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ON ORTHOGONAL POLYNOMIALS 
WITH RESPECT TO A POSITIVE DEFINITE MATRIX 

OF MEASURES 

ANTONIO J. DURAN 

ABSTRACT. In this paper, we prove that any sequence of polynomials (pn)n for 
which dgr(pn) = n which satisfies a (2N + l)-term recurrence relation is orthogonal 
with respect to a positive definite N xN matrix of measures. We use that result to prove 
asymptotic properties of the kernel polynomials associated to a positive measure or a 
positive definite matrix of measures. Finally, some examples are given. 

1. Introduction. In this paper we introduce an extension to the theory of orthogonal 
polynomials with respect to a positive measure, by considering orthogonal polynomials 
with respect to a positive definite matrix of measures. A N x N matrix of measures 
[i = (/iy)f/=1 (/i/j being complex Borel measures) will be called positive definite if for 

any Borel set A the numerical matrix (/x/j(A)V is positive semidefinite (in particular 
these numerical matrices are hermitian). 

We associate with every positive definite matrix of measures an inner product (possi
bly degenerate) defined on the linear space of complex polynomials P as follows: given 
a natural number ra, 0 <m < N — 1, we define the operators RN^: P —> P by 

(n/V+m)/Qx 

V (nN + m) ! 

i.e. for every m, the operator RNm takes from the polynomial p just those powers tk, for 
which k = m (mod AO and then changes flN+m to f. 

Using these operators, we define the inner product B^ associated with [i by 

N ç  

(1.2) B^(p,q)= ]T \RN1m-\{p)RN^n'-\iq)dptm^mi for/?,<7<EP. 
m,m'=\J 

We say that the polynomials (pn)n are orthogonal (resp. orthonormal) with respect to the 
matrix of measures \i if they are orthogonal (resp. orthonormal) with respect to the inner 
product^. 

An important result in the classical theory of orthogonal polynomials is the so-called 
Favard Theorem [F] (although the result seems to be known already to Stieltjes, Cheby-
shev, and others) which establishes a close relationship between orthogonality with re
spect to a positive measure and three term recurrence relations: 
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THEOREM (FAVARD). Let (pn)n be a sequence of polynomials for which àgr(pn) = n 
and which satisfies the following three term recurrence relation: 

tpn(t) = an+]pn+i(t) + bnpn{t) + anpn-\{t\ 

where (an)n and (bn)n are real sequences andp~\(f) = 0. Then, there exists a positive 
measure with respect to which the polynomials (pn)n are orthonormal. 

As the main result in this paper, we extend Favard's Theorem establishing a close 
relationship between orthogonality with respect to a positive definite N x N matrix of 
measures and (27V + l)-term recurrence relations: we say that a sequence of polynomials 
(pn)n for which dgr(pn) = n satisfies a (symmetric) (2N + l)-term recurrence relation if 
the following formula 

N 
(1 .3 ) fpn(t) = CnfiPnit) + J2{Cn,lPn-l(0 + Cn+lJpn+i(t)) 

l=\ 

holds, where (cnj)n are real sequences for / = 0 , . . . , TV and pi(t) — 0 if / < 0. 

THEOREM 1. Let (pn)n be a sequence of polynomials for which dgr(pn) — n and 
which satisfies a (2N + \)-term recurrence relation. Then there exists a positive definite 
N x N matrix of measures with respect to which the polynomials (pn)„ are orthonormal. 

Here, we should compare this theorem with the results in [D]. There, we proved that 
the operator of multiplication by tN is symmetric for an inner product B if and only if B 
is the inner product defined by aN xN matrix of measures. Let us note that the operator 
of multiplication by tN is symmetric for B if and only if the sequence of orthonormal 
polynomials for B satisfies a (2N + l)-term recurrence relation. However, in [D], we did 
not give any positivity conditions on the matrix of measures p, as Theorem 1 gives. These 
positivity conditions on the matrix of measures are essential to extend the inner product 
from the space of polynomials to a Hilbert space of functions. Thus, for a positive definite 
NxN matrix of measures fi = (fiij)?j=l, we consider the Hilbert space (which is denoted 
also by L2(fi)) of vector valued functions/: (R —̂  C^ for which there exists a sequence of 
simple functions (</On, <j>n — ((/>n,\, • • •, <l>n,N) which tends p^ a.e. t o / for ij = \,...,N 
and which is a Cauchy sequence with respect to //, i.e., 

N r   

E / (<M0 ~ KÀ*)) {<t>nj(t) - Kjif)) ^ y W —> °> n,m->oo. 

The space of scalar polynomials P is included in this Hilbert space of vector valued 
functions by using the operators /?w,m: 

RN:P^L2(ti) 

P^(RN,m(p))N
mZl 

Hence, we have that the operator R^ is an isometry between the linear space of scalar 
polynolmials P (with the inner product defined by the positive definite matrix of measures 
p) and the subspace of vector valued polynomials P^ of L2(/x). 
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To complete this paper, we apply Theorem 1 to prove new asymptotic properties of the 
kernel polynomials associated with a positive measure. Indeed, let (p„)n be the sequence 
of orthonormal polynomials with respect to a positive measure p. The kernel polynomials 
are defined by kn(z, w) = Y%=oPk(z)Pk(w). The following asymptotic property for these 
kernel polynomials is very well-known: for every x £ R 

———:——— = sup(z/({x}) : v is a positive measure with respect to which the 
y^oo jy (x)\ 

n=0 n polynomials (pn)n are orthonormal J. 

But similar formulas for x E C \ R or for the derivatives of the polynomials do not seem 
to be known. Here we shall show such formulas: for a positive measure p, let us put 

Ap = {y : v is a positive measure which defines the same inner product on P as p }. 

Let us put Bp for this inner product, i.e., Bp(p, q) = Sp(t)q(t) dp. For v £ Ap and iVGN, 
we define the measures i/tj as follows: if TV is odd then i/ij = i/, and if N is even, then vixj 

is the measure with support in [0, +oo) defined by VQ(A) — i/(A)+(— 1 )l+j v(—A). Now, we 
set pvjj the measure with density t ^ with respect to the image measure i/f. = Vij4>~1 

where -0(f) = t*. Then it is not hard to see that the matrix of measures pv — (pl/jj)^j=l 

is positive definite and that its associated inner product B^v (see (1.2)) is just the same 
as Bp. This means that orthogonal polynomials with respect to a positive measure are a 
particular case of orthogonal polynomials with respect to a positive definite matrix of 
measures. It should be noticed that it could be possible that the inner product Bp was 
obtained from another positive definite N x N matrix of measures a different from those 
pv,v G Ap defined above. Actually, such a matrix of measures plays a fundamental role 
in understanding the behaviour of ^ , L xn for x E R, or ^ , \—^ for w satisfying 

v / = — 1 andx G R. To illustrate this, we mention the following results: 

E | 1(0)|2 = sup{M22({0}) - S S 1 ^ M = (M,)^ , is a positive defi-
" n ' nite 2 x 2 matrix of measures with respect to which the 

polynomials (pn)n are orthonormal J 

-^ ^suplminj / ind-x 2 }) , ^ u ! j ^ ^ '• /i = 
(pijjfj={ is a positive definite 2 x 2 matrix of measures with 

respect to which the polynomials (pn)n
 a r e orthonormal}. 

Thus, this theory of orthogonal polynomials with respect to a positive definite matrix 
of measures is going to be interesting not only for its own sake, but also because of their 
applications to the classical theory. Here, we should say that in a subsequent paper, a very 
close relationship between polynomials satisfying a (27V+ l)-term recurrence relation and 
N x N matrix orthogonal polynomials will be established. 

In Section 2, we have put together some basic definitions about recurrence relations 
and inner products. Section 3 contains an extension of Theorem 1, its proof and some 
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remarks about density of polynomials in the Hilbert space L2(}i) for a positive definite 
matrix of measures \i. Section 4 contains some results about positive semidefinite ma
trices. Section 5 contains the results about kernel polynomials mentioned above and the 
extensions of these results for orthonormal polynomials with respect to a positive def
inite matrix of measures. Finally, Section 6 contains some examples. Thus, we show a 
new family of Brenke type polynomials which are orthogonal with respect to a positive 
definite 2x2 matrix of measures. They show that the class of Brenke type polynomials 
which are orthogonal with respect to a positive definite 2 x 2 matrix of measures is wider 
than that of Brenke type polynomials orthogonal with respect to a positive measure (see 
[Ch, p. 167]). 

2. Preliminaries. As usual, P will denote the linear space of complex polynomials. 
It is well-known that there is a bijection between inner products B defined on P and posi
tive definite Hermitian matrices (aij)ij which are characterized by An = d e t f ^ ) " • 0) > 
0 for all n G N. In fact, this bijection is given by CIQ = B{t\ tj). 

We can obtain an expression for the sequence of orthonormal polynomials (pn)n with 
respect to an inner product B: 

«0,0 • ' ' #0,« I 

fl/i-1,0 * ' • 0« - l ,n 
1 ••• f I 

The inner product B can be defined from its sequence of orthonormal polynomials (pn)n as 
follows. Ifp(t) = £„ ocnPn(t) and4(f) = Un PnPn(t), then B(p, q) = £„ anJ3n. Conversely, 
every sequence of polynomials (pn)n for which dgvpn = n defines a unique inner product 
B by putting B(p, q) = £„ anJ3n, if p(t) = £„ anpn(t) and q(t) = £„ pnpn(t), so that (pn)n 

are orthonormal with respect to B. 
Let h be a real polynomial of degree N. We say that the sequence of polynomials (pn)n 

with dgrpn = n, satisfies a (symmetric) (2Af + 1) term recurrence relation defined by h if 
the following formula holds: 

/v 
(2. 1) h(t)pn(t) = Cnj0Pn(t) + Yj{Cn,lPn-l(t) + Cn+Upn+l(tj), 

1 = ] 

where (cnj)n are real sequences for / = 0 , . . . , N (of course, if / < 0 then cnj = pi = 0). 
Because of the condition on the degree of the polynomial pm we have cn^ ^ 0 for 
all n G N. Let us notice that forN= 1 and h(t) = t, we get the classical three term 
recurrence relation which characterizes the orthonormal polynomials with respect to a 
positive measure. 

It is not hard to see that the inner products whose sequence of orthonormal polynomi
als satisfies a (27V + l)-term recurrence relation defined by a polynomial h are the same as 
those for which the operator of multiplication by h is symmetric, i.e., BQip, q) = B(p, hq) 
for all /?, q E P. We shall use this fact often. 

Pnit) = 
A/A„_IA„ 
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For a real number x, we consider the basis of P given by 

{(t - xfhn(t) : k = 0 , 1 , . . . ,N - 1, n > 0}. 

For a non-negative integer m, for which 0 < m < N — 1, we define the operators Rh,x,m 
by 

(2.2) tfft,,,m(p)=£ am,n(t ~ xf if MO = £ «*„(* " xfh{t)n. 
n>0 *=o,i N-i 

Let us notice that for h(f) = (t — x)N 

(nN+m)( \ 

„ (nN + m) ! 

For x = 0 and /i(f) = ̂  these operators coincide with the operators /?/v,m defined in the 
Introduction of this paper. 

From [D] we get, after a straightforward reformulation, the following orthogonality 
conditions for a sequence of polynomials satisfying a (2N + 1 )-term recurrence relation 
defined by the polynomial h: 

THEOREM A. Let (pn)n be a sequence of polynomials for which dgr(pn) — n and 
which satisfies a (2N + \)-term recurrence relation like (2.1). For every real number x, 
there exists a N x N matrix of measures such that the bilinear form defined by 

(2.3) B^(p,q)= J2 J Rh,x,m-\(p)Rh,x,m'-\(q)dlim.m> farp^qe 

is an inner product on P and (pn)n is the sequence of orthonormal polynomials with 
respect to B. 

According to this theorem, we define 

DEFINITION 2.1. An inner product B is said to be (h, x)-defined by the matrix of mea
sures \i = (/x/jO^jif it is defined from this matrix of measures by the expression (2.3). 
For h(t) = (t—x)N, we will say x-definedby /i, and for h(t) = P and* = 0 we simply say 
that B is defined by the matrix of measures \i. Analogously, the orthogonal (orthonormal) 
polynomials with respect to this inner product B are said to be (h, x)-orthogonal (f/z, x)-
orthonormal), x-orthogonal (x-orthonormal) if h(t) = (t — x)N or simply orthogonal 
(orthonormal) if h(t) = tN and x — 0, with respect to the matrix of measures [i. 

With every (27V+1 )-term recurrence relation like (2.1 ), we associate a (2N+1 )-banded 
infinite symmetric matrix by putting the sequences (cnj)n which appear in the recurrence 
relation on the diagonals of the matrix, i.e., we define the matrix J = (jn,m)n,meN by 

• _ • f cmax{n,m},|«-m| i f \n ~ m\ <N 

Um~ 0 if In — ml > 
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This matrix will be called the N-Jacobi matrix for the recurrence relation (the classical 

case corresponds to N = 1). It should be noticed that this TV-Jacobi matrix J does not 

depend on the polynomial h which appears in the recurrence relation. We say that / is the 

(/z, iV)-Jacobi matrix associated with a sequence of polynomials (pn)n which satisfies the 

(2N+ l)-term recurrence relation defined by the polynomial h if / is the N-Jacobi matrix 

for that recurrence relation. 

It should be noticed that given a (27V + l)-banded infinite symmetric matrix, J for 

which jntn+N i1 0, n G N, a real polynomial h of degree N and a set of N polynomials 

(pn)n=o w* t n dgr/?tt < n,one can define a sequence of polynomials (pn)neN which satisfies 

a (2N + 1 )-term recurrence relation defined by h and for which the N-Jacobi matrix is 

J. Only when dgrpn = n for n = 0 , 1 , . . . , Af — 1 (and since dgr h = N, that implies 

dgr/?„ = « for all n G N), this sequence of polynomials is the sequence of orthonormal 

polynomials (h, 0)-defined by a matrix of measures p. 

3. Orthogonal polynomials with respect to a positive definite matrix of measures. 

As we wrote in the introduction, since the matrix of measures which appears in Theo

rem A (see Section 2 of this paper) have no positivity conditions, one does not expect to 

be able to extend the inner product from the space of polynomials P to a space of func

tions which should be complete for the topology generated by this inner product. So, first 

of all, we improve Theorem A by giving a positivity condition on the matrix of measures 

which will show to be sufficient in order to extend the inner product to a natural Hilbert 

space of functions. 

THEOREM 3.1. Let h be a real polynomial of degree N, x a real number and (pn)n a 

sequence of polynomials for which dgr(/?n) = n and which satisfies a (2N+\)-term recur

rence relation defined by the polynomial h (see (2.1)). Then there exists a positive definite 

N x N matrix of measures \x such that the polynomials (pn)n are (h,x)-orthonormal with 

respect to \i. 

PROOF. Let us consider the Hilbert space of complex square summable sequences 

£2, and the N-Jacobi matrix J for the recurrence relation of the sequence of polynomials 

ipn)n- We also p u t / for the operator defined by this matrix on I1 with domain the subspace 

of finite sequences, i.e., 

J: I2 -> I2 

j((an)n) = (ao,au...)J. 

Because the matrix J is symmetric, / is a symmetric operator with dense domain. As 

usual, (en)n will denote the canonical basis of I2. 

In the space of polynomials P, we consider the inner product B defined by the sequence 

of polynomials (pn)n, i.e., B(p, q) = En otn(3n if p(t) = En ocnpn(t) and q(t) = E« PnPntt). 

Then the operator T:P —> I2 defined by Tip) — 52nanen if pit) = T,n<*nPn(t) is an 

isometry from the linear space of polynomials P endowed with the inner product B to the 
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domain of J (i.e., the linear subspace of finite sequences), and from the {IN + l)-term 
recurrence relation defined by the polynomial h, it follows that 

(3.1) T~xoJoT=h 

on P. 

We define the operator %^ = J + xld (Id is the identity operator) in I1 with domain 
the subspace of finite sequences. Clearly, Ĉ is symmetric with dense domain, and since 
the (2N + l)-term recurrence relation has real coefficients, the deficiency indices of %, 
are equal ([DS], p. 1231), so %^ has a selfadjoint extension, which we denote by 9Q as 
well. Let us put E for the resolution of the identity of the operator %^. Finally, we put 
*m — T{(t — x)m~l) for m = l,...,N, and define the matrix of measures \i — (/i^-)^=1, 
by /x/j = EXijj for ij = 1, . . . , N. 

Firstly, we are going to prove that /i is a positive definite matrix of measures. Let A 
be a Borel set. For a\,...,a^ complex numbers, we put u — Yln=\ an*n- Then we have 

N N 

£ ociâjiiij(A) = J2 ociâjEXiiXj(A) = EUiU(A) > 0. 

The last inequality follows because E is a resolution of the identity, and so the measures 
EUM are positive for all u G I2. Hence, the matrix of measures \i is positive definite. 

Finally, we prove that B is the inner product (h, x)-defined by \i. Let us put p(t) = 
(t~x)kh(t)n and q(t) = (t - xf h(t)n' for0 < k,k' < N-1 and n, ri G N. Then, from the 
definition (2.2) of the operators Rh,x,m, (3.1) and the definition of the matrix of measures 
/i, we have 

X ] / Rh,x,m-1 (pWh,x,m'-1 (<?) d[lmrf 
m,m'=\J 

= /*/u*((* - x)kh(t)n)Rh^((t - xfh(tf) d/z*+1,*/+1 

= J(t-x)n+n'diik+w+l 

= J(t-xT+»'dEXk+uXk/+{ 

= </" + ^ + 1 , ^ + 1 > = (^T((t-x)k),T((t-xf)) 

= (T((t-x)k)h(t)n+n\T((t-x)k')) 

= #((* - x)kh(t)n+^9 (t - xf) = fl((r - *)*/!(*)*, (r - xfhiff') 

= B(p(tlq(t)). 

Since (r — x)kh(t)n, k = 0, l,...,N — 1, n G N is a basis of P, the theorem is proved. • 
The positive definiteness condition on the matrix of measures allows to us to extend 

the inner product for simple functions: 
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LEMMA 3.2. Let \i — (IHSHJ=\ be a positive definite matrix of measures. Then 

(3.2) EjMtW)^iAt)>0 

for all simple functions f , . . . ,fy. 

PROOF. We can write f(t) = E j ^ " 1 ajxAj(t), fori = 1,2,... ,N and 0 = wj < 
Ai2 < • < ft/v+i. Let us denote J3 the set of all subsets of {0,1,2, . . . , n^+\}. For every 
B E .#, we put C# = PlmGjgAm \ (Um^Am). It should be noticed that for B ^ B\ CB and 
Çfi/ are disjoint. So, it is clear that Aj = ^{Be&-j£B}CB, j — 0 , 1 , . . . , n^+i and the sets 
which appear in these unions are disjoint. Hence, we can write f(t) = T,Beiïai,BXcB(0 
for certain numbers a^B. From this decomposition, we get 

N r N r  

£ fi(f)fj(t)dfiij(t)= X) E aUB(t)ahB(t)xcB(t)d^(t) 

N 

= E E ai,BâjB~pij(CB). 
Bettij=\ 

Since the matrix (i is positive definite, we get for every B E A that E ^ i ai,Bâj,BHij(CB) > 
0, and so (3.2) holds. • 

Now, we can define the space L2(/x) of vector valued functions 

DEFINITION 3.3. Let /z = (/iy)^=1 be a positive definite N x N matrix of measures. 
We say that a function/: R —» C^ belongs to the space L2(p) if there exists a sequence of 
simple functions (<£w)w, <£w = {(j>n,\, • • •, <?W) which tends /i,y a.e. t o / for / j = \,...,N 
and which is a Cauchy sequence with respect to \i, i.e. 

N , 

lim Yl / (<̂ ,iW ~ 4W«) (<M0 - <M')) dfrjit) = 0 

For/, g E L2(/i) and (</>„)„, C0w)w two Cauchy sequences with respect to \x which tends 
to/ , g /i a.e. as « tends to infinity respectively, we put 

N r 

(f,g) = lim £ / (t>n,i(t)i>nAt)dfjLij(t) 

From Lemma 3.2, it follows that (•, •) is an inner product on L2(p) possibly degenerate, 
i.e., {/",/) > 0 for all / E L2(/x), although (f,f) = 0 does not imply/ = 0. 

REMARK 3.4. In the literature we can find other definitions for the space L2(̂ x) (see 
[R]) which we recall here. If /i = (/iy)^=1 is a positive definite matrix of measures, then 
the measures on the diagonal in,h / = 1,... ,N are positive; moreover, all the measures 
Hi j are absolutely continuous with respect to the positive trace measure r{p) = £/Li Hu-
We put 0 < <j>ij < 1 for the Radon-Nikodym derivative of the measure ynj with respect 
to the trace measure r(^x), then, a vector valued function/ = (fi)f=l belongs to L2(/i) if 
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and only if the functions fifjfaj are integrable with respect to the trace measure r(p). Put 
(/",/) = E^= i Jfi(t)fj(t)(j)ij(t)dT(fi)(t), then this inner product defined on L2(//) coincides 
with the one defined above. 

Of course, in L2(/z), we identify/ and g if (f — g J — g) = 0 which is equivalent 

(via the Cauchy-Schwarz inequality) to E£Li(/H0 — £/(0)</>/j(0 = 0 r(/i)-a.e. for all 

7 = 1, . . . , TV. The functions for which (/*,/) = 0 can be characterized in a simple way. 

Let t G supp(r(/x)); if det(<£;j(0). =1 = 0, we put 4>\(t),..., 0m(O G CN for a basis of 

the subspace of eigenvectors of the matrix (</>/j(0) , corresponding to the eigenvalue 

A = 0, and Vwi(0 = • • • = Vw(0 = (0 , . . . , 0). If det(<£lV(f)). =1 > 0 or tg supp(r(/i), 
we put -01 (0 = • • • = V>AK0 = (0 , . . . , 0). Then it is not hard to see that {/",/) = 0 if and 
only iff = E/Li aiiOipiiO for certain measurable functions a,-: R —• C. 

For I E R and h a real polynomial of degree TV, it follows from the previous remark 
that the following conditions are equivalent: 

i) The inner product (h, jt)-defined by a positive definite NxN matrix of measures p 
on the space of complex polynomials P by the expression (2.3) is a nondegenerate 
inner product, i.e., B^(p,p) = 0 if and only ifp = 0. 

ii) Given any measurable functions at: R —> C, / = 1,.. . ,7V, if the restriction of 
the components of the function J2?=\ a; (00/(0 t 0 s up( r(/0) coincides with the 
restriction of certain polynomials rj,j = 1,...,TV then r7 = 0, j — 1, . . . , TV 
(where 0/ are the functions associated with /x defined above). 

REMARK 3.5. (i) The degenerate inner product of discrete Sobolev type B(p, q) = 
Mpim)(x)q{m)(x) can be represented by a positive definite matrix of measures. Let TV be a 
non-negative integer greater than m and h a real polynomial of degree TV for which x is a 
root of multiplicity m + 1. For a polynomial p G P, we can write 

P(t)= £ ak„(t - x)khn(t) 
0<k<N- 1 

and since x is a root of multiplicity m + 1 for /i, and m < TV, we get//m)(x) = m\am$. 
Then, if we put 

( 0 if 1 < ij < TV, ior y ^ m + 1 
^iJ ~~ \Mm\26x if/,y = m + l 

from (2.2) and (2.3), it follows that the inner product (h, x)-defined by p is B(p,q) — 
Mp{m\x)qW(x). 

(ii) The case m = 0 i.e., the Dirac delta 8X can be represented using another different 
positive definite matrix of measures. Given TV G N, y G R and h a real polynomial of 
degree TV, then the degenerate inner product B(p, q) — p(x)q(x) is (h, y)-defined by the 
positive definite matrix of measures \x = (/Xy)/j=i where ptj = (JC — j)'+;-25/j(X)+v for 
ij = 1,...,TV. 

REMARK 3.6. Theorem 3.1 gives a positive definite TV x TV matrix of measures /i 
for which a sequence of polynomials (pn)n satisfying a (2TV+ l)-term recurrence relation 
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defined by a real polynomial of degree N, is (h, x)-orthonormal. Now we prove that the 

space of polynomials P^ is dense in the Hilbert space L2(/i) for this matrix of measures \i 

which Theorem 3.1 provides. Indeed, let E be a resolution of the identity for the operator 

defined by J + x Id, / being the N-Jacobi matrix. Since for every Borel set A the operator 

E(A) is a projection, we have that the measure with density \A with respect to EKW is just 

Eu,E(A)w for any w, w E £2. For A; E N and by using the equality (3.1), we get that 

N 
(3. 3) ek = Y,Rhsj-iPk(J + xId)xj9 

7=1 

where Xj = T[(t — xy~l) (as in the proof of Theorem 3.1). If A i , . . . ,AN are Borel sets 

on R, we put/(f) = (XA,(0> • • • » XA^(O) £ L2([JL). The density of polynomials in L2(^x) 

would follow if we prove the Parse val identity for the function/. Now, in t1 we have for 

i,j=l,...,N 

(E(AinAj)xhXj) = (E(Ai)Xi,E(Aj)Xj) = J2(E(Ai)xi,ek)(ek,E(Aj)xj) 
keN 

for i,j = 1 , . . . , A'. But from the definition of the matrix of measures \i, we have 

/ 
JAiDAj 

(E(AtnAj)xhXj) = JA^ dEXiiXj = JxAiXAjdfiij. 

Hence 

(3.4) B(fj) = E / XAXAJ dfHj = E E < £ ( ^ > **><**> W * / ) -

But from (3.3) and previous considerations, we have 

(E(Ai)xhek) = (E(Ai)Xi,^2RhiXj-ipk(J + xld)xi) 

N 

E / Rhs,i-iPk(t) dEXitXl 

E / XAiRhjj-iPkiOdnij 
TV 

I 
l=\ 

Hence (3.4) gives 

N , N 

Bifj) = E E ( E IxA^j-ipMd^j) 
k ij=\ yl=\J J 

X ( E [RhsJ-lPk(t)XAj dlltj) 
v / = l J y 

= E E / XAiRhjj-iPkWdp,^ 
k >ij=l-

= H\B(f,Pk)\\ 
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that is, the Parse val identity for the function/. • 
The converse of this result is also true, i.e., every positive definite N x N matrix 

of measures \i for which the polynomials are dense in the Hilbert space L2(p), can be 
reached from a resolution of the identity E for the operator defined by J+x Id (J being the 
A -̂Jacobi matrix) in the space I1. That means that the operators E(A) are projections for 
any Borel set A if and only if the polynomials are dense in the Hilbert space L2 (/i) where p 
is the positive definite NxN matrix of measures defined from E as in Theorem 3.1. Hence, 
we have that if the inner product defined by a positive definite NxN matrix of measures 
[i on the space P determines this matrix of measures (for N = 1 this means that the 
moment problem defined by the positive measure is determinate) then the polynomials 
are dense in the Hilbert space l}{\i). 

Indeed, given the positive definite N x N matrix of measures \i = (M/J)/J=I> f° r a n v 

Borel set A we define the operator E(A) by 

N , 
{E(A)Tp,Tq) = J2 / Rh*j-\{p)Rhsj-\(q)diHj 

ij=\JA 

for all polynomials/?, g G P, that is, if weput/M(0 = {RJw-\(p)(t)XA(t)) j=l N G E2(^i) 
forp G P, we have (E(A)Tp, Tq) = B(fp^,fq^). Thus, we have defined the operator E{A) 
on the subspace of finite sequences belonging to I1. Since 

\(E(A)Tp,Tq)\ = \B(fpAJqA)\ 

<\B(fpAjpA)\^B(fqA,fqA)\± 

<(B(p,p)B(q,q)){ = ||7>||,2||r,||£2, 

we can extend the operator E(A) to the whole space I1. 
To prove that E(A) is a projection, it will be enough to show that 

(E(A)E(A)ehej) = {E(A)ehej) 

for all ij e N.But 

(E(A)E(A)el,eJ) = (E(A)el,E(A)eJ) 

= J2(E(A)e»ek)(ek,E(A)ei) 
k 

= Y,(E(A)TPl,Tpk)(TphE(A)TPj) 
k 

= EB(fPlA,Pk)B(pkJPlA). 
k 

But the polynomials are dense in L2(/i), so using the Parseval equality, we get 

(E(A)E(A)ei,ej) = B(fPiA,fPjA) 

= B(fPlA,Pj) 

= (E(A)Tpl,TpJ) = (E(A)ei,eJ). 
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4. On positive semidefinite matrices. In this section, we prove some results on 
positive semidefinite matrices, which we shall need to establish the behaviour of the 
kernel polynomials in the next section. They are interesting in their own right, although 
the reader in a first reading may skip over and return to them after Section 5. 

We start with the following lemma concerning the determinant of certain matrices 

LEMMA 4.1. Let A,B,C be the finite matrices A = (cijj)fj=,, 

(4.1) 

/ 0 x\ ••• xN\ 

y\ 

: A 
\yN ) 

and C = (fl/j — Mxiyj)^j=lf where fl/j, */,)>/ and M are complex numbers. 
a) The following identity for the determinants of A, B, C holds 

det A = -Mde t£ + detC. 

b) Ifyt = Xf, i = l,...,N, yi0 7̂  Ofor certain /o and the matrix A is positive definite 
then det B < 0. 

PROOF. Part a) of this lemma is straightforward. 
Now, we prove part b). Since the matrix A is obtained from B by deleting the first row 

and first column, the inclusion principle ([HJ, p. 189]) gives that 

j3i > <*i > (32 > a2 > • • • > pN > aN > (3N+{ 

where the a's and /3's are the eigenvalues of A and B respectively. Since the matrix A is 
positive definite, we get that the matrix B has at most one eigenvalue less than or equal 
to zero. If all the eigenvalues of B are non-negative, the matrix B would be positive 
semidefinite and since this is not the case (yi{) ^ 0 for certain /Q), B has one eigenvalue 
negative and the other ones are positive, hence det B < 0. • 

The following lemma establishes a criterion for positive semidefiniteness. Since we 
have not found this in the literature, we are including a proof 

LEMMA 4.2. Let A = (a,j)?Li be a Hermitian matrix and Am (\ < m < N) 
the matrix obtained from the first m rows and the first m columns of A. Let rm(X) = 
det(Am — XI) be the characteristic polynomial ofAm, and let nm be the smallest natural 
number for which r^w)(0) =̂  0. Then A is positive semidefinite if and only if 
(-1 fm r%"'\0) > Ofor every m = 1, . . . , N. 

PROOF. If A is positive semidefinite then every Am also is. Write 

rm{\) = (-A)"" IT(^ - A) 

where oct > 0, then we get (-\)nmr%m)(0) = nm\Ui oct > 0. 
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To prove the converse, we shall prove by induction that every Am (1 < m < N) is 
positive semidefinite and so A = A# also is. For m = 1 it is clear. Now, let us assume Am 

to be positive semidefinite. Since Am is obtained from Am+\ by deleting the last row and 
the last column, the inclusion principle gives that if ft > • • • > ft, 7i > • • • > 7m+i are 
the eigenvalues for Am, Am+\ respectively, then 

7i > ft > 72 > ft > • • • > /3m-1 > 7m > ft > 7m+i. 

Since Am is positive semidefinite, it follows that ft > 0, and so 7i > • • • lm > 0- If 
7m+i < 0, we could write rm+](X) = ( - A f - nJiT"*'^/ - A)(7m+i - A), then 

m — « w + i 

(-l)n"+,rm^ , )(0) = nw+1! I I 7 i7 w + i<0 . 

But from the hypothesis (— l)rtm+lr^j (0) > 0, so 7m+i > 0 and Am+\ is positive semi-
definite. • 

Finally, the next two lemmas establish two criteria to preserve positive semidefinite -
ness under certain perturbations on positive semidefinite matrices. 

LEMMA 4.3. Let A = (tf/j)";=1 be a positive semidefinite matrix, and Am ( 1 < m < 
n), the matrix formed by deleting row m and column m from A, and let r(X), rm(X) be the 
characteristic polynomials of the matrices A, Am respectively. For a real number M, we 
define the matrix B = (bij)?j=l by 

atj ifiorj^m 
anhm-M ifi=j = m. 

Then the matrix B is positive semidefinite if and only if 

r(X) 
M< lim 

A-orm(A)' 

PROOF. Let us set a\ > • • • > an-\ for the eigenvalues of Am and ft > • • • > ft 
for the eigenvalues of A. The inclusion principle gives 

ft > <*i > ft > a2 > • • • > ft_! > «„_, > ft, 

and since a,-, ft > 0 (/ = 1, . . . , n — 1 and y = 1, . . . , n) (because both A, Am are positive 
semidefinite), we get that if r^(0) = 0 then r^(0) = 0. Hence, if we put k for the smallest 
natural number for which r^}(0) ^ 0, we obtain 

,. r{X) r(k\0) 
h m — — — T - — . 

A-o rm(X) r^CO) 

Let us put 7i > • • • > ln for the eigenvalues of Z?, s(X) for its characteristic polyno
mial and / for the smallest natural number for which s(/)(0) ^ 0. Since Am is also the 
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matrix obtained by deleting row m and column m from B, again by applying the inclu

sion principle we get that |/ — k\ < 1. And from the formula s(X) = r(X) — Mrm(X), we 

conclude that / = k or / = k + 1. From Lemma 4.2, we get that B is positive semidefi-

nite if and only if ( - l )V / } (0) > 0. Let us assume M < limA^0 jjty that is M < ^ . 

If / = k + 1, automatically, ln = 0 and so B is positive semidefinite. If / = k, then 

( - l )^ ( / ) (0) = (-1)M*>(0) - (-l)kMr(k)(0). Since Am is positive semidefinite we have 

(-l)*rW(0) > 0, hence ( - l )V / } (0) > (-\)kr(k)(0) - (-\)kr{k)(0) = 0, and so, B is 

positive semidefinite. 

Conversely, assume B to be positive semidefinite. If / = k + 1, then sik)(0) = 0 = 
Jk) (0) - Mr^(0) , and so 

,(*), 
M = 

(0) 
= lim 

r(X) 

r(m\0) A-,0 rm(X) 

If / = k, (—1)^^(0) > 0 since B is positive semidefinite i.e., 

(-\)kr{k)(0) - ( - l )*Mr^(0) > 0, 

and again using that (—1)^^(0) > 0, we get 

M(0) v r(A) 
M < 

^ ( O ) 
lim 
A-orffl(A) 

and the lemma is proved. • 

LEMMA 4.4. Let A — (#;,/)?/= i ^ fl positive semidefinite matrix. Forx\,..., x^ G C, 
x\ 7̂  0, we consider the matrix 

B 
x\ 

\XN 

X] *N\ 

I 
For m, 1 < m < N, we set rm(X) for the characteristic polynomial of the matrix An 

(aij)Tj=\ and Sm(X)for the polynomial 

sm(X) — 

x\ 

XI 

Then, for a real number M, the matrix C = (ajj — MXJXJ)^J=1 is positive semidefinite if 

and only if 

M < lim — : m 
A-0 Sm(X) 

,N 

PROOF. We prove that the conditions 

(4. 2) sm(0) = ^ ( 0 ) = • • • = $ ( 0 ) = 0 imply rm(0) = r'm(0) = = d?(0) = o. 
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We proceed by induction on /. Let us set Bm for the matrix obtained from the first m 
rows and the first m columns of B, and let pm be the characteristic polynomial of this 
matrix. We have that sm(X) = pm(X) + Xrm(X). Since the matrix Am is obtained from Bm 

by deleting the first row and first column, the inclusion principle gives 

(4.3) px > a, > fc > a2 > • • • > (3m > am > (3m+u 

where the a's and /?'s are the eigenvalues of Am and Bm respectively. Since Am is positive 
semidefinite and Bm is not positive semidefinite (x\ ^ 0), we get that f3m+\ < 0. Hence, 
if rm(0) > 0, (4.3) gives pm(0) < 0 and so sm(0) < 0. This proves the case / = 0. 

Let us assume sm(0) = s'm(0) = • • • = 5^(0) = 0. The induction hypothesis gives 
rm(0) = r'm(0) = • • • = r^-1}(0) = 0. Hence, since sm(X) = pm(X) + Arm(A), we get 
p%(P) = 0,y = 0 , . . . , / and so from (4.2) (because (5m+\ < 0), we get r^(0) = 0. 

Now, if we put lm for the smallest natural number for which ^w)(0) ^ 0, we get 

(4.4) l i m ^ = f ^ . 

Let us put km(X) for the characteristic polynomial of the matrix (atj — MxiXj)™- \, and nm 

for the smallest natural number for which &^w)(0) ^ 0. From Lemma 4. la), we get that 
km(X) = rm(\) + Msm{\). So from (4.2), it follows that 

(4.5) lm<nm. 

Applying Lemma 4.1b) several times, we have that if À < 0 then (— \)'s(^(X) < 0 for 
0 < / < m - 1. Hence 

(4.6) (-1 )ls%(0) < 0 if 0 < / < m - 1. 

From Lemma 4.2, the matrix C is positive semidefinite if and only if (— 1)W 'M^ ,M)(0) > 0 
for m = 1, . . . , N. Let us assume C to be positive semidefinite. From (4.5), we have 

0 < ( - l / ^ ^ O ) = (-\j»'r^\0) + M(-\)l'\sy(0). 

So from (4.6) and (4.4), we have 

A,^ ^ ( 0 ) r rm(X) 
Sm(0) A-4) Sm(X) 

Conversely, from the continuous dependence of eigenvalues on matrices, it will be 
enough to assume M < — lim^o j ^ for m — 1, . . . , N. Since 

( - 1 ) ^ ( 0 ) = ( - l ) / -A ) (0) + M(-l) /" '^ ) (0) , 

from (4.4) and (4.6), we get (—ifrk^iO) > 0. So, (4.4) gives lm = nm and the lemma 
is proved. • 
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5. The behaviour of kernel polynomials and their derivatives. Given an inner 

product B defined on the linear space of polynomials P, and its sequence of orthonormal 

polynomials (pn)n, the kernel polynomials are defined by 

kn(z, w) = Y, Pk(z)Pk(w) for z, w G C. 

If we put dij = B(t\ f), and An = det((fl;j)"-=0) we obtain the following expression for 

these kernel polynomials: 

0 1 z ••• zn 

1 «0,0 «0,1 • ' • «0,« 
w a\,o «1,1 ••• a\tn (5.1) kn(Z,w) 

1 

&n,n 

In this section we are going to study asymptotic properties for the kernel polynomials 

associated to an inner product defined by a positive definite matrix of measures /z. 

For an inner product defined by a positive measure p, these kernel polynomials have 

an interesting asymptotic property: the number ^ •x , ,2 for x G R, is just the maximum 

mass that can be concentrated at the point x in a distribution of mass on the axis for which 

the polynomials (pn)„ are orthonormal (see [A], p. 63). 

It is also well-known that if there exists more than one measure for which (pn)n are 

orthonormal, then 

i pr > 0 for all x G C. 
En \Pn(x)\2 

But, a precise interpretation for this series when x $ R does not seem to be known. 

Similar properties for the derivatives ^ , L Nl9 are also not known. 
• E„ \Pn WP 

Here, we shall show such formulas. For Â  a non-negative integer the value of the 
series -, and v (yv) , ^x« ^ . |2 where w satisfies w^ = — 1, will depend on the positive 

definite N x N matrices of measures for which the polynomials (pn)n are orthonormal. 

We extend these results for the kernel polynomials associated to an inner product defined 

by a positive definite matrix of measures fi. 

Our starting point is the following lemma: 

LEMMA 5.1. Let B be an inner product defined on P. For m a non-negative integer 

andz a complex number, we consider the set $m^ of real numbers M for which the bilinear 

form BM defined by BM(p, q) = B(p, q) - Mp(m\z)q{m\z) is an inner product (possibly 

degenerate) on P, i.e., BM(p,p) > Oforp G P. Then 

1 
(5.2) sup(Bm 

E„ |/T(z)|2 

where (pn)n are the orthonormal polynomials with respect to B. 

PROOF. Let Mbe a real number in %n,z, for which M < sup %Jhz. Then the expression 

BM(P, q) — B{p, q) — Mp{m)(z)q(m)(z) defines a nondegenerate inner product on the space 
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of polynomials P. So, the matrix (BM(t\ Ô ) . is positive definite, i.e., 

dGt(BM(fJ))n
iJ=l>0 

for all n G N. But 

BM(t\ f) = B(t\ f) - Mi(i - 1) - . . ( / - m + l)/(/ - 1 ) . . - ( / - m + l ) ^ ~ m ^ " m . 

Putting Aw = det(#(V, *0)"._,) for n > N, we get from Lemma 4.1 that M < — ̂ r for 

all n > N, where the matrices Yn are defined by (4.1), for CLQ = B{t, tj) and JC/ = yi — 

i(i — 1 ) • • • ( / — m + l)z'~m. Now, from the definition of the kernel polynomials, it follows 

that 

Then, from (5.1) we get 

±\P?W = - ^ . 
k=0 A " 

So, 

sup ^ ^ < inf ; 
- £Lol/T«l2 ££obP«l2 

To prove the converse, let Mo = ^oo \ffl) be. From Lemma 4.1, it follows that 

det(£M ( )(^ t/j)n.J=l =An+M0 det r„ 

Since I > E L o bj^fe)!2 = " ^ we get that 

det(£Mo(^', *0)".= l > 0 for n > N 

and so Z?M() defines an inner product, i.e., MQ G $m,z. Then, the proof follows. • 

Now we are ready to state an asymptotic property for the derivatives of the kernel 

polynomials associated with a positive definite matrix of measures: 

THEOREM 5.2. Let h be a real polynomial of degree N, (pn)n a sequence of polyno

mials for which dgr(pn) = n which satisfies a (2N+l)-term recurrence relation defined by 

the polynomial h. For x G R and m G N, let g be the polynomial g(t) — (h(t) — h(x)j 

Define the class 9^^ by 

J4tnj = {fi : ii is a positive definite (ra+1 )N x (m+1 )N matrix of measures with 

respect to which the polynomials (pn)n are (g,x)-orthonormal}. 

For every matrix of measures p = (Pij)(-J1\)N G j^n^, let rx^(X), rx^m(\) be the char

acteristic polynomials of the numerical matrices (pij({x})\.. and (pij({x})) ij=\ , 

respectively. Then 

1 M r MA> c a 
= sup —— hm —^—— : p G J V , T,n\p7\x)\2 rW!2A-orw(A) 
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PROOF. Let B be the inner product with respect to which the polynomials (pn)n are 
orthonormal. Form e N and x G R, let us consider the set of real numbers (B^ as in the 
Lemma 5.1, then (5.2) shows that 

sup 2 ^ . 
En IPJTOOI 2 

For M G $WvX, let us consider the inner product BM(p,q) = B(p,q) — Mp{m)q^m\x). 
Since the polynomials (pn)n satisfy a (2N + l)-term recurrence relation defined by the 
polynomial h, the operator of multiplication by h is symmetric for B, and so the operator 
of multiplication by g also is. Since g^k\x) = 0, k = 0 , . . . , ra, we get that the operator 
of multiplication by g is symmetric for BM- But that is equivalent to the fact that the 
sequence of orthonormal polynomials with respect to BM satisfies a [2(m + 1 )7V + 1 ]-term 
recurrence relation defined by g. Hence, by Theorem 3.1, there exists a positive definite 
(m + \)N x (m + l)N matrix of measures v such that BM is (g,x)-defined by v. Since 
B(p,q) = BM(p,q) + Mp(m)q(m\x), and from Remark 3.5(i), it follows that there exists 
M £ %m,x such that 

= l"ij ifiorj^m+l, 
I *Vm + Mm\2Sx if / = j = m + 1 . 

Since the matrix of measures v is positive definite, it follows that the numerical matrix 
(b^:\)N defined by 

iJ l/xm,m({^})-Afm!2 i f /=y = m + l , 

must be positive semidefinite. 
If we apply the Lemma 4.3 to the matrix (&y)-"^{)yv, we get 

1 ,:„_ ^ ( A ) 
M < —- lim 

m!2 À—o rx^m{\Y 

and hence 

Enbrwi 
= sup #m,z < sup I —y lim *,M : /x 6 J ^ 

I m!2 A-O rx „ m(A) 

Conversely, for /x G Ĵ U*, let us put M = -72 limA->o m- We shall prove that M G 
*BmyX. It will be enough to prove that the matrix of measures defined by 

M/j if * o r J 7̂  m + 1» 
Mm,m - Mm\26x if / = 7 = m + 1, 

is positive definite. That is, the numerical matrix (^/j({^})).._, is positive semidefinite. 
For this, it is enough to apply Lemma 4.3 again. • 

For orthonormal polynomials with respect to a positive measure, we then have: 
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COROLLARY 5.3. Let pbe a positive measure and (pn)n its sequence of orthonormal 

polynomials. Form G N andx G IR, we put j ^ ^ for the class 

5%n,x = {t1 '• I1 is a positive definite (m+ 1) x (ra+ 1) matrix of measures with 

respect to which the polynomials (pn)n are x-orthonormal}. 

For every matrix of measures p — (A*/V)/T=I €= -%mj> we put rX4i(X), rX4un(X) for the 

characteristic polynomials of the numerical matrices (fiij({x})j.._ and (/J>ij({x}ï).._., 

respectively. Then 

Y2n\pT\x)\ 

1 ,. rxJ\) 
= sup< —-j hm —^—— : /i G J ^ 

m!- *—o rx,n,m(X) 

For m = 0, and (/?„)„ a sequence of orthonormal polynomials with respect to a matrix 

of measures, another expression for y> , l
 )[2 can be given. 

THEOREM 5.4. Let h be a real polynomial of degree N} and let (pn)n be a sequence 

of polynomials for which dgr(pn) = n and which satisfies a (2N + \)-term recurrence 

relation defined by h. Let 51 be for the class: 

fA. — {/i : ji is a positive definite N x N matrix of measures with respect to 

which the polynomials (pn)n are (h,0)-orthonormal}. 

For every matrix of measures \x G 2L and m with 1 < m < N, we put rx^m(X) for the 

characteristic polynomials of the matrix ( fijj ({h(x)} j 1 and sX4im(X)for the polyno

mials 

*(A) = 

0 
1 
x 

y n 

M{*w}))i]=I 
XI 

Then we have 

1 

En \Pn(x)\2 sup< mm lim ' x,/i,m (A) 

\<m<N A^O S x,[L,m (A) 
\i G A 

PROOF. Let B be the inner product for which the polynomials (p„)n are orthonormal. 

For j c E i , let us put %),x for the set of real numbers which appears in Lemma 5.1, then 

(5.2) shows that 

^ i , . n = S U P ^ U En \Pn(x)\Z 

For M G *Boj we consider the inner product BM(p,q) — B(p,q) — Mp(x)q(x). Since 

the operator of multiplication by h is symmetric for the inner product B, it follows that 
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this operator also is symmetric for the inner product BM. Hence there exists a positive 

definite N x N matrix of measures v such that BM is (/z, 0)-defined by v. Since B(p, q) = 

BM(P, q)+Mp(x)q(x), from Remark 3.5(H), it follows that there exists a matrix of measures 

p G A such that 

Mv = ^V + Mxl+J~26h{x) for / J = 1 , . . . , M 

Since the matrix of measures z/ is positive definite, it follows that the numerical matrix 

(pij({h(x)}) — Mxl+J~2^. must be positive semidefinite. Hence, the Lemma 4.4 gives 

M < sup < min — lim 
r*,/i,m(A) 

and so 

En \Pn(x)\2 

J<m<N X-^0Sx^m(X) 

sup [Boj < sup < mm — hm —-— 
(A) 

l<m<yV \-*0Sx^m(\) 
:peA). 

Conversely, for / i G J l , let us put M = mini<m</v — l i m ^ o ^' (A) ' ^
e s n a ^ P r o v e m a t 

M £ %),x- It will be enough to prove that the matrix of measures defined by 

i/ij = ptJ - Mxl+J~26h{x) for iJ=\,...,N 

is positive definite. That is, the numerical matrix (/x;,/({/*(*)} — Mx / + 7 - 2)) . . is pos
itive semidefinite. For this, it is enough to apply Lemma 4.4 again. • 

Finally, we consider y, , * ,2 where w satisfies w^ = — 1 and (pn)n are the orthonor

mal polynomials with respect to a positive measure. 

COROLLARY 4.8. Let p be a positive measure and (pn)n the sequence of orthonormal 

polynomials with respect to p. Let w be satisfying wN = — 1. We set 

A = {p : p is a positive definite N xN matrix of measures with respect to 

which the polynomials (pn)n are orthonormal}. 

For every matrix of measures p € A and m with 1 < m < N, we put rX4ltn(X) for the 

characteristic polynomials of the matrix (pij({— xN})) •._. and sx^^w{\) for the poly

nomials 

^.x",/L£,m,vvvAJ 

xni~ 

(w-v-v^({-^}))r/=1-A/ xnl~ 

Then 

E„ \Pn(xw)\2 sup < min — lim 
rx,fi,m(X) 

\<m<N À-0 Sx^m,w(\) 
: p e A 

PROOF. For w satisfying w^ = —1, we define the polynomials qn(f) — pn(tw) for 

n G N. Since (pn)n satisfies a three term recurrence relation, they also satisfy a (2k + 1)-

term recurrence relation for all k > 1. Since wA = — 1, we get that the polynomials (qn)n 
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also satisfy a (2N + 1 )-term recurrence relation. Hence, from the previous theorem, it 
follows that 

1 1 ( . r rx^m{\) 
- sup min - lim x^m : p E J^((<7„)„) , 

\\<m<N \-0 Sx„mtW(\) V yJ En M*VV)|2 En \qn(x)\2 \ \<m<N A^O Sx^m^{\) 

where 

-^v((^n)«) = {M : M *s a positive definite N x N matrix of measures with respect 
to which the polynomials (qn)n are orthonormal}. 

But we have the following expression for the polynomials qn 

N—\ f n(mN+k)/ N-\ f n(m/V+/c)/n\ \ 

*=o \m (mN + k)\ J 

and so the mapping 

defined by (TN(p)ij).._ = (wl ] w7 ! Pij)^j=] (where p is the measure defined by p(A) = 

/x(— A)) is a bijection from J^v((pw)w) to J^v((^)n). Since 

d^«[(M{-^}))^, - A/]|A=0 = d^)[(*-'^VW({-^));=1 " A/]|A__0 

for all & E N, the proof follows. • 

6. Examples. In this section, we shall give some examples of orthogonal polyno
mials with respect to a positive definite matrix of measures. All these examples are close 
relatives of orthogonal polynomials with respect to a positive measure. Indeed, let p be a 
positive measure, its sequence of orthonormal polynomials (pn)n will satisfy a three term 
recurrence relation (p-\(t) = 0): 

tpn{t) = an+[pn+i(t) + bnpn{f) + anpn-\(t). 

We set J for its Jacobi matrix 

J = 

(b0 ai 0 0 0 • • • \ 

CL\ b\ Cl2 0 0 • • 

0 «2 Z?2 «3 0 • • 

\ : : : : : ' • • / 

A) DEFINITION. Let TV be a non-negative integer, and consider the matrix 7A 

N times 

J — -J which is a (2Af + 1 )-banded matrix 

JN = (Jn,m)Tj=\ where jn,m = j m , n andyn>m = 0 if |n - ra| > N. 

https://doi.org/10.4153/CJM-1995-005-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-005-8


ORTHOGONAL POLYNOMIALS 109 

Given a finite sequence (qn)n=o °f polynomials for which dgr(qn) < n, we define the 
sequence of polynomials (qn)^0 by using the (2N + l)-term recurrence relation defined 
by the matrix JN: 

N 

(6. 1) fqn(t) = E jn,n+iqn+i(t), 
l=-N 

with the initial conditions (qn)n=o dn^Jn,m = 0, <7m(0 = 0 if m < 0. 
It is clear that for qn(t) = pn(t), n = 0, . . . , TV— 1, we get the orthonormal polynomials 

(Pn)n-

Now, we give an expression for the polynomials (qn)n in terms of the polynomials 
(pn)n- Indeed, if w is a primitive N-th root of the unity, it is clear that the sequence of 
polynomials (pn(tw)) satisfies the (2N+1 )-term recurrence relation. Hence, the sequence 
of polynomials (qk,m,n)n defined by 

qk,m,n(t) = * * 7 ^ E(w-m)l
Pn(w

ltl 
Jyjt 1=0 

where m = k,... ,N — 1 and k = Q,...,N — 1 also satisfies the recurrence relation. It is 
not hard to see that 

qk,m,n(t) = fRN,m(Pn)(l ) , 

where R^m is the operator defined in (1.1). Since the vector valued polynomials 

for m = k,...,N — 1 and k = 0, . . . , TV - 1 are a basis of P0 x Pi x • • • x PN-\, and 
every sequence (^/?^v,m(Pn)(0) where m = k,...,N — l and k = 0 , . . . , TV — 1 satisfies 
the (27V + l)-term recurrence relation, we find the following expression for any sequence 
of polynomials (qn)n satisfying the (2N + l)-term recurrence relation: 

(6. 2) qn(t) = Ë Ê Slk^miPnXt"), 
k=0 m=k 

for certain complex numbers 7jt,m> k = 0,...,N — I and m = k,...,N — I. 

B) ORTHOGONALITY. Only when the initial conditions (qn)n=o satisfy dgr(qn) = 
n, the sequence of polynomials (qn)n defined by (6.1) is orthonormal with respect to a 
positive definite N xN matrix of measures. Here, we give an explicit expression for that 
matrix of measures. From the positive measure p, we define a positive definite N x N 
matrix of measures as we pointed out in the introduction, i.e., we set pij for the measures 
defined by: pij = p if TV is odd, and pij is the measure with support in [0, +oo) defined 
by pij(A) = p(A) + (— \)l+jp(~A) when TV is even. Now, we let pPtij be the measure with 
density t~ with respect to the image measure pf- = Piji/j~l where \/j(t) = ÎN . 
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Let us consider the expansion of tk, (k = 0, . . . ,N—\) in terms of the initial conditions 
( ^ " o 1 , that is 

k 

t = E <*a<7/(0-
/=o 

Finally, we write /?*(*) = £*=0 /W> A: = 0, . . . , iV — 1. 
The polynomials (pw)„ and (gw)w have the same 7V-Jacobi matrix. So, if we look at the 

proof of Theorem 3.1 and since the polynomials (p„)n are orthonormal with respect to the 
matrix of measures (^pjj)^-=l, we get that the polynomials (qn)n are orthonormal with 
respect to the positive definite matrix of measures 

/ MP,I,I 

AB 

V>p,N,\ 

PpA,N ' 

Pp,N,N > 

£*A* 

where A, B are the numerical matrices 

/ 

A = 

<*0,1 

0 

« u 

0 
0 

and 

\<X0,N-i 

Au 

PQ,N-2 

\ (3O,N- I 

<*N-2,N-2 

0 
0 

0 

0 

i9u 

0 
0 

\ 

/V 2,/V-2 0 
PN-\,N-\ I 

C) GENERATING FORMULA. From the formula (6.2), it is straightforward to find the 
generating formula for the polynomials (qn)n, assuming we know the generating func
tion for the polynomials (pn)n. Thus, if we put A(t, A) for this function, i.e., A(t, A) = 
T,n anPn(t)\n where (an)n is a sequence of complex numbers without null terms, and as
suming that 

<ln(t) = E E frksnRNsniPnXt"), 
k=() m=k 

we have 

(6.3) J2anqMXn= E E ^ 
k=0 m=k 

1 E (w~'")'A(w't, A). 
Nt"1 /to 

It should be noticed that if the polynomials (pn)n are of Brenke type, that is A(t, A) = 
B(\)C(t\), then, if we put lkjn = lmh,m m (6.3), we get that 

E M « ( 0 A W - 5(A) £ 7 W | . E ( ^ " m y ^ A ) = B(X)D(t\). 
m=0 ' # /=() 
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This provides some examples of polynomials (qn)n which are of Brenke type, are not 

orthogonal with respect to any measure but are orthonormal with respect to a positive 

definite N x N matrix of measures. 

D) A PARTICULAR CASE: LAGUERRE POLYNOMIALS. Let us take the Laguerre poly

nomials (Ln(t)j and their three term recurrence relation 

tLn(t) = -{n + \)Ln+l(t) + (In + \)Ln(i) - nLn-\(t) 

which gives the following five term recurrence relation 

t2qn(t) = (n + \)(n + 2)qn+2(t) - 4(n + \)2qn+\ 

+ 2(3rc2 + 3rc+ \)qn(t) -An2qn-\{t) + n{n - l)^r„_2(r). 

Hence, for the initial conditions qo(t) = 1 and q\(t) = at + b (a ̂  0) we get the polyno

mials 

(+\ (X ~ a \ i (+\^(X+a\j f ,wn uLn(t) - Ln{-t) 
qn(t) = i^-^—jLnit) + [~Y~jK(-t) + (l - b) — 

The polynomials (qn)n are orthonormal with respect to the positive definite matrix of 
measures . . 

IT7XLO,+(X)) f ^ U —b- \/r)X[(),+oo) 

| ^ ( 1 - b - 0)X[o,+oo) | ^ 0 ~ ̂  - \A)2X[(),+oo) 

The generating function for (qn)n is 

Ç^rbK^KM^V*+<'-»> 2r 

For /? = 1, we have an interesting case. If we put rn(t) = ^4^, we find the following 
Brenke type generating formula 

J X O A " = ex[(^-)M2^X)+ ( i ^ ) y ( ) ( 2 V / = Â ) ] . 

However, straightforward calculation gives that except for b — 1 and a — ±1 (i.e. 
qn(t) = Ln(±t)) the polynomials (rn)n are not orthogonal with respect to any positive 
measure (they do not satisfy a three term recurrence relation). So, they show that the 
class of Brenke type polynomials which are orthogonal with respect to a positive definite 
2x2 matrix of measures is wider than that of Brenke type polynomials orthogonal with 
respect to a positive measure. 

https://doi.org/10.4153/CJM-1995-005-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-005-8


112 ANTONIO J. DURAN 

REFERENCES 

[A] N. I. Akhiezer, The classical moment problem, Oliver and Boyd, Edinburgh, 1965. 
[Ch] T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York, 1978. 
[DS] N. Dunford and J. T. Schwartz, Linear operators II, Interscience publishers, New York, 1963. 
[D] A. J. Duran, A generalization ofFavard's theorem for polynomials satisfying a recurrence relation, J. Ap

prox. Theory 74(1993), 83-109. 
[F] J. A. Favard, Sur les polynômes de Tchebicheff, C. R. Acad. Sci. Paris 200(1935), 2052-2053. 
[HJ] R. A. Horn and C. A. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985. 
[R] M. Rosenberg, The square-integrability of matrix-valued functions with respect to a non-negative hermitian 

measure, Duke Math. J. 31(1964), 291-298. 

Departamento de Anâlisis Matemâtico 

Universidad de Sevilla 
Apdo. 1160 

41080-Sevilla 

Spain 

https://doi.org/10.4153/CJM-1995-005-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-005-8

