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ABSTRACT. As an ice sheet evolves, there are ice elements near the surface only recently subjected to
stress following deposition, and others that have been subjected to stress over many ranges of time. The
constant stress and constant strain-rate responses of ice in uniaxial compressive stress exhibit non-viscous
behaviour, that is, the strain rate is not fixed by the stress (and conversely) but both vary with time. At
constant stress the initial primary strain rate decreases with time to a minimum, described as secondary
creep. It then increases and approaches an asymptotic limit, described as tertiary creep. Analogously,
at constant strain rate the initial stress increases to a maximum then decreases to an asymptotic limit.
These responses are used to construct a simple viscoelastic fluid constitutive law of differential type.
Such a time-dependent law, with timescales changing widely with temperature, can be expected to
yield a flow field in an ice sheet that is very different from that obtained from the viscous law. Only
comparison solutions for both constitutive laws can determine the differences and significance of the
non-viscous behaviour, and the simple law constructed would be a candidate for such comparisons.

1. INTRODUCTION

The constant stress and constant strain-rate responses of
ice at constant temperature in uniaxial compressive stress
exhibit non-viscous behaviour: the strain rate is not a
unique function of stress, and vice versa. At constant stress
the initial primary strain rate decreases with time to a
minimum, described as secondary creep. It then increases
and approaches an asymptotic limit, called tertiary creep.
Analogously, at constant strain rate the initial stress increases
to a maximum then decreases to an asymptotic limit.
Mellor (1980) noted that the initial elastic strain when a

stress is applied is much smaller than the creep strains, so
this solid response will be neglected. Such variations with
time at constant temperature can then be described by a
viscoelastic fluid model, and are used here to construct a
simple constitutive law of differential type.
The timescales of the primary, secondary and tertiary

response increase significantly with a decrease in tempera-
ture. Following Morland (1979) it is proposed that the ice is
thermo-rheologically simple (Morland and Lee, 1960); that
is, there is a common response on a pseudo-timescale
depending on temperature, analogous to the temperature-
dependent rate factor applied in the conventional viscous
law. There is a considerable variation of temperature through
an ice sheet. The time that different ice elements have been
stressed for ranges from very short near the surface in an
accumulation zone, to very long as the ice passes through
the sheet. There are concerns about whether a flow solution
based on the conventional viscous response can realistically
reflect the time-dependent viscoelastic behaviour, which it-
self has such significant variation through the sheet. Only
comparison flow solutions can determine the significance
of such viscoelastic effects. The present constitutive model,
which is the simplest consistent with the uniaxial stress re-
sponse, could be a basis for preliminary comparisons.
The idealized responses adopted above have been widely

discussed by Hooke (1980), Jacka (1984a,b) and Jacka

and Maccagnan (1984), where experimental results show
times to minimum strain rate at different temperatures,
and by Budd and Jacka (1989) and Jacka and Li (2000).
However, the responses are also shown as functions of the
evolving strain, and interpreted as variations with evolving
fabric. Fabric evolution models predict distinct behaviour
in the uniaxial response, with viscosity enhancement in
tertiary creep greater than unity. This is in contrast to
the decreased viscosity described above, suggesting that
explicit time-dependent viscoelastic behaviour is required
to model the above responses instead of, or in addition
to, fabric evolution. There has been no clear separation
of the two processes to date, and this is discussed in
section 8. The influence of such time-independent fabric
evolution accompanied by induced anisotropy is ignored in
the present, preliminary, simple construction.
Following Mellor (1980) and the other references above,

Figure 1 shows qualitatively the axial compressive strain-rate
r (t ) response in time t at constant uniaxial compressive stress
σ and constant temperature. Figure 2 shows qualitatively
the uniaxial compressive stress σ(t ) response at constant
axial compressive strain rate r and constant temperature. As
the constant temperature increases, the strain rate at each
constant stress increases and the primary and tertiary creep
timescales decrease. In Figure 1, the curve rises and shifts left
with increasing temperature. In addition, the stress at each
constant strain rate decreases, so in Figure 2 the curve lowers
and shifts left with increasing temperature.
In Figure 1, the initial strain rate is r0(σ) which then

decreases during primary creep to a minimum strain rate
(secondary creep) rm (σ) at time tm (σ). It then increases during
tertiary creep to an asymptotic limit rate re (σ). The time τ (σ)
denotes the time at which the strain rate has increased a
factor 1 − δ of re − rm from rm , where 0 < δ � 1 is a
chosen parameter. The parameters r0(σ), tm (σ), re (σ) and τ (σ)
describe significant features of the responses for varying σ,
and may be the main inferences obtained from experimental
data.
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Fig. 1. Axial strain-rate r response in time t at constant axial stress σ.

In Figure 2, the initial stress is σ0(r ) which then increases
to a maximum stress σM(r ) at time tM(r ), then decreases to an
asymptotic limit σE (r ). The parameters σ0(r ), tM(r ) and σE (r )
describe significant features of the responses for varying r ,
and may be the main inferences obtained from experimental
data. The present analysis supposes that

r0 > re , σ0 < σE , (1)

but analogous analysis applies if the inequalities are
reversed. The reciprocal relations

r0[σ0(r )] = r , σ0[r0(σ)] = σ, (2)

re [σE (r )] = r , σE [re (σ)] = σ, (3)

are reasonable assertions (Morland and Spring, 1981), and
Mellor (1980) also suggests

rm[σM (r )] = r , σM[rm (σ)] = σ. (4)

These define unique boundaries in the r –σ domain, shown
in Figure 3 as the three curves r expressed as a function of σ
and conversely, separating regions in which the coefficient
functions of the viscoelastic differential relation have specific
values.
It is conjectured that as the constant stress σ → 0 then

r0, rm , re → 0 and as the constant strain rate r → 0 then
σ0, σM, σE → 0. However, their general dependence on
σ and r , respectively, must be determined from test data.
Mellor (1980) proposed that the responses from both tests
must reflect the same material properties, but that no existing
constitutive model simulates both responses. Morland (1979)
and Morland and Spring (1981) have proposed viscoelastic
fluid models of differential type which exhibit the main
features of both responses. Correlation with one type of
response still required information from the second type,
however, and would not allow exact correlation with an
independent second type response.
In this paper, after presenting the axial differential relations

which describe the constant stress and constant strain-
rate responses shown in Figures 1 and 2, a corresponding
frame-indifferent viscoelastic fluid law is constructed. This
law is simpler than the earlier laws, and is correlated
with independent constant stress and constant strain-rate
responses. That is, data from constant stress and constant
strain-rate tests determine the viscoelastic fluid law of
this form. An idealized family of responses is adopted to
demonstrate the correlation process and the determination
of the constitutive (material) functions which define the law.
A simple illustration is also presented.

Fig. 2. Axial stress σ response in time t at constant axial strain rate r .

2. CONSTANT STRESS RESPONSE
It is first necessary to show how the primary, secondary
and tertiary creep responses with time at constant stress,
then at constant strain rate, can be described by differential
equations which can be correlated with a viscoelastic fluid
law of differential type.
Following Morland and Spring (1981), note that the strain

rate r (t ) at constant stress shown in Figure 1 repeats the range
rm ≤ r ≤ re in the primary and tertiary creep zones, with
strain acceleration ṙ negative and positive, respectively. The
latter has the simplest differential equation description

ṙ2 + f (r ,σ)ṙ = F (r , σ), r (0) = r0(σ), (5)

where the strain acceleration ṙ is a material time derivative
of r ; that is, the time derivative of r following the ice
particle. The quadratic relation, Equation (5), has negative
and positive roots:

0 ≤ t ≤ tm , rm (σ) ≤ r ≤ r0(σ) :
ṙ = ṙ− = −f /2−

√
f 2 + 4F/2 ≤ 0, (6)

Fig. 3. Domain of axial strain rate r vs stress σ, with primary,
secondary and tertiary creep boundaries.

https://doi.org/10.3189/002214309788608976 Published online by Cambridge University Press

https://doi.org/10.3189/002214309788608976


172 Morland: Viscoelastic fluid model

tm ≤ t , rm (σ) ≤ r ≤ re (σ) :
ṙ = ṙ+ = −f /2 +

√
f 2 + 4F/2 ≥ 0, (7)

which describe monotonic primary and tertiary creep,
respectively, provided that

rm (σ) < r < re (σ) : F (r ,σ) > 0. (8)

There are then unique inverse relations

0 ≤ t ≤ tm : t = t−(r , σ), rm (σ) ≤ r ≤ r0(σ), (9)

tm ≤ t : t = t+(r ,σ), rm (σ) ≤ r ≤ re (σ). (10)

For ṙ− → 0 and ṙ+ → 0 as r → rm (σ), and for ṙ to switch
from ṙ− to ṙ+ as t passes through tm (σ), it is necessary that

f (r ,σ) = F (r , σ) = 0,
∂F
∂r

> 0, at r = rm (σ). (11)

The asymptotic limit r → re (σ) as t →∞ requires ṙ+ → 0 as
r → re (σ), which implies

F [re (σ), σ] = 0. (12)

Since there is only primary creep ṙ−(t ) in r ≥ re (σ), that
is, only a single root of Equation (5),

r0(σ) ≥ r ≥ re (σ) : F (r ,σ) = 0,

ṙ+ = 0, ṙ− = −f (r , σ) < 0. (13)

Further, neither root given by Equations (6) and (7) applies in
r < rm (σ) nor in r > r0(σ), so it is convenient to define the
extensions, with f (r ,σ) discontinuous at r = r0(σ),

r < rm (σ) and r > r0(σ) : f (r ,σ) = F (r ,σ) = 0. (14)

These explicit properties are noted in Figure 3. The time
tm (σ) to minimum strain rate rm (σ) is bounded and the time
to the tertiary limit re (σ) is unbounded, satisfied if

f and F > O (r − rm ) as r → rm ,

F ≤ O (r − re ) as r → re . (15)

A complete family of constant stress responses at constant
temperature over an appropriate stress range is required to
determine the functions f (r ,σ) and F (r , σ). Equations (13)
and (14) cover the ranges r < rm (σ) and r > re (σ). Given
ṙ (t ) in Equations (6) and (7) and using the inverse relations
of Equations (9) and (10),

rm (σ) ≤ r ≤ re (σ) :
f (r , σ) = −(ṙ− + ṙ+), F (r ,σ) = −ṙ− ṙ+. (16)

3. CONSTANT STRAIN-RATE RESPONSE
There is an analogous analysis for the constant strain-rate
response shown in Figure 2. The governing differential
equation for σ(t ) is

σ̇2 − g (r ,σ)σ̇ = G(r , σ), σ(0) = σ0(r ), (17)

where σ̇ is the material time derivative of σ. The primary and
tertiary roots are

0 ≤ t ≤ tM, σ0(r ) ≤ σ ≤ σM(r ) :

σ̇ = σ̇+ = g/2 +
√
g2 + 4G/2 ≥ 0, (18)

tM ≤ t , σE (r ) ≤ σ ≤ σM(r ) :

σ̇ = σ̇− = g/2−
√
g2 + 4G/2 ≤ 0, (19)

subject to G[r , σE (r )] = 0 and

σE (r ) < r < σM(r ) : G(r , σ) > 0, (20)

g (r ,σ) = G(r , σ) = 0,
∂G
∂r

< 0 at σ = σM (r ). (21)

There are then unique inverse relations:

0 ≤ t ≤ tM : t = s+(r ,σ), σ0(r ) ≤ σ ≤ σM(r ), (22)

tM ≤ t : t = s−(r , σ), σE (r ) ≤ σ ≤ σM(r ). (23)

Since there is only primary creep σ̇+(t ) in σ ≤ σE (r ),

σ0(r ) ≤ σ ≤ σE (r ) :

G(r , σ) = 0, σ̇− = 0, σ̇+ = g (r ,σ) > 0. (24)

Again, we define the continuous extensions

σ < σ0(r ) and σ > σM(r ) : g (r , σ) = G(r , σ) = 0, (25)

which are noted in Figure 3. The time tM(σ) to maximum
stress σM(r ) is bounded and time to the tertiary limit σE (r ) is
unbounded, satisfied if

g and G > O (σM − σ) as σ → σM ,

G ≤ O (σ − σE ) as σ → σE . (26)

A complete family of constant stress responses at constant
temperature over an appropriate strain-rate range is required
to determine the functions g (r ,σ) and G(r , σ). Equations (24)
and (25) cover the ranges σ < σE (r ) and σ > σM(r ), and then,
given σ̇(t ) in Equations (18) and (19) and using the inverse
relations of Equations (22) and (23),

σE (r ) ≤ r ≤ σM(r ) :

g (r , σ) = (σ̇− + σ̇+), G(r , σ) = −σ̇−σ̇+. (27)

4. VISCOELASTIC FLUID LAW
With the usual incompressibility assumption, a constitutive
viscous law for ice determines the deviatoric stress

S = σ + p I , p = −trσ/3, (28)

where σ is the Cauchy stress and p is the mean pressure. In
terms of the instantaneous strain rate,

D =
1
2

[
grad v +

(
grad v

)T ]
, trD = 0, (29)

where v (x , t ) is the velocity field in spatial coordinates x ,
grad denotes the spatial gradient and T denotes tensor
transpose. To incorporate the strain acceleration required
in the constant uniaxial stress response, Morland (1979) in-
troduced the frame-indifferent second Rivlin–Ericksen tensor.
To describe the constant strain-rate response, Morland and
Spring (1981) introduced a frame-indifferent deviatoric
stress-rate tensor. However, these responses can both be
simulated without such rate tensors, by simply allowing
dependence on material time derivatives of strain rate and
deviatoric stress invariants. This yields a simpler form of
tensor relation than that proposed by Morland and Spring
(1981). Such a form is now analysed to show how it can
be determined by independent data from constant stress and
constant strain-rate tests.
The simple form proposed, to describe the response at

constant temperature T , is given by the equivalent coaxial
relations

S = Φ(I, J, İ, J̇)D , D = Ψ(I, J, İ, J̇) S , (30)
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where I and J are the second invariants of D and S,
respectively, and İ and J̇ are their respective material time
derivatives:

I = tr
(
D2

)
/2, J = tr

(
S2

)
/2,

İ =
∂I
∂t
+ v · grad I,

J̇ =
∂J
∂t
+ v · grad J. (31)

Φ(I, J, İ, J̇) and Ψ(I, J, İ, J̇), related, are the response func-
tions which describe the particular viscoelastic properties of
the ice. The first-order differential equations relating D and
S, Equations (30), must be completed by initial conditions
on I and J. Dependence on the third invariants of D and S,
and/or their time derivatives, may be required for correlations
with more general stress responses.
For uniaxial compressive stress σ, with axial compressive

strain rate r accompanied by lateral (tensile) strain rates r/2
in all lateral directions to satisfy incompressibility,

S = diag(−2σ,σ, σ)/3, J = σ2/3, J̇ = 2σ σ̇/3, (32)

D = diag(−2r , r , r )/2, I = 3r2/4, İ = 3r ṙ/2. (33)

At constant σ, each of the diagonal components of Equa-
tion (30) becomes

σ = 3Φ
(
3r2/4,σ2/3, 3r ṙ/2, 0

)
r/2, (34)

and at constant r ,

σ = 3Φ
(
3r2/4,σ2/3, 0, 2σσ̇/3

)
r/2. (35)

For comparison, Equations (5) and (17) can be written with
ṙ expressed in terms of İ and σ̇ expressed in terms of J̇:

İ2 +
3
2
rf (r , σ)İ =

9
4
r2F (r ,σ), (36)

J̇2 − 2
3

σg (r ,σ)J̇ =
4
9

σ2G(r , σ). (37)

Define

f (I, J) =
3
2
rf (r ,σ), F (I, J) =

9
4
r2F (r ,σ), (38)

g (I, J) =
2
3

σg (r ,σ), G (I, J) =
4
9

σ2G(r , σ), (39)

where by Equations (32) and (33), σ and r are replaced by

σ = (3J)1/2, r = 2(I/3)1/2. (40)

That is, f (r ,σ), F (r ,σ), g (r , σ) andG(r , σ) given by the primary
and tertiary response data relations (13), (16), (24) and (27)
determine the functions f (I, J), F (I, J), g (I, J) and G (I, J).
Now Φ(I, J, İ, J̇) must be chosen so that Equation (34) at

constant σ, J̇ = 0, yields Equation (36) and Equation (35) at
constant r , İ = 0, yields Equation (37). A simple construction
is the additive form

Φ(I, J, İ, J̇) = A
[
İ2 + f (I, J)İ

]
+B

[
J̇2 − g (I, J)J̇] − AF (I, J) + (J/I)1/2, (41)

where A(I, J) and B(I, J) are functions of I and J subject to the
restriction

A(I, J)F (I, J) = B(I, J)G(I, J), (42)

consistent with the vanishing of F and G in the same zones.
This is not a unique prescription of a consistent Φ, but

appears to be the simplest form. Here, given independent

F and G , there is still a single arbitrary function A(I, J) or
B(I, J) which could be used to ‘improve’ correlation with
a different response, such as simple shear. If the family of
constant stress responses contain the same information as
the family of constant strain-rate responses, then g and G
are not independent of f and F but the above relations still
apply. There is an analogous construction for the response
function Ψ.

5. TEMPERATURE DEPENDENCE
The significant temperature dependence is described by as-
suming that the ice is thermo-rheologically simple, satisfying
the above time-dependent relations with real time t replaced
by a pseudo-time ζ(X , t ) (Morland and Lee, 1960; Morland,
1979) for each material element X , depending on the tem-
perature history of that element, defined by

ζ̇ =
∂ζ

∂t
+ v · grad ζ = a[T (X , t )], ζ(X , t0) = 0,

ζ(X , t ) =
∫ t

t0
a[T (X , t ′)] dt ′. (43)

Here t0 is an initial time before which the ice is not stressed
or when a steady state has been maintained for sufficient
time. It states that all rate processes are increased at each
time for each element by a factor a[T (X , t )] which is the
analogue of the temperature-dependent rate factor applied
in the usual viscous law. Smith and Morland (1981) derived
an accurate representation for a(T ) from data presented by
Mellor and Testa (1969) for temperatures between melting
and 60K below melting. A good simplifying approximation
over the range of practical significance from melting to 40K
below melting is (Morland, 1997)

a(T ) = 0.68 exp(12 T ) + 0.32 exp(3T ),

T = 273.15K + [20 K]T , (44)

where [20K] is a typical temperature change magnitude
over an ice-sheet depth and the dimensionless temperature
T is zero at melting and –2 at 40K below melting where
a = 7.9×10−4. The present uniaxial stress analysis supposes
the ice is near the melting point, when a = 1 and ζ = t with
respect to t0 = 0. At different constant temperatures, t is
replaced by ζ = at .
For a general temperature field with rate factor a[T (X , t )],

with time t replaced by ζ in the viscoelastic fluid relations,

D → a−1D , I → a−2I, İ → a−3 İ, J̇ → a−1 J̇, (45)

and Equations (30), (41) and (42) become

S = a−1Φ
(
a−2I, J, a−3 İ, a−1 J̇

)
D ,

D = aΨ
(
a−2I, J, a−3 İ, a−1 J̇

)
S , (46)

Φ = A
[
İ2 + a3f

(
a−2I, J

)
İ
]
+ B[J̇2 − ag(a−2I, J)J̇]

−a4AF (I, J) + a(J/I)1/2, (47)

a4A
(
a−2I, J

)
F
(
a−2I, J

)
= B

(
a−2I, J

)
G

(
a−2I, J

)
. (48)

At low temperatures, the rate factor a � 1 significantly
affects the relative weights of the terms in the square brackets
and of the outside terms of Φ. There still remains an arbitrary
function A or B to improve other correlations, but recall that
the uniaxial responses do not determine f , F , g or G over a
complete I − J domain.
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Note that the material time derivative is required in Equa-
tion (43), as in Equation (31) for the invariants. The former
involves the gradient in spatial coordinates necessary to de-
scribe an ice-sheet domain subject to surface accumulation/
ablation and basal melting, steady or evolving. This adds a
numerical complexity to the flow equations, adding hyper-
bolic equations to the elliptic equations of the slow flow.
However, this situation has been addressed successfully for
a steady radial flow incorporating fabric evolution (Morland
and Staroszczyk, 2006).

6. IDEALIZED RESPONSES
The form of strain-rate response r (t ) at each constant stress
σ and constant temperature T shown in Figure 1 can be
simulated by

r (t ) = re −Δexp
(−ct)[1 + ct + bt 2],

Δ = re − rm > 0, c > 0, t = t − tm , (49)

where b and c are functions of σ, satisfying r = rm and ṙ = 0
at t = 0 and r → re as t → ∞. The strain acceleration is
then

ṙ (t ) = Δt exp
(−ct )[(c2 − 2b)+ cb t ], (50)

which must be positive during tertiary creep t > 0 and
negative during primary creep −tm ≤ t < 0. This requires
that

b > 0, c2 − 2b > cb tm. (51)

The condition that re− r = δΔ at t = τ , that is, at t = τ̃ tm
where τ− tm = τ̃ tm (a measure of how fast the tertiary creep
approaches its limit) is

1 + c τ̃ tm + b τ̃2t2m = δ exp(c τ̃ tm ), τ̃ > 0. (52)

Setting r0 − re = k Δ, which relates the strain-rate decrease
between its initial value and final tertiary limit value to the
tertiary increase from the minimum value, provides another
measure of the overall response. This is expressed

1− c tm + b t2m = −k exp(−ctm ), k > 0. (53)

Finally, following Mellor (1980) and Jacka (1984a), the
strain εm at tm is 0.01 for all σ, so

εm = 0.01 =
∫ 0

−tm
r (t ′) dt ′ (54)

= re tm − q0Δ +Δexp(ctm )
[
q0 − q1tm + q2t2m

]
,

where

q0 = −2c−3
(
c2+b

)
, q1 = −c−2

(
c2+2b

)
, q2 = −c−1b.

(55)
The Equation (54) restriction is adopted in an illustration, but
it is noted that this magnitude of εm applied to the responses
at or near the melting temperature yields timescales that are
too short.
Setting

γ = ctm , β = bt2m , (56)

the relations (52–54) with Equation (55) become

1 + τ̃γ + τ̃2β = δ exp(τ̃γ), (57)

γ − β − 1 = k exp(−γ), (58)

γ3(re − εm/tm )/Δ = −2(γ2 + β
)

(59)

+ exp(γ)
[
2
(
γ2+ β

)
+ βγ2 − γ

(
γ2 + 2β

)]
,

subject to the Equation (51) restrictions:

0 < β = γ − 1− k exp(−γ) < γ2/(2 + γ). (60)

Since β(γ) is monotonically increasing for each k , and
β(1) < 0 and β → ∞ as γ → ∞, there is a unique γm (k )
such that the left inequality is satisfied for γ > γm (k ). Further,
since β decreases with increasing k at fixed γ, γm (k )
increases with k . The right inequality is expressed by

h(γ) = k (2 + γ) exp(−γ) + 2− γ

= −2β(γ) + γ + kγ exp(−γ) > 0. (61)

Now h(γ) is monotonically decreasing for each k , and
h(1) > 0 and h → −∞ as γ → ∞, so there is a unique
γx (k ) such that the right inequality is satisfied for γ < γx (k ).
Further, since h increases with increasing k at fixed γ, γx (k )
increases with k . Also, h(γm ) is positive by the second
equality of Equation (61), so γx > γm ; that is, there is a finite
range (γm , γx ) of γ for each k which satisfies the Equation (60)
restrictions. A valid set of parameters requires that the root
γ of Equation (57) for given k (σ) and τ (σ) falls in this range.
With a valid set, Equation (59) then determines tm (σ) given
re (σ).
As a simple example, it is supposed that there is a response

y (t̂ ) independent of σ:

y (t̂ ) = r/rm (σ), t̂ = t/tm (σ). (62)

The secondary response rm (σ) is the usual viscous relation,
and Equation (62) assumes that the strain rate relative to rm (σ)
varies on a timescale stretched by tm (σ) independent of σ.
While the latter is consistent with all timescales increasing
as σ decreases, it introduces an indeterminancy as σ → 0.
Then Equation (49) gives

y = Re − (Re − 1) exp(−γ t̃ )
[
1 + γ t̃ + β t̃2

]
,

Re = re/rm , t̃ = t̂ − 1, (63)

where Re and the coefficients γ and β are constant,
independent of σ. Re is the strain-rate enhancement factor,
or reciprocal of the viscosity enhancement factor, relating
tertiary and secondary responses. Equations (57) and (58) for
the constant γ and β, subject to the Equations (60) and (61)
validity restrictions, are unchanged, but now

k = (R0−Re )/(Re−1) = const., R0 = r0/rm = const. (64)
Equation (59) becomes

γ3(Re − εm/ε�)/(Re − 1) = −2
(
γ2 + β

)
+exp(γ)

[
2
(
γ2 + β

)
+ βγ2 − γ

(
γ2 + 2β

)]
, (65)

where the constant ε� is given by

ε� = rmtm < εm ⇒ tm (σ) = ε�/rm (σ). (66)

The tm variation with σ is the reciprocal of that of rm , certainly
consistent with behaviour as σ increases and decreases.
Given rm (σ), the constants Re , R0, δ and τ can be specified
and ε�, hence tm (σ), determined. Alternatively, the constant
ε� can be specified and R0 or τ determined.
The differential relation Equation (5) now becomes

ẙ2 + f̃ (y )ẙ = F̃ (y ), f (r ,σ) = r2mf̃ (y )/ε�,

F (r , σ) = r4mF̃ (y )/(ε
�)2, (67)
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Fig. 4. Example strain rates r (t ) at three constant stresses.

where the symbol˚denotes differentiation with respect to t̂
or t̃ , and Equations (13) and (16) give

Re ≤ y ≤ R0 : f̃ (y ) = −ẙ−;
1 ≤ y ≤ Re : f̃ (y ) = −(ẙ− + ẙ+), F̃ (y ) = −ẙ−ẙ+ (68)

with f̃ and F̃ zero elsewhere. By Equation (63),

ẙ = (Re − 1) exp(−γ t̃ )
[(

γ2 − 2β)
t̃ + γβ t̃2

]
(69)

and t̃ can be expressed in terms of y by the unique t̃ =
t̃−(y ) and t̃ = t̃+(y ) for the monotonic primary and tertiary
creep responses, respectively, defined by Equation (63). The
constitutive functions f and F in the viscoelastic response
function Φ of the model relation Equation (41), using
Equations (38) and (67), are then

f (I, J) =
(3I)1/2r2m

ε�
f̃ {α(I, J)} , (70)

F (I, J) =
3I r4m
(ε�)2

F̃ {α(I, J)} , (71)

α(I, J) = 2(I/3)1/2/rm[(3J)
1/2]. (72)

The domains of f (I, J) and F (I, J) defined by uniaxial stress
response are given by

f (I, J) �= 0 : Im (J) < I ≤ I0(J);
F (I, J) �= 0 : Im (J) < I < Ie (J); (73)

Im (J) = 9r
2
m
(
3J1/2

)
/4, Ie (J) = R

2
e Im (J),

I0(J) = R
2
0 Im (J). (74)

However, other stress configurations may require f (I, J)
and F (I, J) over different (I, J) domains, and may imply
dependence on third invariants as the shear experiments of
Steinemann (1954) did for the viscous law.
These functions are completed by prescribing the

secondary-creep minimum strain rate rm (σ) defined by the
standard viscous law. This three-term polynomial representa-
tion was constructed by Smith andMorland (1981) with finite
viscosity at zero stress, closely correlated with Glen’s (1955)
uniaxial compression data at near melting temperature,
a = 1, over a stress range 0–8.66× 105 Nm−2. With a stress

unit of 105 Nm−2 (0.1MPa) and a strain-rate unit of a−1,
their relation is

Ψ(I, J, 0, 0) = ψ(J) = 0.3336 + 0.32 J + 0.02963 J2,

0 ≤ J ≤ 25, 0 ≤ ψ ≤ 16. (75)

With Equations (32) and (33), this gives

rm (σ) = 2σ ψ(σ2/3)/3

= 0.2224σ + 0.07111σ3 + 0.002195σ5, (76)

0 ≤ rm ≤ 155.
The choice of idealized constant stress responses (Equa-

tion (62)) also determines the constant strain-rate responses,
since it applies for all σ and is an implicit equation for σ(t )
at each constant r . That is,

rm (σ) = r/y (t̂ )⇒ σ(t̂ ) = σM[r/y (t̂ )], t̂ = t rm (σ)/ε�, (77)

using Equation (4) to invert rm (σ). t̂ can be expressed in terms
of r and y , hence σ by Equation (62), on the separate primary
and tertiary monotonic creep responses 0 ≤ t̂ ≤ 1 and
t̂ > 1. Now differentiating Equation (62) with respect to t̂
at constant r gives

σ̊ = −ẙ/[y2r ′m (σ)] ⇒ σ̇(t ) = σ̊rm (σ)/ε�, (78)

which vanishes when ẙ (t̂ ) = 0, that is, at t̂ = 1, t = tm (σ).
Further, σ̊ has the opposite sign to ẙ and is therefore positive
in t̂ < 1 and negative in t̂ > 1. This verifies the primary
monotonically increasing σ in t < tm (σ) and the tertiary
monotonically decreasing σ in t > tm (σ). The functions
g (r ,σ) and G(r , σ) are then determined by Equation (27) and
g (I, J) and G (I, J) by Equation (39).

7. ILLUSTRATION
Sets of parameters satisfying Equations (57–59) and consist-
ent with the restriction Equation (60) have been calculated,
and the following are chosen to illustrate the response and
determine the corresponding constitutive model response
functions:

τ̃ = 2, δ = 0.1, Re = 2, k = 2 ⇒
R0 = 4, γ = 2.3038, β = 1.1040, ε� = 0.0044.

(79)

Figure 4 shows three associated constant stress responses at

σ = 0.5 : rm = 0.120, tm = 0.0367,

σ = 0.75 : rm = 0.198, tm = 0.0222,

σ = 1 : rm = 0.296, tm = 0.0149. (80)

For σ=1 the initial strain rate is r =1.18, but then
decreases too rapidly in time to be shown. The short
timescale is due both to the chosen idealized response given
by Equations (62) and (63) and the Mellor suggestion and
εm = 0.01 applied near melting, with a = 1. An εm
increasing with temperature as does the strain rate, with
larger rate of increase near melting, increases ε� given by
Equation (65) and hence tm (σ) given by Equation (66).
Figure 5 shows four constant strain-rate responses, again

with very short timescales, at

r = 0.2 : σM = 0.758, tM = 0.0220,

r = 0.5 : σM = 1.373, tM = 0.0088,

r = 0.75 : σM = 1.691, tM = 0.0058,

r = 1 : σM = 1.930, tM = 0.0044. (81)
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Fig. 5. Example stresses σ(t ) at four constant strain rates.

The constitutive functions f (I, J) and F (I, J) are formally
determined by Equations (68) and (70–72), and g (I, J) and
G (I, J) by Equations (24), (27) and (39) once the time in the
separate primary and tertiary creep responses is expressed
in terms of r and σ. For the example Equation (62), this is
simply determining the primary and tertiary roots t̂− and t̂+
of

rm (σ)y (t̂ ) = r , t̂− in − 1 ≤ t̂ ≤ 0, t̂+ in 0 ≤ t̂ , (82)

for each r and σ, hence I and J, over the chosen ranges. Here,
these are 0 ≤ σ ≤ 3 and 0 ≤ r ≤ 3 corresponding to 0 ≤ J ≤
3 and 0 ≤ I ≤ 6.75. There is an indeterminancy as r , σ → 0,
no root t̂ , for this example. The maximum function values
are very large due to the short timescale of the example
and the very small ε�. They are shown as surfaces of ε�f (I, J)
and (ε�)2F (I, J) in Figures 6 and 7 respectively, and surfaces
of ε�g (I, J) and (ε�)2G (I, J) in Figures 8 and 9 respectively.
Figures 6–9 also show their common non-zero (I, J) domains
which are covered by uniaxial stress. Analyzing actual
data from families of constant stress and constant strain-
rate responses to determine these constitutive functions will
be much more complicated, but will necessarily yield the

Fig. 6. The response function ε�f (I, J).

Fig. 7. The response function (ε�)2F (I, J).

correct timescales associated with the stress, strain rate and
temperature ranges covered.

8. VISCOELASTICITY, FABRIC AND INDUCED
ANISOTROPY
As noted in section 1, constant uniaxial stress response due
to fabric evolution (based on crystal rotation arguments and
a consequence of fabric models) shows an increased tertiary
viscosity over the minimum (secondary) viscosity. This is in
contrast to the decreased tertiary viscosity shown by Mellor
(1980) and many subsequent experimental results. Jacka and
Li (2000) carried out experiments which, at least to the
attained strains of approximately 10%, indicate that at low
temperatures and stresses the fabric remains random and
there is no change of viscosity in the tertiary response.
The fabric seems to be dominated by rotation at low

temperatures and higher stresses, while at high temperatures
it is dominated by recrystallization. Jacka and Budd (1991)
note that theoretical considerations of crystal rotation at high
stress by Azuma and Higashi (1985) and Alley (1988) ignore
recrystallization. At the relatively high temperatures and
stresses of laboratory tests, it is possible that recrystallization
is the cause of the decreased tertiary viscosity rather than the

Fig. 8. The response function ε�g (I, J).
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time-dependent viscoelastic response modelled here, though
this is not implied directly.
While Budd and Jacka (1989) indicate that primary creep

exhibits time-dependent recoverable strain (a viscoelastic ef-
fect), Gao and Jacka (1987) emphasize that further compres-
sion of samples previously compressed to the tertiary limit do
not exhibit a change of strain rate from the previous tertiary
limit; this is a rejection of a viscoelastic effect once the fabric
is fully developed. Further, observed fabrics in the tertiary
limit of uniaxial compression are not consistent with those
predicted by crystal rotation alone, but are consistent with
a combination of rotation and recrystallization which can
explain the decrease in viscosity.
However, the above inferences do not imply that visco-

elastic processes, with explicit time dependence, are not
occurring. Existing evidence does not clearly distinguish
fabric and viscoelastic effects. Both processes may be taking
place, with one or the other dominating in different regimes.
Gao and Jacka (1987) also note that applying a different
stress configuration in the further compression of a sample
previously compressed to its tertiary limit results in a different
strain rate. This confirms that fabric evolution does indeed
induce anisotropy. If viscoelastic processes are also occurring
(given that induced anisotropy is significant), the present
isotropic viscoelastic fluid model must be generalized, much
as the conventional viscous law has been generalized, to
incorporate fabric effects.
It is a major task to perform the necessary experimental

tests required to infer an appropriate constitutivemodel, but a
preliminary approach would be to correlate classes of simple
idealized models to existing data. There still remains the need
to extrapolate experimentally inferred responses to the wide
range of temperatures and stresses arising through an ice
sheet. However, it is better to extrapolate a model consistent
with experimental behaviour than to continue applying the
extrapolated viscous fluid model.

9. CONCLUSIONS
The present analysis has focused on the constant uniaxial
stress and constant strain-rate responses of ice in time, and
shown how a simple viscoelastic fluid model can simulate,
and be determined by, the two families of responses. The
specific simplification adopted is probably too simple to cor-
relate with real families of responses, and the families chosen
as examples too artificial. However, the analysis demon-
strates how an actual correlation can be constructed given
the necessary real data. Different stress configurations may
show that the viscoelastic model needs further generaliza-
tion. More importantly, there is a need to separate explicit
time-dependent viscoelastic effects and fabric evolution ef-
fects, and it may prove necessary to incorporate both into a
model describing real response.
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