Nutrition Research Reviews

Available online at www.journals.cambridge.org

Published on behalf of The Nutrition Society by Cambridge University Press ISSN 0954-4224

Nutrition Research Reviews

Volume 24, 2011 ISSN: 0954-4224

Aims and Scope

Nutrition Research Reviews publishes comprehensive and challenging review articles on selected key topics in nutritional science. Authors are encouraged to take a critical approach in appraising the literature while also aiming to advance new concepts and hypotheses. The journal publishes both solicited and unsolicited articles.

Nutrition Research Reviews is published twice a year by Cambridge University Press on behalf of The Nutrition Society.

The contents page of this journal is available on the Internet before publication at http://www.cambridge.org/nrr

Editorial Board

Editor-in-Chief

Dr Graham C Burdge, University of Southampton, UK

Address for correspondence

Dr Graham C Burdge, Editor-in-Chief, Nutrition Research Reviews, Institute of Human Nutrition / DOHaD Division, Institute of Developmental Sciences Building, Mail point 887, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK

Tel: +44(0)23 80798663 Fax: +44(0)23 80795255 Email: G.C.Burdge@soton.ac.uk

US Editor

Professor C M Weaver, Purdue University, USA

Editors

Dr N Binns, *NMB Consulting Limited, Ireland* Dr D Dardevet, *INRA, France* Dr M Pufulete, *University of Bristol, UK*

Editorial Advisors

Professor P J Aggett, UK Dr M Ashwell, Baldock, UK Dr D A Bender, University College London, UK Dr J L Black, Warrimoo, Australia Dr C Edwards, Glasgow University, UK Dr S French, Mars UK Ltd. Slough, UK Dr J Houdijk, SAC, UK Professor D J Millward, University of Surrey, UK Dr P Rogers, University of Bristol, UK Professor N W Solomons, CESSIAM, Guatemala Professor M Verstegen, Wageningen University, Netherlands Dr K M Younger, Dublin Institute of Technology, Ireland

Editorial staff

C Goodstein (*Publications Manager*), C Jackson (*Deputy Publications Manager*), C T Hughes, L Weeks and H Zdravics (*Publications Officers*), S Hui (*Publications Assistant*)

The Nutrition Society has as its objective the advancement of the scientific study of nutrition and its applications to the maintenance of human and animal health.

Application of membership is invited from anyone whose work has contributed to the scientific knowledge of nutrition, whether such work has been in the laboratory, the field or the clinic, and whether experimental, clinical, agricultural or statistical in nature. There is also a student membership scheme with reduced subscriptions.

Particulars of The Nutrition Society and application forms for membership are available from The Nutrition Society, 10 Cambridge Court, 210 Shepherds Bush Road, London W6 7NJ, UK. Tel: +44 (0)20 7602 0228, Fax: +44 (0)20 7602 1756, Email: edoffice@nutsoc.org.uk

The Nutrition Society Home Page is at http://www.nutritionsociety.org

NUTRITION RESEARCH REVIEWS 2011

Volume 24 No. 2 December 2011

Editor-in-Chief

Dr Graham C. Burdge University of Southampton, UK

Nutrition Research Reviews Volume 24, 2011 ISSN: 0954-4224

Publishing, Production, Marketing, and

Subscription Sales Office: Cambridge University Press The Edinburgh Building Shaftesbury Road Cambridge CB2 8RU, UK

For Customers in North America:

Cambridge University Press Journals Fulfillment Department 100 Brook Hill Drive West Nyack New York 10994–2133 USA

Publisher: Katy Christomanou

Nutrition Research Reviews is an international journal published biannually (June and December) by Cambridge University Press on behalf of the Nutrition Society.

Subscription information:

Volume 24 2011 (2 issues) Internet/print package: £99/\$88 American only/€309 EU only Internet only: £153/\$274 Americas only/€388 EU only Print only: £87/\$63 Americas only/€286 EU only

Back volumes are available. Please contact Cambridge University Press for further information.

Claims for non-receipt of journal issues will be considered on their merit and only if the claim is received within six months of publication. Replacement copies supplied after this date will be chargeable.

US POSTMASTERS: please send address corrections to *Nutrition Research Reviews*, Cambridge University Press, 100 Brook Hill Drive, West Nyack, New York 10994–2133.

Information for Authors: The journal publishes both solicited and unsolicited review articles. For unsolicited material, authors are asked to submit a summary of the article to the Editor-in-chief in the first instance:

Dr Graham C Burdge,

Editor-in-Chief, Nutrition Research Reviews, Institute of Human Nutrition / DOHaD Division, Institute of Developmental Sciences Building, Mail point 887, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK Tel: +44(0)23 80798663 Fax: +44(0)23 80795255 Email: *G.C.Burdge@soton.ac.uk*

Directions to Contributors: if not printed in this issue, are available from the Editor-in-chief.

Offprints: The author (or main author) of an accepted paper will receive a free PDF of their paper and a voucher copy of the issue in which their paper has been published. Additional offprints are available for a fee and should be ordered at proof stage. No page charges are levied by this journal.

Copyright: As of July 2000 the copyright of all articles submitted to *Nutrition Research Reviews* are retained by the authors or their institutions. For articles prior to this date permission for reproduction of any part of the journal (text, figures, tables or other matter) in any form (on paper, microfiche or electronically) should be sought directly from the Society, at: The Publications Office, The Nutrition Society, 10 Cambridge Court, 210 Shepherds Bush Road, London W6 7NJ, UK.

Disclaimer: The information contained herein, including any expression of opinion and any projection or forecast, has been obtained from or is based upon sources believed by us to be reliable, but is not guaranteed as to accuracy or completeness. The information is supplied without obligation and on the understanding that any person who acts upon it or otherwise changes his/her position in reliance thereon does so entirely at his/her own risk. Neither the Society nor Cambridge University Press accepts responsibility for any trade advertisement included in this publication.

This journal is printed on acid-free paper from renewable sources. Printed in the UK by Bell & Bain Ltd., Glasgow.

This journal issue has been printed on FSC-certified paper and cover board. FSC is an independent, non-governmental, not-for-profit organization established to promote the responsible management of the world's forests. Please see www.fsc.org for information.

Subscribers may register for free access to the electronic version of *Nutrition Research Reviews*. For more information visit the website at: journals.cambridge.org

Nutrition Research Rewiews is covered by the Science Citation Index[®], Current Contents[®] / Agriculture, Biology & Environmental Sciences, SciSearch[®], Research Alert[®], Index to Scientific Reviews[®], EMBASE/Excerpta Medica, Chemical Abstracts Services, CINAHL[®] Database, CAB ABSTRACTS[®], Global Health, BIOSIS[®] Database, SIIC Databases

Contents Vol. 24 No. 2 December 2011

Intestinal gene expression in pigs: effects of reduced feed intake during weaning and potential impact of dietary components <i>E. Bauer, B. U. Metzler-Zebeli, M. W. A. Verstegen & R. Mosenthin</i>	
Introduction	155
The weaning transition: a brief summary	155
Changes in intestinal gene expression due to reduced feed intake	150
Digestive function and nutrient metabolism	157
Immune function	157
Growth factors	158
Influence of dietary components on intestinal gene expression	159
Protein and amino acids	160
	160
Digestive function and nutrient metabolism Immune function	
	161
Lipids	161
Digestive function and nutrient metabolism	161
Immune function	162
Carbohydrates	163
Digestive function and nutrient metabolism	163
Fermentable carbohydrates	163
Digestive function and nutrient metabolism	163
Immune function	163
Growth factors	165
Bacterial community and metabolites	165
Microbiota-host interactions	165
SCFA	166
Polyamines	166
Limitations and strengths of gene expression to determine implications of nutrition during weaning	167
Implications for pig nutrition	167
Conclusions	169
Acknowledgements	169
References	169
Role of the rumen in copper and thiomolybdate absorption	
L. Gould & N. R. Kendall	
What does TCA-soluble and -insoluble copper measure?	176
Are thiomolybdates produced in the rumen?	177
Do thiomolybdates transfer into the animal and how?	178
What effects do absorbed thiomolybdates have in the animal?	179
The role of iron: how does it react in the rumen?	180
Sources of copper, molybdenum, sulfur and iron	180
Summary	181
Acknowledgements	181
References	181
Comparative effects of processing methods on the feeding value of maize in feedlot cattle	
R. A. Zinn, A. Barreras, L. Corona, F. N. Owens & A. Plascencia	
Introduction	183
Components of maize grain that limit digestion	184
Seed coat	184
Germ size	184
Vitreous endosperm	184
Amylose content	185
Resistant starch	185
Effects of processing on site and extent of starch digestion by cattle	186

Contents

Effects of processing on growth performance and net energy value of maize Optimising processing conditions Example of assessment of maize processing method The problem The evaluation The result The solution Conclusions Acknowledgements References	186 188 189 189 189 189 189 189 189 189
Protein hydrolysates and tissue repair	
R. L. Thomson & J. D. Buckley	101
Introduction Destain harden has to a	191
Protein hydrolysates Potential effects on tissue repair	191 192
Effect on post-surgical recovery	192
Effect on severe burn recovery	192
Effect on gastric repair	192
Effect on pressure ulcer recovery	193
Effect on preventing the development of atopic dermatitis-like skin lesions	193
Effect on recovery from muscle damage	193
Proposed mechanisms of action Enhanced availability	194 194
Increase in levels of insulin	194
Bioactive properties	195
Conclusion	195
Acknowledgements	195
References	196
Epigenetic mechanisms elicited by nutrition in early life <i>R. Berni Canani, M. Di Costanzo, L. Leone, G. Bedogni, P. Brambilla, S. Cianfarani, V. Nobili,</i> <i>A. Pietrobelli & C. Agostoni</i>	109
Introduction Epigenetic mechanisms elicited by nutritional factors	198 199
Effects of nutritional factors on DNA methylation	199
Effects of nutritional factors on histone modifications	200
Effects of nutritional factors on microRNAs	200
Epigenetic mechanisms elicited by maternal diet during pregnancy	201
Microbiota, epigenetics and early postnatal nutrition	202
Conclusions	203
Acknowledgements References	204 204
Kerenees	204
Human health effects of conjugated linoleic acid from milk and supplements	
T. A. McCrorie, E. M. Keaveney, J. M. W. Wallace, N. Binns & M. B. E. Livingstone Introduction	206
Methods	200
Conjugated linoleic acid and cancer	207
Conjugated linoleic acid and body composition	209
Conjugated linoleic acid, lipid metabolism and atherosclerosis	213
Conjugated linoleic acid, inflammation and immune effects	216
Conjugated linoleic acid, insulin resistance and diabetes	218
Conjugated linoleic acid and bone health Overall conclusions	221 222
Acknowledgements	222
References	222

Contents

A novel model to explain dietary factors affecting hypocalcaemia in dairy cattle	
J. Martín-Tereso & M. W. A. Verstegen	
Introduction	228
Teleological background of milk fever	228
Definition of milk fever	229
Calcium homeostasis	229
General definition	229
Adaptive mechanisms of calcium homeostasis	230
Transepithelial transport processes	230
Tissue remodelling	232
Conclusion on adaptive mechanisms	233
Dietary-induced modulation of calcium metabolism	233
Non-nutritional supply of vitamin D metabolites	233
Low-calcium diets	234
Reduction of the dietary cation-anion difference	234
Dietary inclusion of calcium antagonists	235
Mechanistic analysis of the adaptation of calcium homeostasis at calving	235
Estimation of blood calcium clearance	236
Gastrointestinally available pool	237
Prediction of metabolic adaptation from the ratio between calcium clearance and	
gastrointestinally available calcium	238
Conclusions	239
Acknowledgements	240
References	240

Tree nut phytochemicals: composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts *B. W. Bolling, C.-Y. Oliver Chen, D. L. McKay & J. B. Blumberg*

B. W.	Bolling, CY. Oliver Chen, D. L. McKay & J. B. Blumberg	
P	hytochemical databases with tree nuts	244
	Definition of phytochemicals	244
	Tree nut phytochemical classes	244
	Total phenols	244
	Flavonoids	245
	Proanthocyanidins	245
	Stilbenes	245
	Phytosterols	245
	Carotenoids	245
	Other phytochemical classes	245
	Phytochemical databases	245
	US Department of Agriculture phytochemical databases	245
	US Department of Agriculture phytochemical databases: total phenols	247
	US Department of Agriculture phytochemical databases: flavonoids	247
	US Department of Agriculture phytochemical databases: isoflavones	247
	US Department of Agriculture phytochemical databases: proanthocyanidins	248
	Phenol-Explorer	248
	Phenol-Explorer total phenol database	248
	Phenol-Explorer phytochemical database	248
	US Department of Agriculture National Nutrient Database for Standard Reference for sterols	249
	US Department of Agriculture National Nutrient Database for Standard Reference for carotenoids	250
	European Food Information Resource database	250
	Comparison of tree nut phytochemical database values relative to other foods	251
Т	ree nut phytochemical values reported after database publication	251
	Total phenols and flavonoids	251
	Total phenols	251
	Flavonoids	252
	Flavonoids: pecans	252
	Flavonoids: almonds	252
	Flavonoids: cashews	252
	Flavonoids: hazelnuts	252
	Flavonoids: pistachios	253

Flavonoids: walnuts	253
Proanthocyanidins	253
Stilbenes	253
Phytosterols	253
Carotenoids	254
Other classes	254
Phenolic acids and aldehydes	254
Alkaloids	254
Phytates	254
Chlorophylls	254
Lignans	254
Alkylphenols	254
Naphthoquinones	254
	254
Hydrolysable tannins	
Sphingolipids	255
Summary of phytochemical databases	256
Current knowledge	256
Knowledge gaps	256
Future directions	256
Factors affecting phytochemical content	257
Pre-harvest factors	257
Genetics (variety)	257
Genetics (variety): almonds	257
Genetics (variety): hazelnuts	257
Genetics (variety): pecans	258
Genetics (variety): pistachios	258
Genetics (variety): walnuts	258
Environment	258
Almonds	259
Pecans	259
Pistachios	259
Walnuts	259
Post-harvest factors	259
Almonds	259
Cashews	260
Hazelnuts	260
Pecans	261
Pistachios	261
Walnuts	261
Methodology of phytochemical determinations	262
Almonds and hazelnuts	262
Almonds	262
Hazelnuts	263
Phytosterols and sphingolipids	263
Summary of factors affecting phytochemicals	263
Current knowledge	263
Knowledge gaps	263
Future directions	265
	265
Evidence for bioactivity and health effects of tree nuts in humans	
Observational studies Clinical trials	265
	266
Lipid-lowering effects	266
Inflammation and endothelial function	267
Oxidative stress and antioxidant activity	268
Bioavailability studies in humans	269
Summary	269
Acknowledgements	270
References	270