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ASPECTS OF THE KINETIC EQUATIONS
FOR A SPECIAL ONE-DIMENSIONAL SYSTEM
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Abstract

Some initial value problems are considered which arise in the treatment of
a one-dimensional gas of point particles interacting with a "hard-core"
potential.

Two basic types of initial conditions are considered. For the first, one
particle is specified to be at the origin with a given velocity. The positions
in phase space of the remaining background of particles are represented by
continuous distribution functions. The second problem is a periodic analogue
of the first.

Exact equations for the delta-function part of the single particle distri-
bution functions are derived for the non-periodic case and approximate
equations for the periodic case. These take the form of differential operator
equations. The spectral and asymptotic properties of the operators associated
with the two cases are examined and compared. The behaviour of ihe
solutions is also considered.

1. Introduction

Because of its relative simplicity, the non-equilibrium behaviour of the above-
mentioned statistical mechanical system has been examined previously in some
detail. Jepsen [10] developed methods applicable to the calculation of various
ensemble averages.These methods depended crucially on the simple dynamics
associated with a system having a "hard-core" interaction and have been applied
to an infinite system with a background of particles in equilibrium at the initial
time. This special case has also been treated by Lebowitz and Percus [11] using a
distribution function formalism. They consider also the kinetic equation associated
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146 J. W. Evans [2]

with the time evolution of the system.f Our work utilizes methods developed by
Anstis et al. [1 ] based on solving the hierarchy equations by factorization techniques.
We shall cover the more general problem where the background of particles may
be distributed inhomogeneously at the initial time (for both the periodic and
non-periodic cases). The use of methods involving the hierarchy equations to
derive governing time evolution equations lends itself more readily to comparison
with treatments of more general systems. The results are presented in a way
suggestive of generalization to other systems. The relationship between the
behaviour of the system which we consider and a system of hard-rods of non-zero
diameter a has been discussed by Anstis et al. [1].

2. The hierarchy equations

For any configuration associated with the initial ensemble, we label the particles
with an index ye {..., — 2, —1,0,1,...} increasing from left to right. We make the
convention that the particle specified to be at the origin at the initial time is labelled
by j = 0. This ordering is then preserved for all times.

Since we are dealing with a spatially infinite system, we may choose to employ
either the grand canonical ensemble in the infinite volume limit or the canonical
ensemble in the thermodynamic limit.

The relevant reduced distribution functions associated with either of the above
ensembles are defined below. Let zf(/) = (gi(t), v^t)) denote the position and
velocity of particle i at a time t^O. The n-particle distribution functions are defined
as

s /Jft.j.fr1; *\ -\ zn\ 0 (2.1)
i ,/»--«>

with

where "lim" represents a suitable limit to infinite volume and where <->F is the
appropriate ensemble average for a finite region V. (See Appendix A.) It follows
that/}" ' is symmetric in the variables z2, ...,z™.

These functions satisfy a coupled hierarchy of equations very similar to the
BBGKY hierarchy. For the case of the grand canonical ensemble, these equations
may be derived using the methods of Anstis et al. [1]. The work of Bogoliubov [2]
may be generalized to derive identical equations for the case of the canonical
ensemble in the thermodynamic limit.

t Gervois and Pomeau [7] have examined aspects of the corresponding semi-infinite system.
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[3] Aspects of the kinetic equations 147

After considerable simplification, using the special properties of the interparticle
potential, these equations take the form:

8->0 J
{f)+v(z1; g±,vn+1; z2; ...; zn; t)

z!; sr> »n+i; *s ; • • • ; * » ; 0 } (2.2)

where n = 1,2,...; j is an integer; K\n) is the n-particle Liouville operator which
includes only interactions between particle j and the unlabelled particles;
gi = gi-esgniv^-vj and (j) =j+sgn(vn+1~v1) (see Anstis et al. [1]).

3. The non-periodic initial value problem

3.1. Derivation of governing equations

We set up an initial value problem as follows. For./ = 0, set

O, let/ '^z^O) be a regular function (in the "distribution" sense) with the
following properties. Define /jQfr; 0) = J±S<foi/}1)(£i>I'i; 0) an<i demand that
J X # i / J t e i ; 0) = 1 and support/jc [O.oo) fory>0, support/f£(-oo,0] fory<0.
We shall assume that

+f.ffgi; o) (

is bounded and continuous on gie[0,oo) (resp. (—oo,0]). The ordering of the
particles in coordinate space is reflected in the constraint that

(see Appendix B). The requirements that there should be finite particle number,
energy and momentum in each finite region of coordinate space are also considered
in this Appendix. A further property will be required, namely that the average
density of particles be equal to a finite quantity p. The most natural way to express
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this condition is in terms of (C— 1) summability (Hille [9]). The condition becomes

1 rse +»
lim -^ dg^f8Ag) = p

.sf-,+00 .Sr j o j=i

and (3.1.1)

Urn^ - i [°_jlg~fj%g) = p.

The (C— 1) summability condition is a natural choice to make (see the work of
Doplicher et al. [4] for a higher dimensional analogue) and will be useful for the
asymptotic analysis.

Our analysis shall depend crucially on a partial factorization property of the
reduced distribution functions at the initial time. Consider the n-particle distri-
bution function for j = 0. From (2.1) we have

/•(re)(zl- Z2. . ~». n\ _ fll)(zl. r\\ y f(n—l) fz2. z3- • zn- Q)
^2,^3 *

Since the particle j = 0 acts as a wall at t = 0, we choose initial conditions such
that there are no correlations between particles to the left of the origin and those
to the right of the origin at the initial time. The second factor in (3.1.2) may be
decomposed as

s
r+,r-

r+ur-=(2,3,...,n)
ir±|=y±

' ; • • • ' z m v + ' ;

(w represents disjoint union and |—| represents the cardinality of a set).

The factors in this expression are distributed functions associated with the particles
confined to either g < 0 or g > 0 at the initial time by a hard wall at the origin.
These expressions are symmetrized distribution functions and consequently
describe the behaviour of a system of unlabelled particles. An unlabelled gas of
point particles with "hard-core" interaction in one dimension is precisely equivalent
to the corresponding ideal gas (see Jepsen [10] or Lebowitz and Percus [11]).
Consequently it is natural to restrict one's attention to the case where the above
higher order symmetrized distribution functions for £<0 (resp. £>0) factorize
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[5] Aspects of the kinetic equations 149

as a product of single particle distribution functions 'Zj^_1fj
1) (resp.

For this case, we may deduce from (3.1.2) and (3.1.3) that

(
i=2 \j=

/j»(z*; 0)). (3.1.4)

This choice of course includes the case where the background of particles is in
equilibrium at the initial time. Transport coefficients are determined by the
correlation functions associated with this quasi-equilibrium choice of initial
conditions.

Consider now the factorization properties of the corresponding distribution
function for j^= 0. The function is clearly regular in the variable z1. In fact we
may write except for g* = gn = 0 (i = 2,3,...,«-1)

1; z2; ...; z»; 0) =/j—"(z1; z2; ...; z*"1; 0)

x( +f A1)(2n;0) + S(g»)«(»"-»'))
> fc=-oo,fc#0 /

;z2 ; . . . ;z»;0) , (3.1.5)

where gjn) is regular in the variables z1 and zn. In fact (3.1.5) may be used for all
j provided we exclude the case gl = gn = 0 (zV ")•

We extend the definition of gjn) to arbitrary times ?>0 by the following formula:
for « Ss 2,

; 22; ...; z»; /) =/«"-1>(zi; z2; ...; z"-1; 0

except for gi = gn = v't (/# n). (3.1.6)

Now we confine our attention to pre-collision regions of the n-particle phase space
in which gjn) is defined. These are regions in which particle j has not suffered a
collision in its past history under n-particle motion. Denote these regions (excluding
points such that gi — v\t—s) = gn—vn(t—s) = v's: O^s^t) by Rl

p. For such a

t Such states may be obtained from the equilibrium state of the corresponding semi-infinite
system by perturbation with an external potential.
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region, the operator ((dldt) + K\n)) appearing in (2.2) may be replaced by

'd » d

and the equations can be integrated from / = 0 to a time t>0 to obtain a solution
for any point in Rp. Note that it is always possible to choose z2,z3, . . . ,zn so that
(zi5 Sivn+i'> zz'> •••I zn> 0 u e s m Kp- If w e u s e a ' s o the fact that

*ar)( / n ^ ^ ) fenn0(n)) (3.1.7)

it is possible to show that gl
t
n) (n^2) satisfy the same set of equations (2.2) a s / j m ) ,

if we consider only points in R'p.
Consider now the regularity of the function gjn)(zil Z2> •••> zn> 0 vvith respect

to the variables zx and zn in Rp. The most general form that the function # j n ) can
take is as follows:

z2; ...; zB; »=g<»"(v'; z2; ...; zn;

;22; . . . ;z»;0 , (3.1.8)

where £JnM,£Jn)reg are regular in the variable zv By substitution into the g\n)

hierarchy and equating the coefficients of terms with a 8(g1 — v1t)8(vl—v') factor,
we obtain the following equations for g\n)S (w<2) in R'p:

= lim r
e->0 J -

1; z2; ...; zn; t)

2- ...; zn; t)). (3.1.9)

Using the uniqueness of solutions of (3.1.9) together with the initial condition
g$n)e(v'; z2; ...; zn; 0) = 0 for n > 2 in R%, it follows that *)»>'(»'; z2; ...; zn; 0 = 0
for all points in Rp (ji^l). Consequently gjn)(zil Z2~> ••'> zn'> 0 *s regular in zx

for all points in Rp and a similar analysis shows that the same result holds with
respect to zn. In particular, we may conclude that g^Kz^, g^,v2; t) is a regular
function for all e>0 and
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This result may now be used in the analysis of the first hierarchy equation for
/ j n ) (with n — 1). Upon substitution of the factorized form for/}2), we obtain:

= Tig**!-, 0 •{/"&(*!; t)-f?\zx; t)} + p(gl,Vl; 0-{/}Vi(zi5 O - / } 1 ' ^ 0}

im 8(gr-v't)

+H(VI -»') & -1/) • i / j i?^; o -jyKh.; 01)

v^-igfiz^g^v^O-g^z^g^v^t)}, (3.1.10)

where H() is the Heaviside step function, gj" = gx — | sgn (u' — #]) and we have set

+ lim
e-»0 J —

=
J -

s
and (3.1.11)

=

+00

) 2
/fc=-00,fc?40

Our previous analysis shows that the last term in (3.1.10) is regular in g1 and vv

From this we conclude that the term exhibiting explicitly the delta-function may
be replaced by the jump condition:

limffKv't-t,Vl; 0 = nmf&Vt+t,*; /). (3.1.12)

The resulting equation is satisfied everywhere except the line gx = v't where
has a simple discontinuity given by (3.1.12) (c/. Anstis et al. [1]).

In the following, we shall consider only the delta-function part of
Consequently we make the decomposition

y ; 0 =/}"'(/) Hgi-Ht)S0>i-t>')+/J1)reg(zi; /), (3.1.13)

where / j 1 " and/j1)reB are regular functions. Substituting (3.1.13) into (3.1.10)
gives us uncoupled equations for both / j 1 1 * and / j 1 1 re». In particular for / j m ,
(3.1.10) yields:

^ , (3.1.14)
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where
y(v';t) = y(v't,v';t)

and
p(v';t) = P(v't,v';t).

The initial conditions associated with the problem described are simply

/ji)«!(0) = Sy>0 (Kronecker delta). (3.1.15)

Consider a class of initial value problems (labelled by N) where the distribution
function for particle j is given by /jl '^fo; 0) at / = 0. If we take an arbitrary
convex linear combination of these initial conditions, it follows that the associated
single particle distribution functions will still satisfy (3.1.14). However, we will have
the more general initial conditions:/j1)(!(0) ^ 0 for ally and

+ f / j w ( O ) = l . (3.1.16)
i—00

A conservative result is easily derived from (3.1.14) by summing over the index/
It follows that:

+ 00 +00 •»

2 / J u ' (0= S /jm(0) = l (3.1.17)
j=—00 j — — OO

from (3.1.16) for all tX), that is, there is always a probability of unity of finding
a particle on the trajectory gx = v't, given that there is a probability of unity of
finding a particle at g1 = 0 with velocity v' at the initial time.

3.2. The initial value problem with specialized initial conditions

Initial conditions shall be assumed here to take the form

andfory^O (3.2.1)
f^iz-i, 0) =/}s)(ifi)^0;i)-

The/j11 satisfy all conditions previously asserted together with the constraints

dv1h(v1)=l and £ /Ifei) = P (constant). (3.2.2)
r+°o

j-oo'

This is the case for the quasi-equilibrium initial conditions (see Anstis et al. [1]).
The equations (3.1.14) can be solved by Fourier transform techniques (see [1]).
However, the methods developed below will exhibit more clearly the structure of
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the equations. Using (3.2.2), we find

y(v'; t) = y(v') = y = P f * dv(v'-v)h(v)
J-ao

and

£(»',t) = j8(p') = £ = p \ dv(v-v')h{v).
Jv'

Equations (3.1.14) may be written abstractly as

(3.2.3)4
at

where f(1)* is regarded as a column vector in the sequence space i1 (see Taylor [13])
with components / j 1 1 * , and C is a linear operator on i1. In the usual matrix repre-
sentation C = (Cy), we have

Ca = P&j-u + y8J+u -(y+P) hi-

The i1 norm is defined as \\f\\x = S^loo|/}|- In fact C: i 1 ^ 1 and is a bounded,
non-compact, linear operator (cf. Taylor [13]).

We shall next determine the spectrum of C. Let a{) denote the spectrum of an
operator. Then a() = Po() w Ca() w Ro() where Po( ) , CCT( ) and Ro() denote
the point, continuous and residual spectra (respectively). Define a bounded linear
operator C° on i1 by

C = C>-(«+£) I (3.2.4)

where I is the identity on i1. Because of the obvious relations

Pa(C) = Pa(O)-(Y+p), Ca(C) = Co(C»)-(y+j3)
and

it will suffice to determine the spectrum of C°.
Firstly we prove that .Pcr(C0) is empty. The eigenvalue equation in component

form for C° becomes

A/i = yfi-i+P/i+i for ally, fet1 (f#0). (3.2.5)

Define the (continuous) function

where rj(6) is not identically zero by Parseval's formula. Transforming (3.2.5)
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gives A = y exp (+iff)+/S exp ( - id) for 0 such that ij(0)# 0. This is a contradiction
since y > 0, /? > 0 and A is independent of 0. So Pa(C°) is empty.

To determine the other components of o(C0), we shall work with Cw, the Banach
space adjoint of C°. Now C0' is a bounded linear operator on the dual space i00

of i1 (i00 is the space of bounded sequences). In the usual matrix representation
C0' = (Co;), we have

Cg = yS,-i .«+j3W (3-2-6)

To proceed further an alternative characterization of the spectrum is used. For
a bounded linear operator on a sequence space t, define the compression spectrum
to be

T(G) = {A e C: 5?(AI -G)?»} (01 = range)

and the approximate point spectrum as

IT(G) = {A e C: for all e > 0, there exists x e i with || x || = 1

such that
||Ax-Gx||<e}.

Then Pa^Il, Co = II \(TuPa) and Ra = T\Pa (see Halmos [8]). We shall need
also the following results:

o(C°) = a(O>'), Pa(C<>') = r(C«) (3.2.7)

First we shall prove that CCT(C°) is contained in the ellipse

: A = yexp(f0)+£exp(-f0): 9e[O,2n)}.

The result is derived easily from the corresponding analysis for the Hilbert spaca
i2 21 1 (Appendix C) and using the norm inequality ||-||2<IHIi together with the
definition of Ca{ ) . This leads to the simplified characterization of or(C°) = a(Cy).
From above

£} u {Po(C?) = r(O>) = Ra(C°)}.

To complete the analysis, we shall determine PadCf). Let xA e i00 be an eigenvector
of C0" corresponding to the eigenvalue AeC. They'th component of the eigenvalue
equation becomes Xxf = yx$+1+jix^ where xfeO for ally. We transform this
equation to one in a generalized function space Q' (for a suitable class of test
functions Q). Define

7,(8) = ~2 exp (tdj) xf e Q'. (3.2.8)
7=-oo

For example in the space of tempered distributions, the above series converges to
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[11] Aspects of the kinetic equations 155

a generalized function if and only if ** = 0(|./|AO for some N as |y|-^°o (see
Lighthill [12]). Furthermore, xVO in i°° implies that rj^O in Q'. Transforming
(3.2.8) results in the equation (in Q')

(A - y exp ( - iff) - /3 exp ( + iff)) rj(0) = 0.

Choosing XeE, it follows that this equation has no non-zero solutions -qeQ'
(a contradiction). Therefore Pa(C)QE. Suppose

A = yexp(-/0*)+0exp(+/0*), 6*e[0,2n) (soXeE).

A corresponding t00 eigenvector is given in component form by

x$ = (l/27r)exp(- td*j) (j an integer.)

Consequently Po^C0") = E and finally we conclude that

a(C) = Ro(C) = {AeC: A = (y+j3)(cos 6-l) + (y-£)fsin 6: 9e[0,2ir)}.

(3.2.9)

3.3. Properties of the governing equation for general initial conditions

Returning to the general case, we rewrite (3.1.14) in the form of an i1 equation:

^ (3.3.1)

where in the matrix representation C(/) = (Cy(f)) we have

Q/0 = P(v', t) 8^u+y(v', 0 8i+u-(y(v',

(Again these equations could be solved by Fourier transform methods.) The
matrices C(f) satisfy the commutation relations

[C(r),C(O]_ = C(0-C(/')-C(O-C(/) = 0 for all t,t'>0.

It may then be shown that

\[fidtC{t), | dtC(t)\ = 0 for arbitrary <x,j3,y,S>0
Ua Jy J -

(see Dunford and Schwartz [5]). Using this result, together with the Baker-
Campbell-Hausdorff theorem, it follows that the solution of (3.3.1) may be
expressed as

f(1)'(0 = exp(\j ?dt'C(t')]-t\f"''(O). (3.3.2)
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The behaviour of / jm( / ) in time is determined by the spectrum of the operator
(1/0 j0dt'C(j') which from (3.2) is given by

: A = j± JV(y(»\*'HA*',*'))}(cos 0-

} J } * W.O-j8(»' , ' ' ) )} 'sin 0: 8e[0,2TT)}. (3.3.3)

We shall consider the asymptotic behaviour of the spectrum for t^-co. Make
the special choice of initial conditions fo

x){zx; 0) = S^) S(v1—v') and for yV 0,
/^ ' (z i ; O)=f$(gjh(v1). Then/]1' must satisfy the constraints described in (3.1)
and i^dv1h(v^) = 1. In this case

Y(v', r) = r dv&' - vj h(v2) •
 +£ /«(»' - og) 0

J —0O fc=—QO,fc#0

and

j8(»',0= f+X(^2-^')AK) +£ fKiv'-vJt). (3.3.4)

In this expression )S(t)', t) may be written in the form

/3(\ 0

where (J(x) = xh(x+v')eL\—00, +00) (Lebesgue integrable functions) and
f(y) = SfcS-oo.fc^o/fc1'8^) is bounded and continuous on (0,00).

Define a class of functions C?I(T)G ^ ( O . ^ S L ^ O . O O ) by the requirement that
j+«>TAi(?i(T)rfr#o for all real A. In particular G^r) = 7/(1-r)e W(0,oo). The
asymptotic analysis of j8(t/,;) shall be achieved using a Tauberian theorem stated
by E. Hille (and N. Wiener) [9]. If G^y)e W(0,oo), G{y)eL\Q,<x>) and/( j ) is
bounded and continuous and if

1 r+°° /v\ r+co

limf G1^)f(y)dy = a\ G
<->oo t Jo VI JO

then

1 r+°° /v\ r+°°
limi G\$)f(y)dy = a\ G(y)dy.
l->ao t Jo \t/ Jo
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The theorem may be proved by noting that the dilations about the origin of any
G1eW(0,co) are dense in L^O.oo). Making the choice of functions indicated, it
follows from (3.1.1) that lim^a,/J(i/, r) = j8(t>')- A similar analysis shows that
lim/-ooy( '̂, 0 = y(v'). Consequently j8(»',0 and y(v',t) are ( C - l ) summable to
j3(t/) and y(v') (resp.). Hence, as t^-oo, the set a((l//)$l

odt'C(t')) approaches
o-(C) as in (3.2.9).

4. The periodic initial value problem

4.1. Derivation of the governing equations

We set up the initial value problem as follows. S e t / ^ f o ; 0) = S(^x) S(vx - v')
and for je{\, 2, ...,P— 1}, l e t / j 1 ' ^ ; 0) be a regular function with the following
properties. Define

= f
Then we require s u p p o r t / j ^ ; 0)s[0,Z.] for je{\,2, ...,P— 1}. We shall assume
that

%gil 0)

is continuous and hence bounded on [0,L]. There is a normalization condition
$odgfj(g'>®) = 1; y'e{l,2, ...,P— 1}. A periodicity condition is imposed on the
reduced distribution functions of the form:

ftol..fj&i>vi> Si,v2; ...;gm,vm; 0)

2; ...;gm + KL,vm; 0) (4.1.1)

for all integers m,K\ m^l. In particular (4.1.1) defines/j1( for./e{0,1, ...,P— 1}.
The ordering of particles again imposes the constraint proved in Appendix A.
In this section we shall make use of the periodized distribution functions defined
by

/ j»>(z 1 ; z a ; . . . ; z n ; / )= 2 f ^ ; z2; ...; zn; t). (4.1.2)
i'tii P)

Here./ should now be regarded as an index modulo P. As in (3.1), a partial factor-
ization result for the initial conditions is of crucial importance for the following
analysis. Since the particles in different cells [KL,(K + 1)L], K an integer, do not
interact with each other at the initial time, it is natural to impose a factorization
condition (cf. (3.1.3)). For any set of non-equal integers {j\»h>---Jni> m&ke the
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decomposition

0, 2,..

J. W.

.,m} =

Evans

+00

K=—00

[14]

where I \ = {n^nf, ...,nyK
K) and jn(Ke{KP+\,KP+2, ...,kP+(P-X)} and n'eF

implies7n-=0 (modP). The factorization condition then takes the form:

+00

= FT f{yKh * A (zn K\ • Z K- 0) IT fPHz •• 0) (4 1 3)
K=—oo ^ n'er

(we have se t / ( 0 ) s 1). If we make the natural restriction to states where the sym-
metrized distribution functions for each cell (KL, (K+1)L) factorize as a product
of sums ~Efs?f!j1)(-; 0) at the initial time, then the following holds: suppose nK

of the gi (j = 1,2,..., n) lie in (KL, (K + \)L), then

+ 0 0 / 7lK P

K=—oo,nj5t0\i=l

fc=l

(4.1.4)

excluding points such that ga = gp = mL for some a, fi, m. The numerical factor
appears as a result of normalization. The above result is of course true for the
special case where the particles in each cell (KL, (K+ \)L) are in equilibrium at the
initial time. Then (4.1.4) may be rewritten as

/<»>(zi; z2; ...; zn; 0) =An-1\z1; z2; ...; zn_i; 0)C(g2,g3, ...,gn; P)

x (^7iu(z»; 0)+ "2 8(gn-KL)S(vn-v')) (4.1.5)

where

'1 if gn = mL for some integer m,

p , _ I p if gne(kL, (k+l)L) for some integer k and so
^g2,gs,-,gn,f)- \ r ^ w _ 1 Q t h e r ft. / = 2,3,...,»—1 again

excluding points ga = gfi = mL for some
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Let us now define another hierarchy of functions gjn) (n > 2) by

ff\zx\z2; ...;zn; t)

=/(
j
n-1W,z2;...;zn_1;t)

( P-l +00 \

ZA1Kgn-vnt,vn;O)+ S 8(gn-vnt-KL)8(vn-v')\
k=l <=-oo /

+g\"\z1;zi;...;zn;t) (4.1.6)
excluding points ga — v't = gp—v't = mL for some a,/?,m. The functions g'-n)

satisfy the same set of hierarchy equations as / j n ) in pre-collision regions of phase
space and excluding the same points mentioned above. From these equations,
we may show g<n) are regular with respect to zn in appropriate regions. At the
initial time, the coefficient of the delta-function part of gjn) with respect to zx has
the order of magnitude (if 8f0 denotes the Kronecker delta modP)

, *3; - ; *»-i; 0) Q s V j 1 ^ * ; O)) min(0(l), 0{ne)) (4.1.7)

where/(n-2) is the symmetrized distribution function and e = l/P is small in the
high density regime. It is not difficult to show that in the regions under consider-
ation, the functions fjn ) at arbitrary times are bounded by exponential growth
from their initial values. Banach space techniques may be employed here to
provide a rigorous analysis of the linear differential operator (hierarchy)
equations. In particular these considerations may be applied to analyse

This result is used in the analysis of the first hierarchy equation for/jn> (« = 1).
Upon substitution of the factorized form for/j2), we obtain

; t)}+pp(gl,vi; t)

x(tfOZ-iO(»'-»,)[/j&k; t)-f?Kzi;

zx; g^,v2; t)}, (4.1.8)
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withje{0,1, ...,P- 1} interpreted modulo P. The functions H( ) and g~ have been
defined in (3.1), and in (4.1.8) we have set

f»i p-i
Yp(gi. "i; 0 = ^2(^1 - vz> 2 /^ ' t e i - "21, v2; 0)

J -00 fc=l

and

Pp(gi,»il 0 = ! +C°dvz(v2-vJPJ: f<»(gl-v2t,v2; 0). (4.1.9)

Our previous analysis shows that the last term in (4.1.8) is regular in gj~. From
this we conclude that the term exhibiting explicitly the delta-function may be
replaced by the jump conditions:

nmf<V(v't+KL-i,vi; t) = Kmfmv't+KL+Z,Vl; t) (4.1.10)
£->O £->0

for all integral K. The resulting equation is satisfied everywhere except on the lines
gx = KL+V'I where/j1' has a simple discontinuity given by (4.1.10).

For gl e [v't, v't+L), make the decomposition

f?Kzil 0 =fl
j
1)S(t)S(g1-v1t)8(v1-v')+/V™(z1; t), (4.1.11)

where/)1'* and/j1 ' r e g are regular functions. The function/}1' is determined outside
this interval by periodic extension. Henceforth we shall restrict our attention to
the high density regime and the range of time for which the delta-function part of
g(j2) with respect to zx makes a negligible contribution to (4.1.8)
tmt = (fim^p-1). For/}1'* we obtain

f™\t)P(' 0{/jl) '(0/jm(0}+8*V ty{f%t«)J)u»(t)} (4.1.12)

where j is interpreted modulo P and where

yp(V, t) = yP(v' t,v';t) a n d £*(» ' , t) = pP(p't, v ' ; t ) .

Define the Kronecker delta function (modulo P) to be &fk = 1 if j=k (modP)
and 8fh = 0 if j^k (modP). The initial conditions associated with the problem
described above are simply /}m(0) = 8P

0. However, the more general conditions
/«»*(0)>0and

P£fi1)S(0) = 1
k=0

may be associated with a physical initial value problem where (4.1.12) are again
the appropriate evolution equations (cf. (3.1.16)).
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A conservation result is derived from (4.1.12) by summing over the index/ It
follows that

PjEfit)a(t) = ^ / ^ " ' (O) = 1 for all t > 0.
fc=0 fc=O

Again this result may be interpreted physically (c/. 3.1) and is in fact exact.

4.2. The initial value problem with specialized initial conditions

The initial conditions are specified by analogy with (3.2).

K=— CO

and for y^O (modP),

where/j1' satisfies all conditions previously asserted together with the constraints
h 0 as in (3.2.1) and (3.2.2) and

P 1 ; 0 ) = ^ f i - = p (constant).

An example of such a situation is where the particles in the cell [0, L] are in
equilibrium at the initial time. In this case

where /? = 1/kTis the statistical temperature and

where ^6 (0 , L) and _/e{l,2, ...,P— 1}. Equation (4.2.1) follows from a simple
generalization of the calculation of the partition function for a Tonks gas {cf.
Thompson [14]). The delta-function part of the distribution functions, / } m ,
satisfy the equations:

where y = y(v') and j3 = JS(D') have been defined in (3.2). The initial conditions
are again / jm(0) = S£o. (These may be generalized.) Equation (4.2.2) will be
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solved using methods of spectral theory; however, first we describe briefly a
Fourier-"type" transform method of solution (cf. Anstis et al. [1] for the non-
periodic case). Define a set of functions

(^) (4.2.3)

The functions tf>k(J) satisfy the orthogonality conditions

2 ®kU) ®kW) = P^ff- (4-2.4)

Next define

Then (4.2.2) may be transformed to

) (exp ( - ^ ) - l)j , * ) (4.2.5)
dt

which has the solution

r)k(t)~exp ly(v') I exp I——-I — 1 J/+/J(z/) (exp! 5~)~M * fVkfi)- (4.2.6)

The/j1)lJ(O may be obtained by applying the inverse transform:

Jr fa—Q

To implement the methods of spectral theory, write (4.2.2) in matrix form

—f(1)l'(/)~C-F'iF(1)lJ(/) (4 2 7)
dt

where fu)* is a P-dimensional vector with components f(j1)l and C p = (CP) is a
P x P matrix, where

All indices are interpreted modulo P and may be taken to lie in the set
{0,1, ...,P-1}. Define the PxP matrix Cop by

(4.2.9)

where I is the PxP identity matrix (cf. (3.2.4)). Then
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(and of course, o() = Po() here). Thus to find oiC1*) it will suffice to determine
a(COp). The spectrum of COp may be calculated by applying the above-mentioned
Fourier-"type" transformation to the eigenvalue equation. This in effect
diagonalizes COp. More directly, the spectrum of Cop may be evaluated by writing
COp as a sum of two commuting cyclic matrices COp = (3p+yp where (3P = (fifj)
and Pfj = J S S ^ J and y p = (yP

3), where yf^ = ySp
hli..Since the eigenvalues of y p

and (3P are non-degenerate, a set of simultaneous eigenvectors can be constructed
for these matrices (see Ziock [15]). In fact we may choose these to be the complete
orthonormal set {e": n = 0,1,2, ...,P— 1} where

The corresponding eigenvalues are given by

. / 2TTin\ . / 2nin\ . , _ ,

Xn = yexpl _ J + / S e X p ^ + - ? - j , n = 0,1,...,/»- 1.

Consequently

a(Cp) = Po{CP) = JAGC: A = (y+p)(cos(^-1) + (y-j8) fsin f~j.

77 = 0,1, . . . ,P-l).

(4.2.10)

4.3. Properties of the governing equation for general initial conditions

The general equations (4.1.2) could be solved using the Fourier-"type" trans-
formation methods developed in (4.2). We develop instead spectral theoretic
methods for comparison with (3.3). In matrix form, (4.1.12) become

4 f a)'(t) ~ Cp(/) • f «>'(/), (4.3.1)
at

where the PxP matrix
Cp(0 = (C£(0)

and

Cp(/) = W, t) 8f_lii + y(v', t) 8f+lti-(y(v', /)+j8(p', t)) Sp-Cp(0
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satisfy the commutation relations [Cp(t),Cp(t')]_ = 0 for all t,t'>0. Conse-
quently, the solution of (4.3.1) may be written as (cf. (3.3.2)):

(4.3.2)

The behaviour of fj1)S(t) in time is determined by the spectrum of the operator
(l/t) j'odt'Cp(t') which, by comparison with (4.2), is given by

: A = {} J^VV,O

{I j V , f)-fSp(v', f'))} fsin ( ^ ) ,

»e{0,l,2,...,/»-l}}. (4.3.3)

Since we are working in a finite dimensional space, we may give a more explicit
representation of the evolution operator exp($'odt'Cp(t')). It is clear from a
decomposition of fodt' Cp(t') into a sum of cyclic matrices that this operator has
the same eigenvectors as Cp. These may be chosen as the complete orthonormal
set {en: n = 0,1, ...,P— 1} previously defined. The corresponding eigenvalues are:

= [ V (y^*/, O+jSp0>', /')) (cos ( ^ -1)

,...,P-\} (4.3.4)

The projection operator corresponding to the nth eigenspace is given by
En = (eJ*)(eJl)H where H is the Hermitian transpose. The (r,s) component of
En is given by

/c \ 1 (2irtn(r — s)\ , . , ,,
(E J M = j exp ^ ^ j . (4.3.5)

Since all eigenvalues are non-degenerate, the following spectral representation
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applies (Dunford and Schwartz [14])

exp ( ('dt'CP(t')) = 's 'exp ( I tdt' An(/')) E»- (4-3-6)
\J0 I n=O \./o /

Consequently

J ' S 1 PX ^exp( P<fr'A«(o)exp(??™fc*>)/£>'(<)). (4.3.7)
n=o fc=o r \.;0 J \ r j

To consider the asymptotic behaviour of the spectrum (4.3.3) as /->-co, make
the special choice of initial conditions

A1W,o)= z so
K=—00

and fory^O (modi5) l e t / j 1 ' ^ ; 0) satisfy the constraints specified in (4.1) together
with the condition t h a t / j 1 ' ^ ; 0) =f^(g^-h{v^), h{) as in (3.2.1) and (3.2.2). In
this case

yp(v', t) = P dv2(v' - v2) h(v2) •
 P-£fW - v2) t)

J - 0 0 fc=l

and

pp(v\ t) = [Xdv2{v2 - v') h(v2) • ^fldv' - v2) t). (4.3.8)

As f^-co, ~Zp=i/%((v' — v2)t) becomes highly oscillatory as a function of v2. This
suggests that the asymptotic behaviour of yp(v', t) and PP(v', t) may be determined
by a suitable generalization of the Riemann-Lebesque lemma. Define

Hx) = P£/i(X), F(X) =Hx)-p
k=l

and finally

lF(v' — v2; t) = dwF((v' — w)t).
Jv

Since p = {P— \)jL and t h e / J are normalized, we may show that SF(LK\t\ t) = 0
for all integers K, hence ^(w, t) is periodic in w of period L/t. We must examine
expressions of the form $dv<f>(v)fs((v' — v)t), where <f>(v), (d/dv)(f>(v)-^O as

"sufficiently fast". Now

[Xdv4>{p)f%v'-v)t) = p rdv<f>(v)+ [C°dv^-<j>{v)^r(vl-v,
Jv Ji/ Jv- dv

t)

https://doi.org/10.1017/S0334270000002010 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002010


166 J. W. Evans [22]

and

v'-v; ON7 \Ldw\F(w)\.
* .'o.'0

Consequently

I ™dv S(v)f8(v' -v)t) = pV'dv <f>(v) + O (-\ as / -* 00.

Therefore

- as

A similar analysis shows that

Here j8(i/) and y(»') are the same quantities as defined in (3.2). Consequently
Pp(v', t) and yp(v', t) are (C-1) summable to yS(y') and y(v') (resp.). Hence, as
t-*ao, the set ((1/0 Jo*'Cp(f')) approaches a(OP) as in (4.2.10).

5. Summary

In Sections 3 and 4, we have set up the non-periodic and periodic problems so
that in each case the average background particle density is the same (/>). This
has resulted in an interesting relationship between the spectra of the operators
C(f) and Cp(t) associated with the time evolution of fa)d and F(1>* (resp.). This
relationship is particularly clear in the cases where we have chosen specialized
initial conditions (so the spectra are independent of time). In the non-periodic
case, the (residue) spectrum is an ellipse in the complex plane. For the periodic
case, the (point) spectrum consists of P points situated on this ellipse. In both
cases A = 0 is a point of the spectrum (representing the existence of an equilibrium
state). All other points of the spectrum have negative real part (representing a
decay to equilibrium).

Let us now consider the "thermodynamic limit" of the periodic case in the sense
that we let L->oo, P-+00 so that p = (P—\)jL is constant. As P increases, the
number of eigenvalues (of C ^ increases. However, they remain on the ellipse
(which is invariant since p is constant) and as P->co, they coalesce to form the
whole ellipse. If we take the high density limit P^-co, L = constant (so p-*-oo),
the number of eigenvalues (of C^) on the ellipse again increases in proportion
to P. However, since the size of the ellipse also increases in proportion to P, they
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do not coalesce. It it also valuable to note qualitatively that the nature of the time
evolution is insensitive to the particular choice of inhomogeneous initial conditions.
Indeed the asymptotic form of the evolution equations depends only on the mean
background density p rather than on the details of the initial distribution of
background particles.

For the non-periodic case, we may determine the nature of the asymptotic
approach to equilibrium of the delta-function part of the distribution functions.
We shall make use of the solutions for/jm(f) obtained from the Fourier analysis.
For the initial condition / jm(0) = Syo, these assume the form

= 2^J" d6 exp (i[(p - y) (sin 0)t-jd])exp((y + p) (cos 9-l)t). (5.1)

The asymptotic analysis of this expression as t->co is suited to Laplace's method
(see Carrier et al. [3]). We obtain as /->-oo,

1 f+°°
/ r C ) ~ y ddexp(i[(p-y)t-j]6)exp(-!>(y+p)6*t)

(27r)*[(y+j8)r]* P l +

( 5 - 2 )

This modified exponential decay is associated with a time scale O(tmf) as expected.
As mentioned above, this type of decay gives an accurate description of the
behaviour of the periodic system for sufficiently small times.

Usually correlation functions associated with the delta-function part of the
distribution functions are derived from expressions of the form

/: (5.3)

for suitable functions C(v'). Note that ff>s(t) depends implicitly on v' through
the dependence of y and p on v'. The nature of (5.3) as a function of time will
depend on the nature of j3—y and fl+y as functions of v'. From the definitions
of these functions

P(v')-y(v') = -pv'
and (5.4)

f
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where

f dvh(v)= [°dvh(v).
J —00 J»*

It follows from (5.2) that the major contribution to ftgdv'C(v')f™*(t) for large
/ comes from the neighbourhood of v' = 0. This corresponds to the degenerate
case where the elliptical spectrum of C lies along the negative real axis. If we
suppose that C(v')~ Cv'n as v'->0, then as t^-oo

-(n/2+l)
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Appendix A

In this appendix, we give a meaning to expressions of the form

"lim" <S(zi-z,.1(/))... 8(z"-

for both canonical and grand canonical ensemble averages. A difficulty arises
because we wish to work ultimately with a system occupying an infinite region
of coordinate space. For such a system we cannot define a complete distribution
function (containing all the information about the system). However, we would
still like to think of the reduced distribution functions as related in some sense
to a complete distribution function. Such a relationship guarantees that the reduced
distribution functions satisfy certain consistency relations. Consequently we shall
introduce certain complete distribution functions associated with finite regions
of coordinate space and regard the infinite system as being described by a suitable
infinite volume limit of these.

First we develop this programme via the canonical ensemble. Let

be a complete normalized (M+N+ l)-particle distribution function in the canonical
ensemble associated with a system of M+N+1 particles confined to a region Fof
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coordinate space. The particles are labelled with an index je{-M, —M+1, ...,N}
and are ordered from left to right with j increasing (see previous discussion).
Here z,- denotes the position in phase space of particle j (at a time /) . In terms of
this function, the above average is given by

= ( ft \dgi f+V) K*-*h) K*-*£- Kzn-*O
\i=-M JV J -oo J

where we have chosen M and N sufficiently large that

In this case "lim" is taken to be a suitable thermodynamic limit. For the non-
periodic case, we may choose V = [-Mp,Np] and then let M,N^-co with p fixed.
For the periodic case, we may choose

and again let M, N->co with p fixed.
Next consider the corresponding analysis for the grand canonical ensemble.

For /ceR let [K] denote the largest integer not greater than K. The proportion of
systems of the grand canonical ensemble which are represented by a point

]> z-[Af/2]+l> • • •' z-[A'/2)+Ar-l)

in the iV-particle phase space at a time / is determined by

F g . c . e ( V \ Z - [ N l 2 ] > ••' z - [ N l 2 ) + N - l > 0 -

Again the particles are labelled with an index

and are ordered from left to right with j increasing (see previous discussion).
Again z3- denotes the position of particle j (at a time t). These functions are
normalized by the condition

-[A'/2]+A'-l

(with a suitable interpretation for the N = 0 term). In terms of these functions, the
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above average is given by

oo /-[iv/2H-(iv-i) r r+oo \
= 2 n \ dgA dv,)8(zi-zi)(z*-zh)...8(z»-zin)

N=N*\ i=-[N/2) JV J-oo /

where N* is the minimum value of N such that

We should point out that the inclusion or omission of any particular JV-particle
phase space component of the grand canonical ensemble is of no consequence
when we consider the K->oo limit. Secondly, the inclusion of a 1/AH weight in
the sum above does not appear here (see also Anstis et al. [1]). We may think of
this as a result of the fact that F^ce pertain to an ordered system of particles
thus restricting their support to a fraction 1/iV! of total coordinate space, that is,
the I/AM weighting is implicit in the definition. Finally, we remark that in this
case "lim" is simply taken as an infinite volume limit. More explicitly, if
V=[-L', +L'], we require L'-

Appendix B

(i) Ordering of particles in coordinate space

We shall prove that the inequality

f+oo f+oo
dggfs

h(g;t)>\ dggf°h(g; t)
J -00 J -00

holds as a consequence of the ordering of the particles. To prove this inequality,
we shall need a result concerning the single particle distribution function. Firstly,
a finite system V of iV particles is considered. For such a system

= 7AT-m(n f dz\f)»\z1;...-zN;t).
(./V-l)!\i=2 JPXR /
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However,

where p: (1,2,3, ...,N)-*-(l,2,3, ...,N) is a permutation of these N elements.
Consequently/j1'^; /) is also given by the expression:

fjXzj; 0 = I I dzif\t...j...tAzi> z*> •••' zh> —> ZN> 0-

Therefore

'•Ml t)-fh(g; t)}

N r

t=l JVxR

> 0 since/w?.Jl..Jl..JV(z1; ...; zh; ...; zh; ...; zN; t)

= 0 ifgh<gh.

The result for an infinite system follows by taking the thermodynamic limit.

(ii) Constraints on particle number, momentum and energy

For our choice of initial conditions /jx>(z; 0) to represent a physical system, we
must demand that (i) associated with any finite region of coordinate space there is
a finite particle number, momentum and energy. Furthermore, we shall require
that (ii) for regions of a given size, there is a uniform bound on each of these
quantities. To see the nature of the constraint that these conditions impose on
the distribution functions, consider first the case where we have the factorization
propertyff\z\ 0) =fs

i{g)h{v) foryVO. For normalization, we choose that

+<Ddvh(v) = 1.
—00

r

In order that each particle have finite (kinetic) energy, we require that

*>
dvv?h(v)<oo.

Using this constraint together with the normalization condition we note that

\+a>dv\v\h(v)< (+'°dvh(v)+ f v2h(v)<oo
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so jt^dvvh(v)<co. This is necessary for each particle to have finite momentum.
For (i), it is sufficient that

+ 00

2 f%g)
J=-00

be locally integrable. For (ii), we could divide the real line up into intervals of
equal length and demand that there be a uniform bound on the particle numbers
associated with these intervals. A necessary condition for (ii) is that

and

1 cse +00

• i Jo ^=-oo

0
1 f +co

•? J-se i=-o3

be bounded. Furthermore, if we require that there should exist an average particle
density for the infinite system, then the limits of these expressions as jSf-̂ -oo
should exist, that is

~£f%g) and S/J(g)
i—l 3=1

should be (C— 1) summable. However, (C— 1) summability is not sufficient for (ii).
If we want the asymptotic analysis of (3.3) to be valid, then we require that

be bounded and strongly measurable. In particular, the choice that on (0, oo) and
(—co,0) separately that 2££«»/f De bounded and continuous guarantees all the
above properties. If we do not have the factorization property, then the various
quantities must be examined separately. In order that the particle number be
well behaved, we must impose constraints on

+ » /*+00

2 dvf
]'——oo J —oo

analogous to the above. The behaviour of the (kinetic) energy is determined by the
quantity

j=—00 J —0

and separate constraints must be imposed on this quantity to guarantee (i) and (ii)
and the existence of a mean energy density. That (i) and (ii) are valid for the
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momentum is a consequence of the corresponding properties for particle number
and energy.

Finally, we mention that there should be sufficient conditions on/'11 to guarantee
that y(v'; t) and /}(»'; t) are suitably well behaved for fixed v as a function of /.
In particular we must be able to integrate the governing equations to obtain a
solution.

Appendix C

Spectral analysis of C° in i2

A sequence space analysis (cf. 3.2) may be employed noting that i2 is a reflexive
space (and in fact a Hilbert space). This enables us to make more specific statements
about the spectrum from the general theory. However, here we shall develop
alternative methods. Let L2(0,2w) be the (Hilbert) space of Lebesgue square
integrable functions on [0,2n]. This space is congruent to i2, that is, there exists an
isometric isomorphism / : i2->L2(0,2TT). If yet2, then it may be represented by a
function Y = Jy in L2(0, 2TT) and a bounded linear operator G on t2 is represented
by G = JGJ-1 on L2(0, 2TT). Using the isometric and isomorphic properties of J,
it is easy to show that a{G) = a(G), or more specifically that Pa{G) = Po(G),
Ca{G) = Ccr(G) and Ro(G) = Ra(C).

Next let us determine the operator C° on L2(0,2-n) corresponding to the matrix
operator C° on i2. To do this, we note that / may be realized in the following way.
For any yet2, Y = JyeL2(0,2n) is given by

Yiy) = £ exP('7r?)>;;. 17e[0»277].
j = - 0 0

Let y = C° x, then in component form this equation becomes

Apply the transform

£ exp(//7?)

to this equation, giving

j =—00 J = —00

Writing Y = Jy and X = Jx, this equation becomes

Y(V) = (y exp (fi,)+p exp ( - ft,)) X(rj), v e [0,2n].
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We conclude that C° is given by the normal, multiplicative operator

C° = Y exp (ft,)+p exp ( - fi,), r, e[0,2TT].

Such operators are called factor transforms and a sufficient condition that they
represent bounded linear operators on L\0,2n) is that they be essentially bounded
and measurable (as a function of 77) on [0,2TT] (C/. Hille [9] for the L2(—co, +oo)
case). Thus C° above satisfies the required condition.

Consider the behaviour of the operator A—C. Suppose

Then A — C° is continuous, bounded (in modulus) and bounded away from zero
for 776[0,27r]. Consequently, A-C° is invertible and therefore \$o(C°). So
o(C°)zE. From the general theory of normal operators (see Dunford and Schwartz
[14]), R<x(C°) = 0 . Thus it remains to determine Pa(C°) and Ca(C°).

Suppose A e £ and (A-C°)X(rj) = 0 in L2[0,2n]. Since A - C ° is a continuous
function of 77 and equal to zero at only one point of (0, 2TT), it follows that X(rj) = 0
i s the only L\0, 2TT) solution of the above equation. Consequently Po(C) = 0 .

Again choose XeE, that is, A = y exp 0*77*)+/? exp (— ir}*), where 77*6(0,277),
and let y(77)eL2(0,27r) be continuous and non-zero at 77 = 77*. Suppose

= {A - (y exp (ft,)+p exp ( - ir,))} X(v),

where 77 e (0,27r). Then

X(r>) = r(77)/{A-(y exp (»,) + £ exp (-<T7))}£L3(O,2TT).

Consequently A — C° is not invertible, so A e er(C°). In conclusion

Pa(C°) = PCT(C°) = 0 = Ra(C°) = Po(C°)
and

C<T(C°) = E = Ca(C°).
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