THE STELLAR POPULATIONS OF NEUTRON AND STRANGE STARS IN THE GALAXY

J.E.HORVATH ${ }^{1}$ and G.A.FOGLIA ${ }^{2}$
${ }^{1}$ Instituto Astronômico e Geofísico, Universidade de São Paulo. Av. M. Stéfano 4200 (04301) São Paulo SP BRASIL
${ }^{2}$ Instituto de Física, Universidade de São Paulo.
Cx. Postal 20516, (01498) Sáo Paulo SP BRASIL

If strange matter [1] is the most stable state of cold, dense hadronic matter, the actual internal composition of compact stars would depend on the timescale $\tau_{s s}$ for the decay $n \rightarrow u d s+e n e r g y$ to occur [2]. We have modelled the depletion of the neutron star population $N_{n s}(t)$ by the simple law

$$
\frac{d N_{n s}}{d t}=S N I I+A I C-B H-\frac{N_{n s}}{\tau_{s s}}
$$

where $S N I I, A I C$ and $-B H$ represent birth in type $I I$ supernovae, accretion induced collapse of a white dwarf and collapse to black hole respectively. Assuming no decay of their magnetic fields (which would otherwise mask the features of a converted star), we have found two relevant solutions: $\tau_{s s} \gg 10^{10} \mathrm{yr}$ (strongly suppressed conversion, all compact objects $n s)$ and the other $\tau_{s s} \simeq N_{n s}\left(t_{f}\right) / K 10^{10} y r$, with $K=$ const. the net birthrate and $t_{f} \simeq$ age of the Galaxy. Under fairly different assumptions $\tau_{s s}$ turns out to be $\simeq 10^{9} y r$ for the last case. Our conclusion is that the gross mismatch between $\tau_{s s}$ and the microscopic strangeness-changing reactions ($\simeq 10^{-8} s$) do not favour a mixed population, therefore suggesting a prompt birth of $s s$ in SNII explosions [3]. These objects should be then asked to provide a model for any pulsar observation, including glitches [4,5]. If, to avoid the above conclusion, we postulate accretion from a companion as the cause of the conversion we found that the critical density should lay within a factor ≤ 2 for any massive neutron star model. An extended version of this argument can be found in [6].

REFERENCES

1) Witten,E. (1984) Phys.Rev.D30, 272.
2) Benvenuto,O.G. and Horvath,J.E. (1990) M.N.R.A.S. 247, 584.
3) Benvenuto,O.G. and Horvath,J.E. (1989) Phys.Rev.Lett. 63, 716.
4) Benvenuto,O.G.; Horvath,J.E. and Vucetich,H. (1990) Phys.Rev.Lett.64, 713.
5) Alpar,M.A. (1987) Phys.Rev.Lett.58, 2152.
6) Horvath,J.E. and Foglia,G.A. (1991) Remarks on the relative populations of neutron and strange stars, submitted for publication.
