism whose

kernel is denoted by SO{E, q) . The following proof that W is a
(2)

homomorphism snows also that V i s a homomorphism, except that 0 (It, 2)

must be t rea ted separately. See Dieudonne [5D.)

THEOREM 4.4. The Wall norm Ny : U (E, q) -* A/IYfA, ftj is a

homomorphiem.

Proof. (A) When k i s GF(2) the factor group is t r i v i a l , so we
(2)may assume that l/(E, q) i s not Ov '(h, 2) and that U (E, (7) i s

generated by transvections when k i s a f ield and by quasi-symmetries when

k i s not a f ie ld (Lemma 2.12). So i t wi l l suffice to prove the following:

"Suppose X i s a f i n i t e dimensional isometry of (E, q) and P

i s a transvection or quasi-symmetry of (E, q) according as k

i s or i s not a f ie ld . Then

N IPX) = N ( P ) N ( X ) ".
w w w
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-1 #
Put P = 1 + aa a , where a € E is isotropic or non-isotropic according
as k is or is not a f ie ld , and f(a, w) = 0 or 1 , and a i q{a) .

Then W (P) = of

X .

. Let (V, g) be the Cay ley space and form of

(B) Suppose a £ V + R(E) . Choose [a^, ..., a ) , any basis of V

(when k i s a f ie ld) or any w-basis of V upper tr iangularizing g

(when k is not a field) and put

[g] = A or [g] =

So N (X) = detA or N (X) = a * . . . a 1 , modulo Zf[A, fi ] . By Lemma

2.11, the Cayley form of PX has the form

or [fpx\ =

So = a(det4) or = oi- 1 - 1 , modulo

So N IPX) = W (P)M (AT) .
2x) IJ W

(C) Suppose a € 1/ + R(E) . Put a = b + t where b £ \J and

t £ R(E) and suppose f i r s t that b is not <?-isotropic. Then we can

complete b to a w-basis (2>, a2 , . . . , ap) of U so that £ has the

form

[g] =
0' A

or

"2

where (a+6) + I € m . So N (̂ f) = $(det-4) or g "'"a"1 . . . a^1 modulo
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CT[A, fi 1 . Let X be the isometry with space (<2p> ..., a > and form

the corresponding r e s t r i c t i o n of g ; then X = ^

When ft = a then t = 0 and I

N (PX) = N (P)N (X) . When 6 * aJ then
u/ 1*7 us

Y , also cf € ¥ and so

PX =

where A = $(a+0+/(a , a ) ) ~ 1 ( a + / ( a . a Now

" 1 and again N (PX) = N (P)Wa " x ( a + 6 + / ( a , a))B

(D) Suppose now t h a t gib, b) - 0 so t ha t b i s s i n g u l a r . Hence

a i s i s o t r o p i c and by assumption k i s a f i e l d , a l so aim and so

W (P) = 1 . Choose e € V so tha t g(c, b) = 1 and o ( b , c) # 0 , and

complete (i>, c ) t o a b a s i s [b, c , au, . . . , a } of V so t ha t §• has

t h e form

"o

A

where 3 = 1 + fib, a) and y = qie) • So W iX) = 6(det4) modulo

ZyfA, U 1 . Let 7 be the isometry with space (a_, . . . , a > and form

the corresponding r e s t r i c t i on of g ; then X = [l+by&~ b+bo+aQ~ bjy and

PA" =

Hence the ma t r ix of t h e form of PX with respect t o the b a s i s

b, e+a'h, a , , . . . , a i s

and so W (PX) = W as requi red .
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u

THEOREM 4.5. Suppose q is indefinite and e € E is singular. If

k is not a field or if q is defective! then the Wall norm M is an

epimorphism with kernel T(E, q) and so

U [E, q)/T(E, q) = A/I[A, JJ] .

If k is a field and q is non-defective then the restriction of the Wall

norm (spinor norm) to SO(E, q) is an epimorphism onto A/¥ , and if

n > 3 this restriction has kernel T(E, q) and

0 (E, q)/T(E, q) = (A/«K) x Zg .

Proof. (A) The final isomorphism follows from the ear l ie r statements

since the factor group of 0 (E, q) modulo the intersection of SO(E, q)

with kernel of the spinor norm has exponent 2 .

Choose (e, d) a hyperbolic pair in (E, q) ; then for a l l A € A

the isometry 1 + (X~ e+d)\[\~1e+d) has Wall norm AEVfA, Q] with respect

to e . When k is a f ield and q i s non-defective, the product of th is

isometry with 1 + (e+d)[e+d) l ies in SO{E, q) and has spinor norm XV .

When k i s not a field then T(E, q) is generated by semi-singular

transvections, and i t i s clear that each of these has t r i v i a l Wall norm.

When k i s a field every semi-singular transvection and quasi-transvection

has t r i v i a l Wall norm, and i f also q is non-defective, every quasi-

transvection l i es in SO{E, q) , having dimension 2 .

I t remains to show that the kernel of N , intersected with SO(E, q)

in the case when k i s a f ield and q i s non-defective, l i es in

TIE, q) .
44

(B) For all X € k , X / 1 , we calculate the Wall norm with

respect to e of the isometry P with Cayley space <e, d> defined by

eP = \e ,

dP = (X" 1 ) ^ ,

by using t h e w-basis {a, b) of <e , <i> upper t r i a n g u l a r i z i n g the

Cayley form of P , where
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a = (A^+l je + d ,

b = (A+l)e + d .

Now P = 1 + e \[X~ ) +1 Id + <2(A+l)e and so with respect to t h i s new bas i s

Hence M (P) = AZY[AS ft] (after calculat ion).

Suppose the rank of / i s 2 , so that ^ [ A , ft] = ZV . If P l ies

in the kernel of W , and also in SO{E, q) in the case when k is a
Q

f i e l d and q i s non-defec t ive , then we can choose X € T(E, q) by Lemma

3.7 so tha t PX f ixes both <e> and <d> . By the above ca lcu la t ion and

Lemma 3.It, i t follows t h a t PX and hence P l i e s in T(E, q) as

requ i red .

(C) The proof when the rank of f i s g rea te r than 2 can now be

followed in Wall [ 7 0 ] , §5. We have already proven (a) in Lemma 3.7. The

proof of (3) given on page 210 w i l l suff ice when a i s non - i so t rop i c ;

when a i s i s o t r o p i c then a is symmetric and so

A~ a" (A~ ) € cj- (X~ a" a) . So by Lemma 3-h we can choose Q € T(B, q)

with Cayley space in <e , <i> so t h a t

and then by pa r t (B),

N - * ( « ) = A ' V 1 ( A " 1 ) ^ ! = [A, a]E .
6

Finally in the proof of the theorem from (a) and (B) on page 208, i t

wi l l suffice to express R as any product of one-dimensional isometries

rather than as a semi-direct product (the exceptional case 0 (h, 2) i s

generated by transvections and singular 2-transvections, but the singular

2-transvections already l i e in T(E, q) ) .

COROLLARY 4.6 (a) {of. Dieudonne [2] and [ 3 ] , §13). If the Witt
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index of q is at least 2 } then the factor group of U (E, q) modulo

T{E, q) is abelian.

(b) {cf. Seip-Hornix [S], 9.5 and Dieudonne [2], §15). If k is a

quaternionic division ring and n = 2 and q is indefinite, then the

factor group of U(E, q) modulo T(E, q) is isomorphic to the factor

group of A modulo the multiplicative group of z , and so is not abelian.

(a) (cf. Wall [70], Theorem 2, and Seip-Hornix [ 8 ] , 11.h and Remarks)

If k is a finite dimensional algebra over z and q is indefinite and

n 5 3 j then the factor group of U (E, q) modulo T(E, q) has exponent

2 and so is abelian.

Proof. We need only prove part (c) when k i s not a f ield - the

argument is the same as WaI I [ J0 ] , part 2 , and involves showing that

A/Z[A, ft] has exponent 2 . Choose a € E non-singular orthogonal to

some hyperbolic plane of (E, q) and choose a € q{a) ; then a. \ I .

Then the spaces az + I and s have s-dimensions 1 + %m(m-l) and

%m(m+l) respectively, and fl contains every non-zero element of az + I .

2
Suppose p € A . Since the 3-dimension of k i s only m , the

spaces \i{az+l) and s intersect non- t r iv ia l ly . Choose pX in th is

intersect ion; then pX = X y and so

Also the spaces Xs and s both have s-dimension J?n(m+l) , so we can

choose Xv non-zero in the intersect ion. Then Xv = vX and so

x-V = x-Vxxv .

Since X € Q , we conclude that \i2 € Z[A, il] and so E[A, ft] has

exponent 2 .
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