ON THE DISTRIBUTION OF »¢ MODULO 1

R. L. GRAHAM AND ]J. H. VAN LINT

Introduction. In recent work of E. Arthurs and L. A. Shepp on a prob-
lem of H. Dym concerning the existence of an ergodic stationary stochastic
process with zero entropy (cf. 1), the function de¢(z) was introduced as
follows:

For an irrational number 6, let

O=a<a1<a:<...<a,< 1 =1

be the sequence of points {6}, 1 < [/ < n, (where {x} denotes x — [x], the
fractional part of x) and define*

de(n) = max(a; — a;,_1), 1<:=n+1.

It is our purpose in this paper to establish several asymptotic results for
do(n). In particular, we prove that

sup lim inf ndy(n) = L_—{—#
[}

N0

and

S

inf lim sup nde(n) = 1 + 2
9

n->00 O

(cf. Theorems 1 and 2).

Notation. We consider an irrational number 6. [by, by, bs, . ..] is the
simple continued fraction expansion of 6, i.e.,

1
6—b0+b1+bl2+...
The convergents k,/k, of 6 satisfy (cf. 3)
hoy=1, ho=10boy h;=0bhi1+ his, i1,
ki=0, ko=1, k;=0bk, 1+ ki, 121
We define 6, by
6o =06, 0,400 =1/(6;,—[0.]), 120

Received July 15, 1966 and in revised form, December 13, 1966.
*It should be noted that the related function d’4(n) = minigcicnt1(ai — ai-1) has been
extensively studied by Sés, Halton, and others (cf. 2; 4; 5; 6; 7; 8; and 9).
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We have (cf. 3)

bn = [on]
and
gt (=D
ko kn(Rabuir + kn1)

Finally, we define x, and y, by

Xn = kn+1/km Yn = 1/0n+2~
We then have

Xnt+1 = [l/yn] + l/xm Vo1 = —[l/yn] + l/yny n g 0.

It follows easily from the definitions that

(1) %p = [bnt1, by« « ., D1]
and
(2) Yn = 1/[bnt2, bntsy bntas - - -]
We shall use the following basic lemma.
LEMMa 1.
i do(m) = |knd — hy + a(Rps10 — hyp)]

kn+(a+1)kn+1_1émékn+(a+2)kn+l'—2
and 0 = a = byqe — 1.

The proof of this result appears implicitly in (5) and (7) and will not be
given here. It depends upon the somewhat surprising and apparently little-
known fact that the set of numbers {a¢;1 — a;: 0 = 7 < n} (using the nota-
tion in § 1) always consists of at most three elements.

We are now prepared to prove the statements given in the introduction.

The main results.
THEOREM 1.

sup lim inf nds(n) = 1—+2—‘/3
[} n-dco

Proof. We observe that, for n — «,
lim inf nde(n) = lim inf(k, 4+ kyp1)|ka0 — hal

= lim inf(1 + x,) (v, + %)~
We first show that

3) lim inf(1 4+ x,) (v, + %) = 3 (1 + V/2), n— o,

Equivalently, we must show that
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(4) limsup(yn + )1 +x)1 220+ vV2)1=2(v2—1), n—oo,
We prove (4) by establishing
LEMMA 2. Let 6 = [by, by, b2, . . .], where b, = M for all n. Then
lim sup %y, = 1, n-— o,
with equality if and only if the b, are eventually constant.
Proof. By (1) and (2) we have
XYn = [but1s Ouy - o+ 011/ [Dusoy Ongs, -« -]
> (o1 + (M + 1)) (buge + )7L

(i) If b,41 > bype infinitely often, then b,.1 = 1 + b,y2 infinitely often
and hence, for # — =,

lim sup %y, = lim sup(byp1 + (M + 1)71) (byye + 1)1
limsup(uee + 1+ (M 4+ 1)71) (b2 + 1)L
1+ M4+ 1)2>1.

(i1) If byy1 > buye for just a finite number of values of #, then there is an
N such that b,, = N for all sufficiently large m. Hence, if « = [V, N, N, .. .]
then

A%

lim x,y, = (lim x,) (lim y,) = a-(1/a) = 1, n— o,

This proves Lemma 2.

It follows that, for any ¢ > 0, infinitely many of the pairs (x,, y,) lie in the
hyperbolic region given by x = 0 and xy = 1 — . We observe that this
region is contained in that defined by x = 0 and (y + x)/(1 4+ x) = 2(~+/2
—1) — ¢, since the last boundary line passes below the hyperbola, for all
sufficiently small ¢; and (4) now follows. Thus (4) holds in case the b, are

bounded. On the other hand, if the b, are unbounded, then the x, are un-
bounded and

limsup(y, + %) (1 + x,)~! = limsupx,(1 + %) =1> 2(v/2 — 1),
n — o, This proves (4).
Finally, suppose that 8 = 1 4+ /2. Then b, = 2 for n = 0,1,2,.... The
relations for %, and &, can be solved to give
By = (2v/2)7(1 + V2)"2 — (1 — v/2)"2],
By = (2v2)7H(Q 4 v/2)* — (1 — V2)™H],
and all 6, = 1 + /2. Hence, we have

BO =l = (=1)"(V2 — 1),
By Lemma 1,
do(m) = (v2 — 1)1 —a(v/2 — 1)]
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ifm =k, + (@ 4+ 1)ky41 + ¢, where0 £ < byy2 — land —1 < ¢ < k1 —2;
that is, if, for large =,
m~ (2v/2)71(1 4+ v/2)"* 1 + (a4 1)1 + V2)],

where « = 0 or 1 and —1 < ¢ < (2v/2)"1(1 4+ v/2)**! — 1. When m — o,
n — o ; therefore

lim inf mdq(m)

i{:f(2\/2)‘1[1 —a(v2=DIl+ (a+ 1)1 + v2)]

inf(2v2) 2 + V2 + a — o’ = l-ié\ﬁ_ ,

This completes the proof of the theorem.

THEOREM 2.

inf i sup nda(s) = 1+ 315/—5

n->c0

Proof. By Lemma 1, it is sufficient to prove

lim sup (k, + 2kni1) ka8 — B, = limsup(1 + 2x,) (3, + x,)7!

(5)
214+ 2v5/5, n— o,

in order to show that
lim sup nds(n) = 1 4 2+/5/5, n— o,
If y, < % infinitely often, then
(1 + 2x,) (yo + x)71 2 2
infinitely often and we have
lim sup(1 + 2x,) (9, + x,)"1 = 2, n— o,

If y, > % for all sufficiently large #, then b, = 1 for all sufficiently large #.
Hence, as n — o,

limx, =[1,1,1,...] = (1 + +5)/2, limy, = (=14 +/5)/2
and

lim(1 + 2x,) (v + x)7' = 1 4 24/5/5.
This proves (5). An easy calculation shows that
lim nde(n) = 1 4+ 24/5/5, n— o,
for 6 = (1 + +/5)/2, and Theorem 2 is proved.
We note that if
ko + ko1 —1=m =k + (@ + 2)kpyr — 2,

where o = b,42 — 1, we have
max mde(m) = max . L+ (4 2)x) (1 — pya) (o + 32) 7

SuSbp 40—
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We conclude with

THEOREM 3.
lim sup nds(n) = » < limsup b, = », n— o,

Proof. (1) If lim sup,,, b, = «, then lim inf, . v, = 0. If y, is sufficiently
small, then we can take u = [1/2y,] — 1 (since this is less than b,,2 — 1)
and we find

1+ (v + 2)x,) (1 - F‘yn) (%, + yn)_l = xn(2yn)—l @) + 1) P>

for a subsequence of y, which tends to 0.
(ii) If lim sup,,onde(n) = «, then certainly

limsup(1 + (0* + 2)x,) (1 — uw*y,) (%, + )P =, n—o®,
where
= (2y)7 = (2w) Tt — 1

(the expression considered is a quadratic form in u with a maximum for
p = u¥). Hence, as n — =,

lim sup 27 [ (%, + ¥a) (22,30) 71 + 1[1 + 2,30 (%, + y0)7'] =

and this implies lim inf,, .y, = 0, i.e., lim sup,_ .0, = « and the theorem is
proved.

The authors would like to acknowledge several helpful comments of a
referee.
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