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Summary

The determination of empirical confidence intervals for the location of quantitative trait loci

(QTLs) by interval mapping was investigated using simulation. Confidence intervals were created

using a non-parametric (resampling method) and parametric (resimulation method) bootstrap for a

backcross population derived from inbred lines. QTLs explaining 1%, 5% and 10% of the

phenotypic variance were tested in populations of 200 or 500 individuals. Results from the two

methods were compared at all locations along one half of the chromosome. The non-parametric

bootstrap produced results close to expectation at all non-marker locations, but confidence

intervals when the QTL was located at the marker were conservative. The parametric method

performed poorly; results varied from conservative confidence intervals at the location of the

marker, to anti-conservative intervals midway between markers. The results were shown to be

influenced by a bias in the mapping procedure and by the accumulation of type 1 errors at the

location of the markers. The parametric bootstrap is not a suitable method for constructing

confidence intervals in QTL mapping. The confidence intervals from the non-parametric bootstrap

are accurate and suitable for practical use.

1. Introduction

In the mapping of quantitative trait loci (QTLs) it is

valuable to have some idea about how accurately a

locus is mapped. For example, molecular biologists

require a precise estimate of location for positional

cloning and breeders who may wish to incorporate

genes need to know the optimum length of chromo-

some to introgress. In recognition of this problem it is

common to give confidence intervals stating the

probability (P) that an interval on the chromosome

contains the QTL. It is of fundamental and economic

importance to those wishing to use this information

that the true probability an interval contains a QTL is

close to the probability stated, i.e. a 90% confidence

interval should contain a QTL in 90% of all cases.

Methods of calculating confidence intervals vary.

The suggestion of Lander & Botstein (1989) was a one

LOD support interval (defined by the points on the

genetic map at which the likelihood ratio has fallen by
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a factor of 10 from the maximum). Van Ooijen (1992),

by studying support intervals for four different values

of LOD drop, showed that a 95% confidence interval

could require up to a two LOD drop for the simulated

situations tested (population size¯ 200 or 400, heri-

tability of QTL¯ 5% or 10%, backcross and F
#

populations considered). The size of the LOD drop to

produce the confidence interval varied with different

parameter settings, and the size of confidence intervals

produced by the two LOD drop were, in the view of

Van Ooijen (1992), large and variable.

Mangin et al. (1994) showed the 90% and 95%

confidence intervals calculated by a one LOD drop to

be biased when the QTL effect was small. Bias was

downward, i.e. the proportion of intervals containing

the QTL location at the 90% level was less than 90%.

Mangin et al. (1994) also derived a complex formula

for calculating confidence intervals, assuming nor-

mality of residuals.

Visscher et al. (1996) suggest a non-parametric

bootstrap method (Efron, 1982, chapter 10) applied

to QTL mapping and compared it with the LOD drop
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method. The method performed well in comparison

with the LOD drop, but generally the estimates were

slightly conservative, i.e. the 90% confidence interval

contained over 90% of the QTL, particularly for

smaller QTL effects. Confidence intervals produced

by the method were larger than those produced by the

one LOD drop, with intervals under 20 cM in length

produced only when population size and QTL effect

were high.

Several questions regarding the creation of con-

fidence intervals remain unanswered. It is clear that

the LOD drop method is unsatisfactory in populations

the size of those used in practice. The non-parametric

bootstrap does seem suitable although slightly con-

servative. However, many QTL mapping populations

use more complex pedigrees than the standard

backcross or F
#
populations mentioned by Visscher et

al. (1996). In these more complex pedigrees it is

unclear how the non-parametric bootstrap can be

performed without dissolving the population struc-

ture. Would an alternative method or variation of

current methods provide more suitable techniques

and results?

Visscher et al. (1996) mention that there are many

possible bootstrap strategies, of which the non-

parametric bootstrap is only one. There are also no

fixed guidelines on how to perform bootstrapping

under linear models. This gives many options to

address the problems of creating confidence intervals

and developing the bootstrapping method(s) to create

a suitable process for their calculation.

We have investigated, a parametric bootstrap

method (Efron, 1982, chapter 5) to determine ap-

proximate confidence intervals for the position of a

QTL and to study the performance of the non-

parametric bootstrap method in more detail. The

parametric bootstrap has a large advantage over the

non-parametric method in that it can be applied to

any population, because the re-simulations can simply

mimic the original data structure. The aims of the

study are to test, by simulation, how well the

parametric bootstrap method works in QTL mapping

experiments with experimental populations and to

compare the method with the non-parametric boot-

strap proposed by Visscher et al. (1996). In particular

we are interested in the accuracy of the two methods,

i.e. whether the QTL appears in the 90% or 95%

confidence interval in 90% or 95%, respectively, of

the replicates. A secondary consideration is the size of

the 90% and 95% confidence intervals, which ideally

would be small.

2. Materials and methods

(i) Simulation

Data for N individuals (N¯ 200 or 500) from a

backcross population derived from two inbred lines

were simulated. Each individual was assigned a single

chromosome of length 100 cM with m evenly spaced

markers (m¯ 6 or 11) corresponding to a marker

spacing of ∆ cm (∆¯10 or 20). The chromosomes

contained a single QTL with an additive effect such

that heritabilities of 1%, 5% and 10% were obtained

in the backcross population. The position of the QTL

(d ) was at 45 or 85 cM from one end of the

chromosome in the initial analyses, then at all

locations between 0 and 50 inclusive in the subsequent

work. Haldane’s mapping function (Haldane, 1919)

was used throughout.

(ii) Model

Data were analysed with the Whittaker regression

method (Whittaker et al., 1996). The method performs

a multiple regression of phenotypes on pairs of

flanking markers and transforms the estimated effects

of the two markers, in each regression, to estimates of

the QTL effect and its location. This method is

preferred to the regression method of Haley & Knott

(1992) because of the speed of calculation, but

produces equivalent results. Only a single QTL was

fitted in the analyses.

(iii) Non-parametric bootstrap

Sampling, with replacement, N individual obser-

vations (a single individual’s genotype and phenotype

maintained together) from a population of size N

generated non-parametric bootstrap samples (Visscher

et al., 1996). Each sample was analysed and the best

estimate of the position of the QTL recorded. After R

bootstrap samples (where R is the number of ‘new’ re-

sampled populations and hence the number of

estimates of QTL position) the empirical central 90%

and 95% confidence intervals of the QTL position

were determined. This was achieved by ordering the R

estimates and taking the top and bottom 5th and 2±5th

percentile, respectively.

(iv) Parametric bootstrap

The parametric bootstrap uses a Monte Carlo

simulation method with original parameter estimates.

Samples were generated by analysing the data from a

population of size N, recording the estimates of

parameters for the best position of the QTL, mean,

standard deviation and QTL effect. This information

was used to create two normal distributions of

individuals with these parameters (one distribution

with the QTL and one without). N individuals were

randomly assigned a marker genotype; phenotypes

were drawn from one of the distributions conditional

upon the marker genotype of the individual. This

generates a parametric bootstrap sample. Each ‘new’
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population was analysed and the best estimated

position recorded. After R parametric bootstrap

samples the empirical central 90% and 95% con-

fidence intervals were calculated as described pre-

viously. For each parameter set, there were R re-

simulated populations after the initial analysis for

each of the 1000 replicates and therefore 1000 (R­1)

QTL mapping analyses were done.

The difference between the two methods is that the

non-parametric method samples from the original

data whereas the parametric method samples from the

distributions inferred from the analysis of the data.

3. Results

The results for the initial analyses for the non-

parametric and parametric bootstraps are shown in

Table 1. The analyses of the non-parametric bootstrap

have been previously published with these population

parameters (Visscher et al., 1996). Our results are in

close agreement with this work.

(i) Number of bootstrap samples

Changing the number of bootstrap samples had very

little effect on the results. No significant changes in

Table 1. Effect of marker spacing, heritability and population size on confidence inter�als for �arious different

bootstrap methods

Non-parametric bootstrap Parametric bootstrap

N ∆ d h# CI90a P90b CI95 P95 CI90 P90 CI95 P95

200 10 45 0±01 84 0±99 92 0±99 84 0±97 93 0±99
— — — 0±05 57 0±94 69 0±97 50 0±91 66 0±97
— — — 0±1 37 0±92 47 0±96 27 0±87 40 0±96
— — 85 0±01 86 0±91 93 0±97 86 0±90 94 0±97
— — — 0±05 61 0±91 74 0±96 52 0±90 68 0±95
— — — 0±1 36 0±91 47 0±96 26 0±87 37 0±95

— 20 45 0±01 87 0±98 94 0±99 87 0±98 94 0±99
— — — 0±05 59 0±94 71 0±98 53 0±94 69 0±98
— — — 0±1 37 0±91 47 0±95 32 0±94 43 0±97
— — 85 0±01 88 0±91 94 0±96 87 0±92 94 0±97
— — — 0±05 64 0±89 75 0±94 54 0±94 69 0±98
— — — 0±1 38 0±90 50 0±95 30 0±94 41 0±97

500 10 45 0±01 75 0±97 85 1±00 70 0±95 84 0±98
— — — 0±05 33 0±92 42 0±97 22 0±85 32 0±93
— — — 0±1 16 0±89 21 0±94 12 0±79 15 0±86
— — 85 0±01 78 0±92 87 0±97 72 0±89 85 0±95
— — — 0±05 32 0±92 42 0±96 21 0±85 31 0±94
— — — 0±1 15 0±89 20 0±95 12 0±81 15 0±88

— 20 45 0±01 78 0±97 88 0±99 73 0±95 86 0±98
— — — 0±05 32 0±91 42 0±96 27 0±91 36 0±95
— — — 0±1 18 0±89 22 0±94 16 0±88 20 0±97
— — 85 0±01 82 0±91 90 0±96 74 0±93 86 0±96
— — — 0±05 31 0±88 41 0±94 25 0±93 33 0±96
— — — 0±1 16 0±89 20 0±93 15 0±88 19 0±96

a CIx is the mean width of the x% confidence interval (in cM).
b Px is the proportion of the x% confidence intervals that contain the QTL.

either confidence intervals or probabilities occurred

when R varied from 100 to 1000 (results not shown).

For all subsequent analyses R¯ 200 to allow a direct

comparison between the results of Visscher et al.

(1996) and the results for the parametric bootstrap.

Although this is suitable for simulation studies because

of the large numbers of replicates, real data analysis

would preferably use larger bootstrap samples (Efron

& Tibshirani, 1993).

(ii) Population size

Comparing top and bottom halves of Table 1

illustrates that increasing population size creates

smaller confidence intervals. When N¯ 500 and ∆¯
10, the intervals are anti-conservative when the

heritability is high for the non-parametric bootstrap,

i.e. the proportion of 90% confidence intervals

containing the simulated QTL was under 0±9. The

differences in confidence interval size with population

size are consistent with other studies (Van Ooijen,

1992; Darvasi et al., 1993).

(iii) Heritability

Increasing the heritability of the QTLproduces smaller

intervals. The probability of detecting the simulated
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Fig. 1. N¯ 500, h#¯ 0±1, ∆¯10. The probability a confidence interval contains a QTL at different simulated locations
on a chromosome using the non-parametric bootstrap.

QTL when h#¯ 0±01 is low and the number of type 1

errors is high. A type 1 error does not detect the

simulated QTL but still declares the best position of a

QTL at a point on the chromosome. In these cases the

confidence interval is chiefly created by type 1 errors

and hence the interval, by chance, is large and more

likely to cover central regions of the chromosome.

This explains the higher probabilities for d¯ 45

compared with d¯ 85 when h#¯ 0±01 and is in

agreement with the findings of Paterson et al. (1991).

(iv) Parametric �ersus non-parametric bootstrap

The parametric bootstrap produces smaller intervals

in comparison with the non-parametric equivalent

when heritabilities exceed 0±05. However, these inter-

vals are anti-conservative when N¯ 500, for the

parametric bootstrap. When the heritability was 0±01

the two methods produced similar results.

(v) QTL position

From Table 1 it would appear that the parametric

bootstrap produces consistent results independent of

the position of the QTL on the chromosome. This is

the same conclusion as Visscher et al. (1996) derived

for the non-parametric bootstrap, but this preliminary

study and the work of Visscher et al. both simulated

only two QTL positions on a 100 cM chromosome.

(vi) Marker spacing

Table 1 shows that less dense marker maps create

slightly narrower confidence intervals. Results for the

parametric bootstrap show that when N¯ 500 and

∆¯10, confidence intervals are anti-conservative.

When N¯ 500 and ∆¯ 20 the 90% and 95%

confidence intervals contain the simulated QTL in

approximately 90% and 95% of all replicates re-

spectively. From this we would conclude that a denser

marker map creates anti-conservative results. This

goes against expectation, as more information should

increase the accuracy of the results.

By studying only two positions (45 and 85 cM), the

initial study fails to examine fully the effect of position

of the QTL on the chromosome and position within

the interval upon the accuracy of the confidence

intervals created. The results for QTL at locations

0–50 cm for the two marker map densities allow these

two situations to be investigated. The chromosome is

assumed to show symmetrical results around the mid-

point ; hence, to reduce running time of computer

simulations, locations 0–50 cM were investigated.

The non-parametric bootstrap performs reasonably

well in most cases, i.e. the 90% confidence interval

generally includes the QTL 90% of the time. A bias

occurs when the QTL is simulated at the same

position as a marker (Fig. 1). At these locations the

confidence interval is conservative, e.g. in Fig. 1 the

probability the 90% confidence interval contains the

QTL at 0, 10, and 20 cM is 0±942, 0±964 and 0±951

respectively.

The parametric bootstrap performs substantially

less well than the non-parametric equivalent. Fig. 2

illustrates the pattern seen as the QTL is placed at

different locations along the chromosome. Large

waves are produced peaking at the position of the

markers and reaching a minimum midway between

markers. At marker positions the parametric boot-

strap is more conservative than the non-parametric
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Fig. 2. N¯ 500, h#¯ 0±1, ∆¯10. The probability a confidence interval contains a QTL at different simulated positions
on the chromosome using the parametric bootstrap.
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Fig. 3. N¯ 500, h#¯ 0±1, ∆¯10. The size of CI90 at different simulated positions on the chromosome.

and at intermediate positions it is substantially anti-

conservative. Decreasing the number of markers

increases the wavelength and decreasing the heri-

tability of the QTL decreases the amplitude of the

waves (results not shown).

The sizes of the confidence intervals produced by

the two methods, over the length of the chromosome,

are shown in Fig. 3. The parametric bootstrap

producers smaller intervals than the non-parametric

method. Confidence intervals are largest when the

QTL is simulated equidistant between two markers

and therefore the maximum distance away from a

marker. Conversely, the smallest intervals are found

when the QTL and marker lie at the same location. It

is evident that the end of the chromosome causes a

truncation of the confidence interval, for when the

QTL is simulated at 0–10 cM the confidence interval

is smaller than the equivalent positions in other

intervals. The non-parametric bootstrap shows greater

variation in the size of confidence interval. Intervals

differ by approximately 6 cM when comparing the

size of interval when the QTL is on the marker with

the size of interval produced when the QTL is

equidistant between two markers. The same com-

parison with the parametric bootstrap shows a

difference of 2 cM.
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4. Discussion

From the results it is clear that the parametric

bootstrap is unsuitable for use with experimental data

because of the variation with QTL position in the

probability that a 90% or 95% confidence interval

contains the actual QTL position. The reasons for

these large fluctuations are not completely clear. The

patterns seen are consistent with the hypothesis that

the waves are produced as an amplification of the

peaks seen in the non-parametric analysis. This arises

because the mapping procedure shows a small bias

towards placing a best estimate at the location of a

marker. This bias can be calculated (Visscher et al., in

preparation) using the equations from Whittaker et al.

(1996).

This bias can be visualized in Fig. 4. It is clear from

the test statistic that the best estimate of the location

of the QTL in the analysis of the original data set is

approximately at the middle of the chromosome. The

distribution of positions of best estimates of QTL

position from the bootstrap examples might be

expected to show an approximation of the distribution

of the test statistic. The distribution of the best

position estimates follows the distribution of the test

statistic well except at marker positions, where the

number of best estimates is large in comparison with

the other locations. Note, however, that the mean test

statistic is significantly lower. This implies that when

a marker position is the best estimate of a QTL

location, the evidence for a QTL is less than when the

QTL is at a non-marker position.

One hypothesis explaining the presence of the

marker peaks could be the accumulation of type 1
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Fig. 4. One million non-parametric bootstraps for one replicate (N¯ 200, ∆¯ 20). The mean test statistic was calculated
for each point only when that location was the best estimated position of the QTL.

errors. The method used did not select a subset of the

bootstrap re-samples. In practice, if the test statistic in

the initial analysis did not exceed a set threshold, no

QTL would be declared. The non-selective bootstrap

analyses each bootstrap re-sample and records the

best estimated position, but does not assess whether

the data support the hypothesis that a QTL is located

at that position. These replicates with less evidence for

a QTL accumulate in the analysis, particularly when

the chance of detecting the QTL, the power of the

experiment, is low, e.g. a QTL with small effect. Fig.

5 shows the histogram of best estimated positions of

QTL from 100000 replicates when no QTL was

simulated (N¯ 200, ∆¯ 20, h#¯ 0). This shows that

the method, when analysing type 1 errors, tends to

place the best estimated position of the QTL on a

marker. In Fig. 5 over 50% of replicates were placed

at markers, which compares with an expectation of

under 6% if the distribution in Fig. 5 was uniform.

Type 1 errors, analogous to the replicates with less

evidence for a QTL, cannot explain all the peaks at

markers in Fig. 4, as the power of the analysis for such

a configuration is high and therefore type 1 error rate

is generally low. If the power was assumed to be 0±9 for

the situation in Fig. 4 (the true value is slightly larger)

approximately 100000 replicates would be type 1

errors. Since Fig. 5 shows that approximately 13% of

type 1 errors are placed at 0 or 100 cM and 8% at the

location of each marker, type 1 errors could explain

peaks in the histogram of up to 13000 at positions 0

or 100 cM and 8000 at 20, 40, 60 and 80 cM. Type 1

errors could therefore account for the small ac-

cumulation of replicates in Fig. 4 positioned at 20, 80

and 100 cM, since the numbers of replicates ac-
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Fig. 5. Histogram of best estimated positions from 100000 replicates with no QTL simulated (N¯ 200, ∆¯ 20).
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Fig. 6. Bias of position in QTL mapping. Each point was calculated by simulating 1000 replicates at point d (N¯ 200,
h#¯ 0±1). Mean estimated position from 1000 analysed replicates subtracted from true simulated position gives bias at
point d. Thus if the position 8 cM from the left of the chromosome maps, on average, at 10 cM the bias is 10®8¯­2.
If, however, the same point maps, on average, at 5 cM the bias is 5®8¯®3.

cumulating at these positions is small. It is unable to

account for the larger collection of replicates at 0, 40

and 60 cM where additional bias must exist over that

caused by the type 1 error rate.

To explain these larger peaks the precision of the

mapping procedure itself has to be studied. Fig. 4

implies there is a distinct bias for the mapping method

to place best estimates of positions on markers. This

can be studied by looking at mean estimated position

of a QTL when simulated at position (d ) over

replicates. Fig. 6 shows this for a chromosome with

∆¯ 20. Bias is calculated as mean position over

replicates subtracted from the true simulated position.

It is apparent from the oscillating waves of bias in the

estimated QTL position that the markers influence the

results ; this is confirmed in other plots for ∆¯10 and

∆¯ 25 (not shown). In fact the results produced

contain two types of bias in the mapping procedure.

The first bias is that of the markers, which can be seen

by the oscillating waves in Fig. 6. The second type is

caused by the symmetrical placement of type 1 errors

(i.e. replicates that by chance contain a significant
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Fig. 7. The influence of markers alone on the positional mapping of QTL. Figure were produced by subtracting values
in Fig. 6 for 101 markers from the equivalent point for 6 markers.

QTL effect at a location other than that simulated),

around the centre of the chromosome. This pushes the

mean towards the centre (in this case 50 cM) because

this would be the mean position if no QTL was

simulated, assuming a uniform probability distri-

bution of positioning across the chromosome. This

can be seen in Fig. 6, where marker effect is minimized

by placing a marker at 1 cM intervals.

The plot illustrates the general ‘pull ’ towards the

centre of the chromosome, the ‘pull ’ being largest at

the ends of the chromosome where the mapping

procedure places the QTL, on average, approximately

3 cM closer to the centre of the chromosome than the

true position. Only the outer regions of the chromo-

some show a large bias ; the majority of the chro-

mosome (11 cM to 86 cM) has only a small bias

(!1 cM). Hyne et al. (1995), for a population of 300

and a QTL with heritability of 10%, previously

reported this bias due to the asymmetrical location of

the QTL in an F
#

population.

By subtracting the bias when ∆¯1 from the

equivalent position when ∆¯ 20 it is possible to see

the influence of the markers alone (Fig. 7). Removing

the bias due to overall chromosomal position leaves

the bias due to position in relation to markers. Fig. 7

shows that each marker has an equal effect with the

general trend being a pull towards the marker. Midway

between markers the bias disappears, because the

effect of each marker is equal. At other locations in

the interval the bias depends on the position of the

QTL in relation to the two flanking markers. Bias is

largest one-quarter from the left marker (acting

towards the left marker) and three-quarters from the

left marker (acting towards the right marker). The

bias is not large, however, never exceeding ³1±5 cM.

With this pull towards markers, as well as the

tendency of type 1 errors to estimate QTL position on

markers, a large number of bootstrap re-samples have

best estimated positions at markers, so many con-

fidence intervals either start and}or finish at the

location of a marker. Since intervals that start or

finish at the location of the QTL are considered to

contain the QTL, the method is conservative when the

QTL lies at the same location as the marker.

A selective bootstrap (selecting ‘significant ’ rep-

licates) more relevant to actual practice was tested by

removing all replicates with a maximum test statistic

that did not exceed a threshold of 6±08. The threshold

of 6±08 was set as the 95th percentile of the test

statistic calculated for the single chromosome from

1000000 simulated populations with no QTL present.

The implementation of this threshold in the analysis

removes 95% of all type 1 errors. This would indicate

whether type 1 errors were exclusively the cause of the

conservative results when the QTL is at the marker.

The results of the selective bootstrap showed only a

small difference from the non-selected method (results

not presented). Confidence intervals produced were

smaller but still conservative when the QTL was

located at a marker. When N¯ 200, ∆¯ 20, h#¯ 0±1
and d¯ 20 the 90% confidence interval was 28±1 cM

when selecting replicates and 29±2 cM when no

selection was used, but the probability of the interval

containing the QTL did not change (0±974 and 0±970

respectively). A double selective bootstrap (selecting

replicates and then only significant bootstrap re-

samples exceeding the same threshold of 6±08) also

failed to correct the situation at the site of the marker,

although having an obvious effect at other locations.

Confidence intervals remained conservative at the

https://doi.org/10.1017/S0016672398003164 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672398003164


Confidence inter�als in QTL mapping 179

1

0·98

0·96

0·94

0·92

0·9

0·88

0·86

0·86

0·84

0·8
0 5 10 15 20 25 30 35 40 45 50

Position on chromosome (cM)

P
ro

ba
bi

li
ty

P90

P95

Fig. 8. N¯ 200, ∆¯ 20, h#¯ 0±1. The probability that a confidence interval contains a QTL at different simulated
locations on the chromosome using the non-parametric bootstrap. Replicates and bootstrap resamples were both selected
using a threshold of 6±08.
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Fig. 9. The probability that a 90% confidence interval contains (i) one QTL and (ii) both QTLs when two equally sized
QTL (h#¯ 0±05) are simulated varying distances apart symmetrically around the centre of the chromosome (N¯ 200,
∆¯ 20, 1000 replicates per point).

marker but were anti-conservative in the outer interval

(Fig. 8), i.e. in this example between 0 and 20 cM since

∆¯ 20. When N¯ 200, ∆¯ 20, h#¯ 0±1 and d¯ 20

the 90% confidence interval was 26±3 cM and P¯
0±963, but when d¯17 the size was 29±3 cM with P¯
0±871. From this work it is apparent that the type 1

errors are not the sole reason for conservative

confidence intervals by the non-parametric bootstrap.

The method used fitted only one QTL. In practice it

is likely that the data would be analysed to see

whether they supported the hypothesis for two or

more QTLs present. If more than one QTL was

detected, the progression of the method would be

different from that applied in the methods used in this

example. To examine the effect of a second QTL on

the chromosome, two QTLs of equal size (h#¯ 0±05

each) were placed symmetrically around the centre of

a 100 cM chromosome, different distances apart.

These data were analysed with the same program as

was previously used and results are summarized in

Fig. 9. The confidence interval remained the same size

as obtained for one QTL of combined effect when
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both were within the same interval ; but when in

different intervals and as the QTLs moved further

apart, the confidence interval increased in size.

Confidence intervals were anti-conservative for either

QTL when they were over 5 cM apart. It is clear that

if, by chance, a second ‘ghost ’ QTL (Martinez &

Curnow, 1992) was simulated in some of the replicates

it would be more likely to contribute to anti-

conservative confidence intervals.

Since the mapping procedure is used twice in the

parametric bootstrap, the bias is amplified. This

causes the confidence intervals midway between two

markers to be anti-conservative because best estimated

positions have been placed closer to markers and

away from the true position of the QTL. When the

QTL lies at the same location as the marker, however,

the mapping method places too many best estimates

at the location of the marker. This causes the

confidence interval to be conservative. There appears

to be no simple correction that can be made to the

results to remove the effects of the bias. Trying to

develop the parametric bootstrap seems to be un-

necessary when the non-parametric bootstrap works

satisfactorily in the majority of cases.

In summary, the non-parametric bootstrap per-

formed well. Between markers the probability that a

confidence interval contained the true QTL position

was generally close to the expected value under all

parameter combinations tested. Further to the work

of Visscher et al. (1996), this study tests the non-

parametric bootstrap thoroughly and shows that

results are conservative when a QTL is simulated on a

marker. In practice this at least errs on the side of

caution. The work goes further to show the parametric

bootstrap has significant failings and no appreciable

advantages over the non-parametric bootstrap. The

bias caused by the positioning of markers has not

been previously reported and when coupled with the

bias from the asymmetrical positioning of the QTL on

the chromosome (Hyne et al., 1995), contributes to

error in the estimated position of the QTL.
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