MULTIPLIERS ON WEIGHTED HARDY SPACES OVER LOCALLY COMPACT VILENKIN GROUPS, I

C. W. ONNEWEER and T. S. QUEK

(Received 31 March 1989)

Communicated by I. Raeburn

Abstract

Let G denote a locally compact Vilenkin group with dual group Γ. We give sufficient conditions for a function $\varphi \in L^{\infty}(\Gamma)$ to be a multiplier from the power-weighted Hardy space $H_{\alpha}^{p}(G)$ to itself or the corresponding power-weighted Lebesgue space $L_{\alpha}^{p}(G), 0<p \leq 1,-1<\alpha \leq 0$.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 43 A 22; secondary 43 A 15,43 A 70.

1. Introduction

In a number of recent papers by T. Kitada [4], [5], [6] and by the present authors [7], [8], [9] various multiplier theorems for spaces of functions or distributions defined on locally compact Vilenkin groups were proved. The spaces considered in these papers were the L^{p}-spaces with power weights, $1 \leq p<\infty$, the H^{p}-spaces, $0<p<1$, and the power-weighted H^{1} spaces. In the present paper we consider multipliers on power-weighted Hardy spaces H_{α}^{p}, where $0<p \leq 1$ and $-1<\alpha \leq 0$. Our results are of two kinds: the first result, Theorem 4.5, gives a sufficient condition for a function to be a multiplier from H_{α}^{p} to the corresponding power-weighted Lebesgue space L_{α}^{p}, the second result, Theorem 4.7, deals with multipliers from H_{α}^{p} to H_{α}^{p}. As a consequence of this last result we prove a multiplier theorem for H_{α}^{p} spaces, where the multiplier satisfies a Hörmander-type condition; see Theorem 4.15.

[^0]Whereas some of the multiplier theorems in [4] have an analogue for function or distribution spaces on \mathbb{R}^{n}, for the multiplier theorems presented here no comparable version on \mathbb{R}^{n} seems to be known.

We now give a brief outline of the paper. In the next section we introduce the necessary definitions and notation. In Section 3 we prove the equivalence of the maximal function characterization of the H_{α}^{p} spaces and their characterization in terms of weighted atoms. We also give an interpolation theorem for operators on $H^{p_{0}}$ spaces and $L^{p_{1}}$ spaces, $0<p_{0} \leq 1<p_{1}<\infty$. Section 4 is devoted to proofs of our main results and a brief discussion of the sharpness of the second of these results. We conclude that section, and the paper, by deriving the Hörmander-type multiplier theorem for the spaces H_{α}^{p}.

2. Definitions and notation

Throughout this paper G will denote a locally compact Abelian group containing a strictly decreasing sequence of open compact subgroups $\left(G_{n}\right)_{-\infty}^{\infty}$ such that
(i) $\sup \left\{\operatorname{order}\left(G_{n} / G_{n+1}\right): n \in \mathbb{Z}\right\}<\infty$,
(ii) $\cup_{-\infty}^{\infty} G_{n}=G$ and $\bigcap_{-\infty}^{\infty} G_{n}=\{0\}$.

Such groups are the locally compact analogue of the so-called Vilenkin groups which were first described by N. Ya. Vilenkin in 1947 [13]. Examples of such groups are given in [2, Section 4.1.2]. Additional examples are the additive group of the p-adic numbers and, more general, of a local field, see [11].

Let Γ denote the dual group of G and for each $n \in \mathbb{Z}$ let

$$
\Gamma_{n}=\left\{\gamma \in \Gamma: \gamma(x)=1 \text { for all } x \in G_{n}\right\} .
$$

We choose Haar measures μ on G and λ on Γ so that $\mu\left(G_{0}\right)=\lambda\left(\Gamma_{0}\right)=1$. Then $\mu\left(G_{n}\right)=\left(\lambda\left(\Gamma_{n}\right)\right)^{-1}:=\left(m_{n}\right)^{-1}$ for each $n \in \mathbb{Z}$.

There exists a metric d on $G \times G$ defined by $d(x, x)=0$ and $d(x, y)=$ $\left(m_{n}\right)^{-1}$ if $x-y \in G_{n} \backslash G_{n+1}$. Then the topology on G determined by the metric d coincides with the original topology on G. For $x \in G$ we set $\|x\|=d(x, 0)$. For each $\alpha \in \mathbb{R}$ we define the function v_{α} on G by $v_{\alpha}(x)=$ $\|x\|^{\alpha}$; the corresponding measure $v_{\alpha} d \mu=\|x\|^{\alpha} d \mu$ will also be denoted by $d \mu_{\alpha}$. We mention here that a simple computation shows that $\mu_{\alpha}\left(G_{n}\right) \leq$ $C\left(m_{n}\right)^{-(\alpha+1)}$, provided $\alpha>-1$, and that $\mu_{\alpha}\left(x+G_{n}\right)=\left(m_{j}\right)^{-\alpha}\left(m_{n}\right)^{-1}$ if $x \in G_{j} \backslash G_{j+1}$ for some $j<n$. Here, like elsewhere, C will denote a constant whose value may change from one occurrence to the next. The Lebesgue spaces on G with respect to the measures $d \mu_{\alpha}$ will be denoted by $L_{\alpha}^{p}(G)$ or
L_{α}^{p}, and for $f \in L_{\alpha}^{p}, 0<p<\infty$ and $\alpha \in \mathbb{R}$ we set

$$
\|f\|_{p, \alpha}=\left(\int_{G}|f(x)|^{p} d \mu_{\alpha}(x)\right)^{1 / p}
$$

If $\alpha=0$ we write, as usual, L^{p} and $\|f\|_{p}$ instead of L_{0}^{p} and $\|f\|_{p, 0}$.
As a further generalization of the usual L^{p} spaces we give here the definition of the Herz spaces on G. We shall use, both here and elsewhere, the notation χ_{A} for the characteristic function of a set A.

Definition 2.1. Let $0<p, q \leq \infty$ and $\alpha \in \mathbb{R}$. A measurable function $f: G \rightarrow \mathbb{C}$ belongs to the Herz space $K(\alpha, p, q ; G)=K(\alpha, p, q)$ if

$$
\|f\|_{K(\alpha, p, q)}:=\left(\sum_{l=-\infty}^{\infty}\left\|\left(m_{l}\right)^{-\alpha} f \chi_{G_{l} \backslash G_{l+1}}\right\|_{p}^{q}\right)^{1 / q}<\infty
$$

with the usual modification if $q=\infty$.
It is easy to see that $K(\alpha / p, p, p)=L_{\alpha}^{p}$ for $\alpha \in \mathbb{R}$ and $0<p<\infty$.
We can also define a metric δ on $\Gamma \times \Gamma$ compatible with the topology on Γ. In this case we have $\|\gamma\|=\delta\left(\gamma, \gamma_{0}\right)=m_{n}$ if $\gamma \in \Gamma_{n+1} \backslash \Gamma_{n}$, where $\gamma_{0} \in \Gamma$ is defined by $\gamma_{0}(x)=1$ for all $x \in G$.

The symbols ${ }^{\wedge}$ and ${ }^{\vee}$ will be used to denote the Fourier transform and inverse Fourier transform, respectively. An easy computation shows that

$$
\left(\chi_{G_{n}}\right)^{\wedge}=\left(\lambda\left(\Gamma_{n}\right)\right)^{-1} \chi_{\Gamma_{n}}=\left(m_{n}\right)^{-1} \chi_{\Gamma_{n}}
$$

and, hence

$$
\left(\chi_{\Gamma_{n}}\right)^{\vee}=\left(\mu\left(G_{n}\right)\right)^{-1} \chi_{G_{n}}=m_{n} \chi_{G_{n}}:=\Delta_{n}
$$

We now briefly review the definition of the spaces of test functions, $S(G)$, and distributions, $S^{\prime}(G)$; for more details, see [11]. A function $\varphi: G \rightarrow$ \mathbb{C} belongs to $\varphi(G)$ if there exist integers k, l, depending on φ, so that $\operatorname{supp} \varphi \subset G_{k}$ and φ is constant on the cosets of G_{l} in G. A sequence $\left(\varphi_{n}\right)_{1}^{\infty}$ of functions in $S(G)$ converges to $\varphi \in S(G)$ if there exist $k, l \in \mathbb{Z}$ so that every φ_{n} and φ has support in G_{k} and is constant on the cosets of G_{l} in G and if $\lim _{n \rightarrow \infty} \varphi_{n}(x)=\varphi(x)$ uniformly on G.

Next, $S^{\prime}(G)$ is the space of continuous linear functionals on $S(G)$. A sequence $\left(f_{n}\right)_{1}^{\infty}$ in $S^{\prime}(G)$ converges to $f \in S^{\prime}(G)$ if for all $\varphi \in S(G)$ we have $\lim _{n \rightarrow \infty}\left\langle f_{n}, \varphi\right\rangle=\langle f, \varphi\rangle$.

3. Power-weighted Hardy spaces on G

In [5] Kitada gave a definition for the Hardy spaces $H_{\alpha}^{1}(G)$ with respect to the weight functions $v_{\alpha}(x)=\|x\|^{\alpha}$, where $-1<\alpha \leq 0$. In the following
we extend Kitada's definition. If $f \in \mathcal{S}^{\prime}(G)$ we first define its regularization on $G \times \mathbb{Z}$ by $f(x, n)=f_{n}(x)=f * \Delta_{n}(x)$. Then f_{n} is a function on G which is constant on the cosets of G_{n} in G. Moreover, $\lim _{n \rightarrow \infty} f_{n}=f$ in $S^{\prime}(G)$; see [11, Chapter IV]. For $f \in S^{\prime}(G)$ we define its maximal function f^{*} by $f^{*}(x)=\sup _{n}\left|f * \Delta_{n}(x)\right|$.

Definition 3.1. Let $0<p<\infty$ and $\alpha \in \mathbb{R}$. The space $H_{\alpha}^{p}(G)=H_{\alpha}^{p}$ is the space of all $f \in S^{\prime}(G)$ for which $f^{*} \in L_{\alpha}^{p}$. We set

$$
\|f\|_{H_{a}^{p}}=\left\|f^{*}\right\|_{p, \alpha}
$$

and we denote H_{0}^{p} and $\|f\|_{H_{0}^{p}}$ by H^{p} and $\|f\|_{H^{p}}$, respectively.
We now turn to the definition of the atomic Hardy spaces with power weight

Definition 3.2. Let $0<p \leq 1$ and $\alpha>-1$. A function $a: G \rightarrow \mathbb{C}$ is a $(p, \infty)_{\alpha}$ atom if there exists a set $I=x+G_{n}$ such that
(i) $\operatorname{supp} a \subset I$,
(ii) $\|a\|_{\infty} \leq\left(\mu_{\alpha}(I)\right)^{-1 / p}$,
(iii) $\int_{G} a(x) d \mu(x)=0$.

Clearly every $(p, \infty)_{\alpha}$ atom defines an element of $S^{\prime}(G)$. Moreover, an argument like in [1, page 611] shows that each $(p, \infty)_{\alpha}$ atom a belongs to H_{α}^{p} with $\|a\|_{H^{p}} \leq 1$.

Definition 3.3. Let $0<p \leq 1$ and $\alpha>-1$. The space $H_{\alpha}^{p, \infty}(G)=$ $H_{\alpha}^{p, \infty}$ is the space of all $f \in S^{\prime}(G)$ for which there exists a sequence $\left(\lambda_{i}\right)_{1}^{\infty} \in$ l^{p} and a sequence of $(p, \infty)_{\alpha}$ atoms $\left(a_{i}\right)_{1}^{\infty}$ such that

$$
\begin{equation*}
f=\sum_{i=1}^{\infty} \lambda_{i} a_{i} \quad \text { in } s^{\prime}(G) . \tag{3.4}
\end{equation*}
$$

We set

$$
\|f\|_{H_{\alpha}^{p, \infty}}=\inf \left\{\left(\sum_{i=1}^{\infty}\left|\lambda_{i}\right|^{p}\right)^{1 / p}\right\}
$$

where the infimum is taken over all decompositions of f of the form (3.4).
Theorem 3.5. Let $0<p \leq 1$ and $-1<\alpha \leq 0$. Then $H_{\alpha}^{p}=H_{\alpha}^{p, \infty}$ and the "norms" on these spaces are equivalent.

The proof of Theorem 3.5 will be preceded by a lemma.
Lemma 3.6. Let $0<p \leq 1$ and $-1<\alpha \leq 0$. If $f \in H_{\alpha}^{p}$ then each $f_{n}=f * \Delta_{n}$ belongs to $H_{\alpha}^{p, \infty}$ and

$$
\left\|f_{n}\right\|_{H_{\alpha}^{p, \infty}} \leq C\|f\|_{H_{a}^{p}}
$$

with C independent of $n \in \mathbb{Z}$.

Proof. Let $f \in H_{\alpha}^{p}$ and for each $k \in \mathbb{Z}$ let

$$
\Omega_{k}=\left\{x \in G: f^{*}(x)>2^{k}\right\} .
$$

If $y \in \Omega_{k}$ then there exists an $N \in \mathbb{Z}$ so that $f_{N}(y)>2^{k}$ and this implies that $y+G_{N} \subset \Omega_{k}$. If $A(y)=\left\{n \in \mathbb{Z}: y+G_{n} \subset \Omega_{k}\right\}$, then $A(y)$ is bounded from below because $f^{*} \in L_{\alpha}^{p}$. Thus there exists an $\alpha(y) \in \mathbb{Z}$ so that $y+$ $G_{\alpha(y)} \subset \Omega_{k}$ and $y+G_{n} \not \subset \Omega_{k}$ for all $n<\alpha(y)$. We shall denote the at most countably many different sets $y+G_{\alpha(y)}$ with $y \in \Omega_{k}$ by $y_{k, i}+G_{\alpha(k, i)}:=I_{k, i}$. Then $\Omega_{k}=\bigcup_{i} I_{k, i}$ and $I_{k, i} \cap I_{k, j}=\varnothing$ for $i \neq j$.

Next, let $\tilde{I}_{k, i}=y_{k, i}+G_{\alpha(k, i)-1}$ and let $\tilde{\Omega}_{k}=\bigcup_{i} \tilde{I}_{k, i}$. If necessary we first rename the sets $\tilde{I}_{k, i}$ so that they are mutually disjoint.

Also, observe that for each $k \in \mathbb{Z}, \Omega_{k+1} \subset \Omega_{k}$ and, since $f \in H_{\alpha}^{p}$, $\mu_{\alpha}\left(\Omega_{k}\right)<\infty$ and $\mu_{\alpha}\left(\bigcap_{-\infty}^{\infty} \Omega_{k}\right)=0$, which implies that $\lim _{k \rightarrow \infty} \mu_{\alpha}\left(\Omega_{k}\right)=0$.

Next, for each function $f_{n}=f * \Delta_{n}$ and each $k \in \mathbb{Z}$, let

$$
\Omega_{k}^{n}=\left\{x \in G:\left|f_{n}(x)\right|>2^{k}\right\} .
$$

Then $\Omega_{k}^{n} \subset \Omega_{k}$.
For $k, n \in \mathbb{Z}$ we define the function $g_{k}^{n}: G \rightarrow \mathbb{C}$ by

$$
g_{k}^{n}(x)= \begin{cases}f_{n}(x) & \text { if } x \notin \tilde{\Omega}_{k} \\ p_{k, i}^{n} & \text { if } x \in \tilde{I}_{k, i}\end{cases}
$$

where

$$
P_{k, i}^{n}=\left(\mu\left(\tilde{I}_{k, i}\right)\right)^{-1} \int_{\tilde{I}_{k, i}} f_{n}(x) d \mu(x) .
$$

We first show that for a.e. $x \in G$,
(i) $\lim _{k \rightarrow-\infty} g_{k}^{n}(x)=0$,
(ii) $\lim _{k \rightarrow \infty} g_{k}^{n}(x)=f_{n}(x)$.

To prove (i), consider $x \in \tilde{I}_{k, i}=y+G_{l}$, say. If $n \leq l$ then f_{n} is constant on $y+G_{l}$ and, since $\tilde{I}_{k, i} \not \subset \Omega_{k}$ we see that $\left|f_{n}(x)\right| \leq 2^{k}$ on $\tilde{I}_{k, i}$ and this implies that $\left|P_{k, i}^{n}\right| \leq 2^{k}$. If $n>l$, then

$$
\mathrm{P}_{k, i}^{n}=\left(f * \Delta_{n}\right) * \Delta_{l}(y)=f * \Delta_{l}(y)=f_{l}(y),
$$

which again implies that $\left|P_{k, i}^{n}\right| \leq 2^{k}$. Therefore, we see that $\left|g_{k}^{n}(x)\right| \leq 2^{k}$ for all $x \in G$ and hence (i) holds.

To prove (ii), observe that $\mu_{\alpha}\left(\bigcap_{-\infty}^{\infty} \Omega_{k}\right)=0$ implies that $\mu\left(\bigcap_{-\infty}^{\infty} \Omega_{k}\right)=0$ and hence, $\mu\left(\bigcap_{-\infty}^{\infty} \tilde{\Omega}_{k}\right)=0$. This last equality immediately implies (ii). It
follows from (i) and (ii) that for a.e. $x \in G$,

$$
f_{n}(x)=\sum_{k=-\infty}^{\infty}\left(g_{k+1}^{n}-g_{k}^{n}\right)(x),
$$

that is,

$$
\begin{equation*}
f_{n}(x)=\sum_{k=-\infty}^{\infty} \sum_{i}\left(g_{k+1}^{n}-g_{k}^{n}\right)(x) \chi_{i_{k, i}}(x) \tag{3.7}
\end{equation*}
$$

For each k, i, n let

$$
b_{k, i}^{n}=\left(g_{k+1}^{n}-g_{k}^{n}\right) x_{i_{k, i}} .
$$

Then supp $b_{k, i}^{n} \subset \tilde{I}_{k, i},\left\|b_{k, i}^{n}\right\|_{\infty} \leq 2^{k+2}$ and a routine calculation shows that

$$
\begin{equation*}
\int_{G} b_{k, i}^{n}(x) d \mu(x)=0 \tag{3.8}
\end{equation*}
$$

We now prove that

$$
\begin{equation*}
f_{n}=\sum_{k=-\infty}^{\infty} \sum_{i} b_{k, i}^{n} \tag{3.9}
\end{equation*}
$$

with the series in (3.9) converging to f_{n} in $S^{\prime}(G)$. To do so, take any $\varphi \in S(G)$ with, say, $\operatorname{supp} \varphi \subset G_{t}$ for some $t \in Z$. We need to prove that

$$
\begin{equation*}
\lim _{\substack{n_{1} \rightarrow-\infty \\ n_{2}, n_{3} \rightarrow \infty}} \int_{G} \sum_{k=n_{1}}^{n_{2}} \sum_{i \leq n_{3}} b_{k, i}^{n}(x) \varphi(x) d \mu(x)=\int_{G} f_{n}(x) \varphi(x) d \mu(x) . \tag{3.10}
\end{equation*}
$$

We first prove three auxiliary results, (3.11), (3.12) and (3.13).
(3.11) There exists an $N_{1} \in-\mathbb{N}$ such that

$$
A:=\sum_{k=-\infty}^{N_{1}} \sum_{i}\left\|b_{k, i}^{n} \varphi\right\|_{1} \leq 1
$$

We have

$$
\begin{aligned}
A & \leq \sum_{k=-\infty}^{N_{1}}\left\|g_{k+1}^{n}-g_{k}^{n}\right\|_{\infty}\|\varphi\|_{1} \\
& \leq \sum_{k=-\infty}^{N_{1}} 2^{k+2}\|\varphi\|_{1} \leq 2^{N_{1}+3}\|\varphi\|_{1} \leq 1
\end{aligned}
$$

for suitably chosen $N_{1} \in-\mathbb{N}$.
(3.12) There exists an $N_{2} \in \mathbb{N}$ so that for every $k>N_{2}$, every $i \in \mathbb{N}$ and $n \in \mathbb{Z}$,

$$
\left\langle b_{k, i}^{n}, \varphi\right\rangle=\int_{G} b_{k, i}^{n}(x) \varphi(x) d \mu(x)=0 .
$$

Since $\varphi \in S(G)$, there exists an $s \in \mathbb{Z}$ such that φ is constant on the cosets of G_{s} in G but not on the cosets of G_{s-1} (unless $\varphi(x) \equiv 0$). Hence there exist $x_{1}, \ldots, x_{r} \in G$ such that $x_{i}+G_{s} \cap x_{j}+G_{s}=\varnothing$ for $i \neq j$ and $\operatorname{supp} \varphi=\bigcup_{j=1}^{r} x_{j}+G_{s}$. Also, since $\lim _{k \rightarrow \infty} \mu_{\alpha}\left(\Omega_{k}\right)=0$, [7, Lemma 1(c)] implies that $\lim _{k \rightarrow \infty} \mu_{\alpha}\left(\tilde{\Omega}_{k}\right)=0$. Consequently, there exists an $N_{2} \in \mathbb{N}$ such that for all $k>N_{2}$ and all $i \in \mathbb{N}$ we have

$$
\mu_{\alpha}\left(\tilde{I}_{k, i}\right) \leq \mu_{\alpha}\left(\tilde{\Omega}_{k}\right) \leq \min \left\{\mu_{\alpha}\left(x_{j}+G_{s}\right): 1 \leq j \leq r\right\} .
$$

Because each $\tilde{I}_{k, i}$ is a coset of some subgroup G_{l} of G we see that for $k \geq N_{2}$ we have either $\tilde{I}_{k, i} \subset x_{j}+G_{s}$ for some j, or else $\tilde{I}_{k, i} \cap x_{j}+G_{s}=\varnothing$ for all $j, 1 \leq j \leq r$. In the latter case we have $\tilde{I}_{k, i} \cap \operatorname{supp} \varphi=\varnothing$ and hence $\left\langle b_{k, i}^{n}, \varphi\right\rangle=0$ for all $n \in \mathbb{Z}$; in case $\tilde{I}_{k, i} \subset x_{j}+G_{s}$ for some j with $1 \leq j \leq r$, we again have $\left\langle b_{k, i}^{n}, \varphi\right\rangle=0$ for all $n \in \mathbb{Z}$, because (3.8) holds. This proves (3.12).
(3.13) With N_{1}, N_{2} chosen so that (3.11) and (3.12) hold, there exists an $N_{3} \in \mathbb{N}$ so that

$$
B:=\sum_{k=N_{1}+1}^{N_{2}} \sum_{i \geq N_{3}}\left\|b_{k, i}^{n} \varphi\right\|_{1} \leq 1 .
$$

We have

$$
B \leq \sum_{k=N_{1}+1}^{N_{2}} \sum_{i \geq N_{3}} \int_{\tilde{I}_{k, i}}\left|\left(g_{k+1}^{n}-g_{k}^{n}\right)(x)\right||\varphi(x)| v_{-\alpha}(x) d \mu_{\alpha}(x) .
$$

Since $v_{-\alpha}(x) \leq\left(m_{t}\right)^{\alpha}$ for $\alpha \leq 0$ and $x \in G_{t}$, we see that

$$
B \leq\|\varphi\|_{\infty}\left(m_{t}\right)^{\alpha} \sum_{k=N_{1}+1}^{N_{2}} \sum_{i \geq N_{3}} 2^{k+2} \mu_{\alpha}\left(\tilde{I}_{k, i}\right) .
$$

Now we observe that for every $k \in \mathbb{Z}$ there exists an $i_{k} \in \mathbb{N}$ so that

$$
\sum_{i \geq i_{k}} \mu_{\alpha}\left(\tilde{I}_{k, i}\right)<\left(2^{N_{2}+3}\|\varphi\|_{\infty}\left(m_{t}\right)^{\alpha}\right)^{-1}
$$

Let $N_{3}=\max \left\{i_{k}: N_{1}<k \leq N_{2}\right\}$. Then for this choice of N_{3} we immediately obtain (3.13).

Applying (3.11), (3.12) and (3.13) it is easy to see that for every $n_{1} \in-\mathbb{N}$ and $n_{2}, n_{3} \in \mathbb{N}$,

$$
\sum_{k=n_{1}}^{n_{2}} \sum_{i \leq n_{3}} b_{k, i}^{n}(x) \varphi(x)
$$

is dominated pointwise on G by an integrable function. Thus, in view of (3.7), the Lebesgue Dominated Convergence Theorem implies (3.10) and, therefore, (3.9).

Finally, let

$$
\lambda_{k, i}=2^{k+2}\left(\mu_{\alpha}\left(\tilde{I}_{k, i}\right)\right)^{1 / p} \quad \text { and } \quad a_{k, i}^{n}=\left(\lambda_{k, i}\right)^{-1} b_{k, i}^{n}
$$

Then each $a_{k, i}^{n}$ is a $(p, \infty)_{\alpha}$ atom and

$$
f_{n}=\sum_{k, i} \lambda_{k, i} a_{k, i}^{n} \quad \text { in } s^{\prime}(G)
$$

Furthermore, a straightforward computation shows that

$$
\sum_{k, i}\left|\lambda_{k, i}\right|^{p} \leq C\left\|f_{n}^{*}\right\|_{p, \alpha}^{p} \leq C\left\|f^{*}\right\|_{p, \alpha}^{p}=C\|f\|_{H_{\alpha}^{p}}^{p}
$$

This completes the proof of Lemma 3.6.
Proof of Theorem 3.5. Take any $f \in H_{\alpha}^{p}$. Using the same notation as in the proof of Lemma 3.6, we see from the definition of the $(p, \infty)_{\alpha}$ atoms $a_{k, i}^{n}$ that

$$
\sup _{n \in \mathbb{N}}\left\|a_{0,1}^{n}\right\|_{\infty} \leq\left(\mu_{\alpha}\left(\tilde{I}_{0,1}\right)\right)^{-1 / p}
$$

Thus the Banach-Alaoglu theorem implies the existence of a subsequence $\left(a_{0,1}^{n_{\nu(0,1)}}\right)$ of $\left(a_{0,1}^{n}\right)$ so that this subsequence converges in the weak ${ }^{*}$ topology of $L^{\infty}(G)$ to, say, $a_{0,1} \in L^{\infty}(G)$. Clearly, $a_{0,1}$ is a $(p, \infty)_{\alpha}$ atom with $\operatorname{supp} a_{0,1} \subset \tilde{I}_{0,1}$. Next, since

$$
\sup _{n_{\nu(0,1)}}\left\|a_{1,1}^{n_{\nu(0,1)}}\right\|_{\infty} \leq\left(\mu_{\alpha}\left(\tilde{I}_{1,1}\right)\right)^{-1 / p}
$$

a second application of the Banach-Alaoglu theorem yields a subsequence $\left(a_{1,1}^{n_{\nu(1,1)}}\right)$ of $\left(a_{1,1}^{n_{\nu(1)}}\right)$ and a $(p, \infty)_{\alpha}$ atom $a_{1,1}$ with $\operatorname{supp} a_{1,1} \subset \tilde{I}_{1,1}$ so that the subsequence converges weak ${ }^{*}$ in $L^{\infty}(G)$ to $a_{1,1}$. Arranging the pairs of subscripts (k, i) with $k \in \mathbb{Z}$ and $i \in \mathbb{N}$ in a sequence we can repeat the process described above for each (k, i). By the usual diagonalization method we obtain a sequence $\left(n_{\nu}\right)$ and a sequence of $(p, \infty)_{\alpha}$ atoms $a_{k, i}$ with $\operatorname{supp} a_{k, i} \subset \tilde{I}_{k, i}$ so that for all (k, i) we have

$$
\begin{equation*}
\lim _{\nu \rightarrow \infty} a_{k, i}^{n_{\nu}}=a_{k, i} \quad \text { weak }^{*} \text { in } L^{\infty} \tag{3.14}
\end{equation*}
$$

We shall prove that

$$
\begin{equation*}
f=\sum_{k=-\infty}^{\infty} \sum_{i} \lambda_{k, i} a_{k, i} \quad \text { in } S^{\prime}(G) \tag{3.15}
\end{equation*}
$$

To do so, take any $\varphi \in \mathcal{S}(G)$ and assume, like in Lemma 3.6, that $\operatorname{supp} \varphi \subset$ G_{t}. Let $\varepsilon>0$ be given. We first derive three auxiliary inequalities, (3.16), (3.17) and (3.18).
(3.16) There exists an $M_{1} \in-\mathbb{N}$ so that for all $n \in \mathbb{Z}$ we have
(i) $\sum_{k=-\infty}^{M_{1}} \sum_{i}\left|\left\langle\lambda_{k, i} a_{k, i}^{n}, \varphi\right\rangle\right|<\frac{\varepsilon}{12}$,
(ii) $\sum_{k=-\infty}^{M_{1}} \sum_{i}\left|\left\langle\lambda_{k, i} a_{k, i}, \varphi\right\rangle\right|<\frac{\varepsilon}{12}$.

The proof of (3.16) is virtually the same as the proof of (3.11).
(3.17) There exists an $M_{2} \in \mathbb{N}$ so that for all $k>M_{2}$, every $i \in \mathbb{N}$ and $n \in \mathbb{Z}$ we have
(i) $\left\langle\lambda_{k, i} a_{k, i}^{n}, \varphi\right\rangle=0$,
(ii) $\left\langle\lambda_{k, i} a_{k, i}, \varphi\right\rangle=0$.

This is essentially a restatement of (3.12) with $M_{2}=N_{2}$.
(3.18) With M_{1}, M_{2} chosen as in (3.16) and (3.17), there exists an $M_{3} \in$ \mathbb{N} and an $n_{\nu_{1}} \in\left(n_{\nu}\right)_{\nu=1}^{\infty}$ so that for all $n_{\nu} \geq n_{\nu_{1}}$ we have

$$
\sum_{k=M_{1}+1}^{M_{2}} \sum_{i}\left|\lambda_{k, i}\right|\left|\left\langle a_{k, i}^{n_{\nu}}-a_{k, i}, \varphi\right\rangle\right|<\frac{\varepsilon}{6} .
$$

To prove (3.18), we observe that for each $k \in \mathbb{Z}$ the sets $\tilde{I}_{k, i}$ are mutually disjoint so that at most r of the sets $\tilde{I}_{k, i}$ will contain at least one of the sets $x_{j}+G_{s}$, with $x_{j}+G_{s}$ as defined in the proof of (3.12). Let

$$
\tilde{i}_{k}=\max \left\{i: x_{j}+G_{s} \subset \tilde{I}_{k, i} \text { for some } j \text { with } 1 \leq j \leq r\right\}
$$

and let

$$
M_{3}=\max \left\{\tilde{i}_{k}: M_{1}<k \leq M_{2}\right\} .
$$

Clearly, if $\left.M_{1}<k \leq M_{2}, i\right\rangle M_{3}$ and $n \in \mathbb{Z}$, then $\left\langle a_{k, i}^{n}, \varphi\right\rangle=\left\langle a_{k, i}, \varphi\right\rangle=$ 0 . Furthermore, in view of (3.14) there exists an $n_{\nu_{1}}$ so that for all $n_{\nu} \geq n_{\nu_{1}}$ we have

$$
\begin{aligned}
& \sum_{k=M_{1}+1}^{M_{2}} \sum_{i}\left|\lambda_{k, i}\right|\left|\left\langle a_{k, i}^{n_{\nu}}-a_{k, i}, \varphi\right\rangle\right| \\
& \quad=\sum_{k=M_{1}+1}^{M_{2}} \sum_{i \leq M_{3}}\left|\lambda_{k, i}\right|\left|\left\langle a_{k, i}^{n_{\nu}}-a_{k, i}, \varphi\right\rangle\right|<\frac{\varepsilon}{6},
\end{aligned}
$$

which proves (3.18).
Now we observe that since $\lim _{n \rightarrow \infty} f_{n}=f$ in $S^{\prime}(G)$, there exists an $n_{\nu_{2}} \geq n_{\nu_{1}}$ so that

$$
\begin{equation*}
\left|\left\langle f_{n_{\nu_{2}}}-f, \varphi\right\rangle\right|<\frac{\varepsilon}{3} . \tag{3.19}
\end{equation*}
$$

In the proof of Lemma 3.6 we saw that there exist $N_{1} \in-\mathbb{N}$ and $N_{2}, N_{3} \in \mathbb{N}$, with N_{1}, N_{2}, N_{3} depending on $n_{\nu_{2}}$, so that if $n_{1} \leq N_{1}, n_{2} \geq N_{2}$ and $n_{3} \geq N_{3}$ then

$$
\begin{equation*}
\left|\sum_{k=n_{1}}^{n_{2}} \sum_{i \leq n_{3}}\left\langle\lambda_{k, i} a_{k, i}^{n_{\nu_{2}}}-f_{n_{\nu_{2}}}, \varphi\right\rangle\right|<\frac{\varepsilon}{3} . \tag{3.20}
\end{equation*}
$$

Consequently, if $l_{1} \leq \min \left\{M_{1}, N_{1}\right\}, l_{2} \geq N_{2}$ and $l_{3} \geq \max \left\{M_{3}, N_{3}\right\}$ then

$$
\begin{align*}
& \mid\langle f\left.-\sum_{k=l_{1}}^{l_{2}} \sum_{i \leq l_{3}} \lambda_{k, i} a_{k, i}, \varphi\right\rangle \mid \\
&=\left|\left\langle f-\sum_{k=l_{1}}^{N_{2}} \sum_{i \leq l_{3}} \lambda_{k, i} a_{k, i}, \varphi\right\rangle\right|(\text { by }(\mathbf{3 . 1 2})) \tag{3.12}\\
& \leq\left|\left\langle f-f_{n_{\nu_{2}}}, \varphi\right\rangle\right|+\left|\left\langle f_{n_{\nu_{2}}}-\sum_{k=l_{1}}^{N_{2}} \sum_{i \leq l_{3}} \lambda_{k, i} a_{k, i}^{n_{\nu_{2}}}, \varphi\right\rangle\right| \\
&+\sum_{k=M_{1}+1}^{N_{2}} \sum_{i \leq l_{3}}\left|\lambda_{k, i}\right|\left\langle a_{k, i}^{n_{\nu_{2}}}-a_{k, i}, \varphi\right\rangle \mid \\
&+\sum_{k=l_{1}}^{M_{1}} \sum_{i \leq l_{3}}\left|\left\langle\lambda_{k, i} a_{k, i}^{n_{\nu_{2}}}, \varphi\right\rangle\right|+\sum_{k=l_{1}}^{M_{1}} \sum_{i \leq l_{3}}\left|\left\langle\lambda_{k, i} a_{k, i}, \varphi\right\rangle\right| \\
& \leq \varepsilon / 3+\varepsilon / 3+\varepsilon / 6+\varepsilon / 12+\varepsilon / 12=\varepsilon .
\end{align*}
$$

Corollary 3.21. For each q with $1 \leq q<\infty$ we have $L^{q} \cap H_{\alpha}^{p}$ is dense in H_{α}^{p}.

The last theorem of this section is an interpolation theorem for operators on H^{p} and L^{p} spaces. The theorem is a version for locally compact Vilenkin groups of [3, Theorems III.6.4 and 6.5] or [1, Theorem D], where also the precise definitions of some of the concepts used here can be found.

Theorem 3.22. Let $0<p_{0} \leq 1<p_{1}<\infty$. Suppose T is a sublinear operator of weak type $\left(H^{p_{0}}, p_{0}\right)$ on $H^{p_{0}}$ and of weak type $\left(p_{1}, p_{1}\right)$ on $L^{p_{1}}$. Then T is bounded from H^{p} to L^{p} for $p_{0}<p \leq 1$ and T is bounded form L^{p} to L^{p} for $1<p<p_{1}$.

Proof (Outline). Let $f \in L^{p}$ with $1<p<p_{1}$ and choose q so that $1<q<p$. For $t>0$ let

$$
E_{t}=\left\{x: M_{q}(|f|)(x)=\left(|f|^{q}\right)^{*}(x)>t^{q}\right\}
$$

As in the proof of Lemma 3.6 we can express E_{t} as a disjoint union of maximal cosets of certain subgroups G_{n} of G, say $E_{t}=\bigcup_{j} I_{j}$.

Define $g_{t}: G \rightarrow \mathbb{C}$ by

$$
g_{t}(x)= \begin{cases}f(x) & \text { if } x \notin E_{t} \\ \left(\mu\left(I_{j}\right)\right)^{-1} \int_{I_{j}} f(x) d \mu(x) & \text { if } x \in I_{j}\end{cases}
$$

and define $b_{t}: G \rightarrow \mathbb{C}$ by $b_{t}(x)=f(x)-g_{t}(x)$. Then

$$
b_{t}(x)=\sum_{j}\left(f-g_{t}\right)(x) \chi_{I_{j}}(x)=\sum_{j} b_{j}(x)
$$

We have

$$
\left(\left(\mu\left(I_{j}\right)\right)^{-1} \int_{I_{j}}\left|b_{j}(x)\right|^{q} d \mu(x)\right)^{1 / q} \leq C t
$$

and if we set

$$
a_{j}(x)=\left(C t\left(\mu\left(I_{j}\right)\right)^{1 / p_{0}}\right)^{-1} b_{j}(x)
$$

then each a_{j} is a $\left(p_{0}, q\right)$ atom and

$$
b_{t}(x)=\sum_{j} C t\left(\mu\left(I_{j}\right)\right)^{1 / p} a_{j}(x)
$$

Thus $b_{t} \in H^{p_{0}, q}$ and $\left\|b_{t}\right\|_{H^{p_{0}}} \leq C t\left(\mu\left(E_{t}\right)\right)^{1 / p}$. Moreover, $\left|g_{t}(x)\right| \leq C t$ for $x \in E_{t}$, and for $x \notin E_{t}$ we have $|f(x)| \leq M(|f|)(x) \leq\left\{M_{q}(|f|)(x)\right\}^{1 / q} \leq t$.

Consequently,

$$
\begin{aligned}
& \int_{G}\left|g_{t}(x)\right|^{p_{1}} d \mu(x)=\int_{G \backslash E_{t}}\left|g_{t}(x)\right|^{p_{1}} d \mu(x)+\int_{E_{t}}\left|g_{t}(x)\right|^{p_{1}} d \mu(x) \\
& \quad \leq \int_{|\tilde{\mid}| \leq t}|f(x)|^{p_{1}} d \mu(x)+(C t)^{p_{1}} \mu\left(E_{t}\right) \\
& \quad \leq C t^{p_{1}-p}\|f\|_{p}^{p},
\end{aligned}
$$

that is, $g_{t} \in L^{p_{1}}$ for every $t>0$. The rest of the proof is virtually the same as the proof of [3, Theorems III.6.4 and 6.5] and will be omitted.

4. Multipliers on $H_{\alpha}^{p}(G)$

As mentioned in the introduction, in this section we shall present our multiplier theorems for the spaces H_{α}^{p}. Throughout this section, if $\varphi \in$ $L^{\infty}(\Gamma)$ and if $k \in \mathbb{Z}$ we let $\varphi_{k}=\varphi \chi_{\Gamma_{k}}$ and $\varphi^{k}=\varphi_{k+1}-\varphi_{k}$. We begin with a definition which extends a definition given by Kitada in [5].

Definition 4.1. Let $0<p \leq 1$ and $-1<\alpha \leq 0$. Let X denote H_{α}^{p} and let Y denote H_{α}^{p} or L_{α}^{p}. A function $\varphi \in L^{\infty}(\Gamma)$ is a multiplier from X to $Y(\varphi \in M(X, Y)$ or $\varphi \in M(X)$ in case $X=Y)$ if there exists a constant $C>0$ so that for all $f \in X \cap L^{2}$ we have $(\varphi \hat{f})^{\vee} \in Y$ and $\left\|(\varphi \hat{f})^{\vee}\right\|_{Y} \leq C\|f\|_{X}$.

Remark 4.2. In order to prove that $\varphi \in \mathcal{M}(X, Y)$ it is sufficient to prove that there exists a $C>0$ so that for every $(p, \infty)_{\alpha}$ atom a and for every $k \in \mathbb{Z}$ we have $\left\|\left(\varphi_{k}\right)^{\vee} * a\right\|_{Y}=\left\|\left(\varphi_{k} \hat{a}\right)^{\vee}\right\|_{Y} \leq C$. To see this, take any $(p, \infty)_{\alpha}$ atom a and let $\hat{a}_{k}=\hat{a} \chi_{\Gamma_{k}}$. Then $\lim _{k \rightarrow \infty} \hat{a}_{k}=\hat{a}$ in $L^{2}(\Gamma)$. Consequently,

$$
\lim _{k \rightarrow \infty} \varphi_{k} \hat{a}=\lim _{k \rightarrow \infty} \varphi \hat{a}_{k}=\varphi \hat{a} \quad \text { in } L^{2}(\Gamma)
$$

and hence,

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\varphi_{k} \hat{a}\right)^{\vee}=(\varphi \hat{a})^{\vee} \quad \text { in } L^{2}(G) \tag{4.3}
\end{equation*}
$$

Now we distinguish two cases.
(i) Let $Y=L_{\alpha}^{p}$. Then (4.3) implies the existence of a subsequence $\left(k_{i}\right)$ so that

$$
\lim _{i \rightarrow \infty}\left(\varphi_{k_{i}} \hat{a}\right)^{\vee}(x)=(\varphi \hat{a})^{\vee}(x) \text { for a.e. } x \in G .
$$

Thus, Fatou's Lemma implies that

$$
\left\|(\varphi \hat{a})^{\vee}\right\|_{p, \alpha} \leq \liminf \left\|\left(\varphi_{k_{i}} \hat{a}\right)^{\vee}\right\|_{p, \alpha} \leq C .
$$

From this inequality we easily derive that $\varphi \in \mathcal{M}(X, Y)$.
(ii) Let $Y=X=H_{\alpha}^{p}$. Then (4.3) implies that

$$
\lim _{k \rightarrow \infty}\left(\varphi_{k} \hat{a}\right)^{\vee}=(\varphi \hat{a})^{\vee} \quad \text { in } S^{\prime}(G)
$$

Now a simple argument shows that for every $x \in G$,

$$
\left(\left((\varphi \hat{a})^{\vee}\right)^{*}(x)\right)^{p} \leq \liminf \left(\left(\left(\varphi_{k} \hat{a}\right)^{\vee}\right)^{*}(x)\right)^{p}
$$

and an application of Fatou's Lemma shows that

$$
\left\|(\varphi \hat{a})^{\vee}\right\|_{H_{\alpha}^{p}} \leq \liminf \left\|\left(\varphi_{k} \hat{a}\right)^{\vee}\right\|_{H_{\alpha}^{p}} \leq C
$$

and this inequality immediately implies that $\varphi \in \mathcal{M}(X)$.
We now turn to the discussion of our multiplier theorems for the spaces H_{α}^{p}. Our first result deals with multipliers from the spaces H_{α}^{p} to the corresponding spaces L_{α}^{p}. We start with a lemma in which we consider the case $\alpha=0$.

Lemma 4.4. Let $\varphi \in L^{\infty}(\Gamma)$ and let $0<p \leq 1$. If

$$
\sup _{k}\left(m_{k}\right)^{1 / p-1}\left\|\left(\varphi_{k}\right)^{\vee}\right\|_{K(1 / p-1 / r, r, p)}<\infty
$$

for some r with $p<r<\infty$ then
(i) $\varphi \in \mathcal{M}\left(H^{s}, L^{s}\right)$ for $p \leq s \leq 1$
and
(ii) $\varphi \in \mathcal{M}\left(L^{s}\right)$ for $1<s<\infty$.

Proof. Let a be a (p, ∞) atom with $\operatorname{supp} a \subset I=x_{0}+G_{n}$ for some $x_{0} \in G$ and $n \in \mathbb{Z}$. For every $k \in \mathbb{Z}$ we have

$$
\begin{aligned}
\left\|\left(\varphi_{k} \hat{a}\right)^{\vee}\right\|_{p}^{p} & =\left\|\left(\varphi_{k}\right)^{\vee} * a\right\|_{p}^{p} \\
& =\left\|\left(\left(\varphi_{k}\right)^{\vee} * a\right) \chi_{I}\right\|_{p}^{p}+\left\|\left(\left(\varphi_{k}\right)^{\vee} * a\right) \chi_{G \backslash I}\right\|_{p}^{p}:=A+B
\end{aligned}
$$

Applying Hölder's inequality we see that

$$
\begin{aligned}
A & \leq\left(\int_{I}\left|\left(\varphi_{k}\right)^{\vee} * a(x)\right|^{2} d \mu(x)\right)^{p / 2} \cdot(\mu(I))^{1-p / 2} \\
& \leq C\left\|\left(\varphi_{k}\right)^{\vee} * a\right\|_{2}^{p} \cdot\left(m_{n}\right)^{-(1-p / 2)} \\
& \leq C\left\|\varphi_{k}\right\|_{\infty}^{p}\|a\|_{2}^{p} \cdot\left(m_{n}\right)^{-(1-p / 2)} \\
& \leq C\|\varphi\|_{\infty}^{p}
\end{aligned}
$$

because a is a (p, ∞) atom.

For B we have

$$
\begin{aligned}
B & =\int_{G \backslash I}\left|\int_{G}\left(\varphi_{k}\right)^{\vee}(t) a(x-t) d \mu(t)\right|^{p} d \mu(x) \\
& \leq\|a\|_{\infty}^{p} \int_{G \backslash I}\left(\int_{x-I}\left|\left(\varphi_{k}\right)^{\vee}(t)\right| d \mu(t)\right)^{p} d \mu(x) .
\end{aligned}
$$

Since $\varphi_{k}(\gamma)=0$ for $\gamma \in \Gamma \backslash \Gamma_{k},\left(\varphi_{k}\right)^{\vee}$ is constant on the cosets of G_{k}. Thus, if $\left(x_{i}+G_{k}\right)_{i=0}^{\infty}$ represent the different cosets of G_{k} in G, then

$$
\left(\varphi_{k}\right)^{\vee}(t)=\sum_{i=0}^{\infty}\left(\varphi_{k}\right)^{\vee}\left(x_{i}\right) \chi_{x_{i}+G_{k}}(t),
$$

so

$$
\begin{aligned}
& \left(\int_{x-I}\left|\left(\varphi_{k}\right)^{\vee}(t)\right| d \mu(t)\right)^{p}=\left(\sum_{\left\{i: x_{i} \in x-I\right\}}\left|\left(\varphi_{k}\right)^{\vee}\left(x_{i}\right)\right|\left(m_{k}\right)^{-1}\right)^{p} \\
& \quad \leq \sum_{\left\{i: x_{i} \in x-I\right\}}\left|\left(\varphi_{k}\right)^{\vee}\left(x_{i}\right)\right|^{p}\left(m_{k}\right)^{-p} \\
& \quad=\left(m_{k}\right)^{-(p-1)} \int_{x-I}\left|\left(\varphi_{k}\right)^{\vee}(t)\right|^{p} d \mu(t)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
B & \leq\|a\|_{\infty}^{p} \cdot\left(m_{k}\right)^{1-p} \int_{G \backslash I} \int_{I}\left|\left(\varphi_{k}\right)^{\vee}(x-t)\right|^{p} d \mu(t) d \mu(x) \\
& =\|a\|_{\infty}^{p} \cdot\left(m_{k}\right)^{1-p} \int_{G_{n}} \int_{G \backslash G_{n}}\left|\left(\varphi_{k}\right)^{\vee}(y-u)\right|^{p} d \mu(y) d \mu(u) .
\end{aligned}
$$

Next we observe that for each $u \in G_{n}$,

$$
\begin{aligned}
& \int_{G \backslash G_{n}}\left|\left(\varphi_{k}\right)^{\vee}(y-u)\right|^{p} d \mu(y)=\int_{G \backslash G_{n}}\left|\left(\varphi_{k}\right)^{\vee}(y)\right|^{p} d \mu(y) \\
& \quad=\sum_{j=-\infty}^{n-1} \int_{G_{j} \backslash G_{j+1}}\left|\left(\varphi_{k}\right)^{\vee}(y)\right|^{p} d \mu(y) \\
& \leq \sum_{j=-\infty}^{n-1}\left(\int_{G_{j} \backslash G_{j+1}}\left|\left(\varphi_{k}\right)^{\vee}(y)\right|^{r} d \mu(y)\right)^{p / r} \cdot\left(\mu\left(G_{j} \backslash G_{j+1}\right)\right)^{1-p / r} \\
& \leq C \sum_{j=-\infty}^{n-1}\left(\left(m_{j}\right)^{-(1 / p-1 / r)}\left\|\left(\varphi_{k}\right)^{\vee} \chi_{G_{j} \backslash G_{j+1}}\right\|_{r}\right)^{p} \\
& \quad \leq C\left\|\left(\varphi_{k}\right)^{\vee}\right\|_{K(1 / p-1 / r, r, p)}^{p} .
\end{aligned}
$$

Since $\|a\|_{\infty} \leq(\mu(I))^{-1 / p} \leq C\left(m_{n}\right)^{1 / p}$, we see that

$$
B \leq C m_{n}\left(m_{k}\right)^{1-p}\left(m_{n}\right)^{-1}\left(m_{k}\right)^{p-1}=C
$$

Consequently, $\varphi \in \mathcal{M}\left(H^{p}, L^{p}\right)$. Since $\varphi \in L^{\infty}(\Gamma)$, we have $\varphi \in \mathcal{M}\left(L^{2}\right)$. Thus, an application of Theorem 3.22 and a duality argument complete the proof of the lemma.

Theorem 4.5. Let $\varphi \in L^{\infty}(\Gamma)$ and let $0<p \leq 1$. If

$$
\sup _{k}\left(m_{k}\right)^{1 / p-1}\left\|\left(\varphi_{k}\right)^{\vee}\right\|_{K(1 / p-1 / r, r, p)}<\infty
$$

for some r with $p<r<\infty$, then $\varphi \in \mathcal{M}\left(H_{\alpha}^{p}, L_{\alpha}^{p}\right)$ for $-1+p / r<\alpha \leq 0$.
Proof. Let a be a $(p, \infty)_{\alpha}$ atom. We shall distinguish two cases, depending on supp a. First assume supp $a \subset I=x_{0}+G_{n}$ with $x_{0} \notin G_{n}$. Then $x_{0} \in G_{j} \backslash G_{j+1}$ for some $j<n$ and $\mu_{\alpha}(I)=\left(m_{j}\right)^{-\alpha}\left(m_{n}\right)^{-1}$, so that $\|a\|_{\infty} \leq\left(\left(m_{j}\right)^{\alpha} m_{n}\right)^{1 / p}$. For each $k \in \mathbb{Z}$ we have

$$
\begin{aligned}
\left\|\left(\varphi_{k} \hat{a}\right)^{\vee}\right\|_{p, \alpha}^{p} & =\left\|\left(\varphi_{k}\right)^{\vee} * a\right\|_{p, \alpha}^{p} \\
& =\left\|\left(\left(\varphi_{k}\right)^{\vee} * a\right) \chi_{I}\right\|_{p, \alpha}^{p}+\left\|\left(\left(\varphi_{k}\right)^{\vee} * a\right) \chi_{G \backslash I}\right\|_{p, \alpha}^{p}:=A+B
\end{aligned}
$$

where

$$
\begin{aligned}
A & =\int_{I}\left|\left(\varphi_{k}\right)^{\vee} * a(x)\right|^{p} v_{\alpha}(x) d \mu(x) \\
& \leq\left(m_{j}\right)^{-\alpha}\left(\int_{I}\left|\left(\varphi_{k}\right)^{\vee} * a(x)\right|^{2} d \mu(x)\right)^{p / 2} \cdot(\mu(I))^{1-p / 2} \\
& \leq\left(m_{j}\right)^{-\alpha}\left(m_{n}\right)^{-(1-p / 2)}\left\|\left(\varphi_{k}\right)^{\vee} * a\right\|_{2}^{p} \\
& \leq\left(m_{j}\right)^{-\alpha}\left(m_{n}\right)^{-(1-p / 2)}\|\varphi\|_{\infty}^{p}\|a\|_{2}^{p} \leq\|\varphi\|_{\infty}^{p}
\end{aligned}
$$

To estimate B we observe that, as in the proof of Lemma 4.4,

$$
\begin{aligned}
B & =\int_{G \backslash I}\left|\int_{G}\left(\varphi_{k}\right)^{\vee}(x-t) a(t) d \mu(t)\right|^{p} d \mu_{\alpha}(x) \\
& \leq\|a\|_{\infty}^{p} \int_{G \backslash I}\left(\int_{x-I}\left|\left(\varphi_{k}\right)^{\vee}(t)\right| d \mu(t)\right)^{p} d \mu_{\alpha}(x) \\
& \leq\|a\|_{\infty}^{p} \cdot\left(m_{k}\right)^{1-p} \int_{G \backslash I} \int_{I}\left|\left(\varphi_{k}\right)^{\vee}(x-t)\right|^{p} d \mu(t) d \mu_{\alpha}(x) \\
& \leq\|a\|_{\infty}^{p} \cdot\left(m_{k}\right)^{1-p} \int_{G_{n}} \int_{G \backslash G_{n}}\left|\left(\varphi_{k}\right)^{\vee}(y-u)\right|^{p} v_{\alpha}\left(x_{0}+y\right) d \mu(y) d \mu(u)
\end{aligned}
$$

We now estimate the inner integral, first writing it as a sum of three integrals

$$
\begin{aligned}
\int_{G \backslash G_{n}} \cdots d \mu(y) & =\int_{G \backslash G_{j}} \cdots+\int_{G_{j} \backslash G_{j+1}} \cdots+\int_{G_{j+1} \backslash G_{n}} \cdots d \mu(y) \\
& :=B_{1}+B_{2}+B_{3} .
\end{aligned}
$$

For $x_{0} \in G_{j} \backslash G_{j+1}$ and $y \notin G_{j}$ we have $x_{0}+y \notin G_{j}$, so that $v_{\alpha}\left(x_{0}+y\right) \leq$ $\left(m_{j}\right)^{-\alpha}$. Therefore, if $u \in G_{n}$ we obtain, as in the proof of Lemma 4.4,

$$
\begin{aligned}
B_{1} & \leq\left(m_{j}\right)^{-\alpha} \int_{G \backslash G_{n}}\left|\left(\varphi_{k}\right)^{\vee}(y-u)\right|^{p} d \mu(y) \\
& \leq C\left(m_{j}\right)^{-\alpha}\left\|\left(\varphi_{k}\right)^{\vee}\right\|_{K(1 / p-1 / r, r, p)}^{p} \leq C\left(m_{j}\right)^{-\alpha}\left(m_{k}\right)^{p-1}
\end{aligned}
$$

For $x_{0} \in G_{j} \backslash G_{j+1}$ and $y \in G_{j+1} \backslash G_{n}$ we have $x_{0}+y \in G_{j} \backslash G_{j+1}$ and hence, $v_{\alpha}\left(x_{0}+y\right)=\left(m_{j}\right)^{-\alpha}$. Therefore, if $u \in G_{n}$ then

$$
B_{3} \leq\left(m_{j}\right)^{-\alpha} \int_{G \backslash G_{n}}\left|\left(\varphi_{k}\right)^{\vee}(y-u)\right|^{p} d \mu(y) \leq C\left(m_{j}\right)^{-\alpha}\left(m_{k}\right)^{p-1} .
$$

Finally, to find the appropriate estimate for B_{2}, observe that for $u \in G_{n}$,

$$
\begin{aligned}
B_{2} \leq & \left(\int_{G_{j} \backslash G_{j+1}}\left|\left(\varphi_{k}\right)^{\vee}(y-u)\right|^{r} d \mu(y)\right)^{p / r} \\
& \cdot\left(\int_{G_{j} \backslash G_{j+1}}\left(v_{\alpha}\left(x_{0}+y\right)\right)^{r /(r-p)} d \mu(y)\right)^{(r-p) / r} \\
\leq & C\left\|\left(\varphi_{k}\right)^{\vee} \chi_{G_{j} \backslash G_{j+1}}\right\|_{r}^{p} \cdot\left(m_{j}\right)^{-(\alpha+1-p / r)} \\
\leq & C\left(m_{j}\right)^{-\alpha}\left\|\left(\varphi_{k}\right)^{\vee}\right\|_{K(1 / p-1 / r, r, p)}^{p} \\
\leq & C\left(m_{j}\right)^{-\alpha}\left(m_{k}\right)^{p-1} .
\end{aligned}
$$

Therefore,

$$
B \leq C\|a\|_{\infty}^{p} \cdot\left(m_{k}\right)^{1-p}\left(m_{j}\right)^{-\alpha}\left(m_{k}\right)^{p-1}\left(m_{n}\right)^{-1} \leq C,
$$

because a is a $(p, \infty)_{\alpha}$ atom. Thus we see that $\left\|\left(\varphi_{k} \hat{a}\right)^{\vee}\right\|_{p, \alpha}^{p} \leq C$.
In case supp $a \subset G_{n}$ we have $\|a\|_{\infty} \leq\left(\mu_{\alpha}\left(G_{n}\right)\right)^{-1 / p} \leq C\left(m_{n}\right)^{(\alpha+1) / p}$, and for each $k \in \mathbb{Z}$,

$$
\begin{aligned}
\left\|\left(\varphi_{k} \hat{a}\right)^{\vee}\right\|_{p, \alpha}^{p} & =\left\|\left(\varphi_{k}\right)^{\vee} * a\right\|_{p, a}^{p} \\
& =\left\|\left(\left(\varphi_{k}\right)^{\vee} * a\right) \chi_{G_{n}}\right\|_{p, \alpha}^{p}+\left\|\left(\left(\varphi_{k}\right)^{\vee} * a\right) \chi_{G \backslash G_{n}}\right\|_{p, \alpha}^{p} \\
& :=A+B .
\end{aligned}
$$

Choose $s>1$ so that $-1+p / s<\alpha$. Then, according to Lemma 4.4, $\varphi_{k} \in \mathcal{M}\left(L^{s}\right)$ and we see that

$$
\begin{aligned}
A & \leq\left(\int_{G_{n}}\left|\left(\varphi_{k}\right)^{\vee} * a(x)\right|^{s} d \mu(x)\right)^{p / s} \cdot\left(\int_{G_{n}}\left(v_{\alpha}(x)\right)^{s /(s-p)} d \mu(x)\right)^{(s-p) / s} \\
& \leq C\left\|\left(\varphi_{k}\right)^{\vee} * a\right\|_{s}^{p} \cdot\left(m_{n}\right)^{-(\alpha+1-p / s)} \\
& \leq C\|a\|_{s}^{p} \cdot\left(m_{n}\right)^{-(\alpha+1-p / s)} \leq C .
\end{aligned}
$$

Moreover, as in the first part of the proof, we have

$$
\begin{aligned}
B & \leq\|a\|_{\infty}^{p} \cdot\left(m_{k}\right)^{1-p} \int_{G_{n}} \int_{G \backslash G_{n}}\left|\left(\varphi_{k}\right)^{\vee}(y-u)\right|^{p} v_{\alpha}(y) d \mu(y) d \mu(u) \\
& \leq C\|a\|_{\infty}^{p}\left(m_{k}\right)^{1-p}\left(m_{n}\right)^{-\alpha}\left(m_{k}\right)^{p-1}\left(m_{n}\right)^{-1} \leq C .
\end{aligned}
$$

Thus, we see again that $\|\left(\left(\varphi_{k} \hat{a}\right)^{\vee} \|_{p, \alpha}^{p} \leq C\right.$. According to Remark 4.2 we may conclude that $\varphi \in \mathcal{M}\left(H_{\alpha}^{p}, L_{\alpha}^{p}\right)$.

The next theorem deals with multipliers from H_{α}^{p} to H_{α}^{p}. We begin with a lemma which extends [9, Theorem 2].

Lemma 4.6. Let $\varphi \in L^{\infty}(\Gamma)$ and $0<p \leq 1$. If

$$
\sup _{k}\left(m_{k}\right)^{1 / p-1} \sum_{j=k}^{\infty}\left\|\left(\varphi^{j}\right)^{\vee}\right\|_{K(1 / p-1 / r, r, 1)}<\infty
$$

for some r with $1 \leq r<\infty$ then $\varphi \in \mathcal{M}\left(H^{s}\right)$ for $1 \leq s<\infty$.
Proof. We first prove that $\varphi \in \mathcal{M}\left(H^{1}\right)$ by showing that there exists a $C>0$ so that for all $(1, \infty)$ atoms a we have $\left\|(\varphi \hat{a})^{\vee}\right\|_{H^{1}} \leq C$. We may assume that supp $a \subset G_{n}$ for some $n \in \mathbb{Z}$. Let $f=(\varphi \hat{a})^{\vee}$ and let $f^{*}=\sup _{l}\left|f * \Delta_{l}\right|$. Kitada showed in [4, Theorem 2] that

$$
\int_{G_{n}} f^{*}(x) d \mu(x) \leq C
$$

and

$$
\int_{G \backslash G_{n}} f^{*}(x) d \mu(x) \leq \sum_{j=n}^{\infty} \sum_{k=-\infty}^{n-1}\left\|\left(\varphi^{j}\right)^{\vee} \chi_{G_{k} \backslash G_{k+1}}\right\|_{1} .
$$

Applying Hölder's inequality we see that for $k<n$

$$
\begin{aligned}
\left\|\left(\varphi^{j}\right)^{\vee} \chi_{G_{k} \backslash G_{k+1}}\right\|_{1} & \leq\left\|\left(\varphi^{j}\right)^{\vee} \chi_{G_{k} \backslash G_{k+1}}\right\|_{r} \cdot\left(m_{k}\right)^{-1 / r^{\prime}} \\
& =\left(m_{k}\right)^{1 / p-1}\left(m_{k}\right)^{-(1 / p-1 / r)}\left\|\left(\varphi^{j}\right)^{\vee} \chi_{G_{k} \backslash G_{k+1}}\right\|_{r} \\
& \leq\left(m_{n}\right)^{1 / p-1}\left(m_{k}\right)^{-(1 / p-1 / r)}\left\|\left(\varphi^{j}\right)^{\vee} \chi_{G_{k} \backslash G_{k+1}}\right\|_{r} .
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
\int_{G \backslash G_{n}} f^{*}(x) d \mu(x) & \leq\left(m_{n}\right)^{1 / p-1} \sum_{j=n}^{\infty} \sum_{k=-\infty}^{n-1}\left(m_{k}\right)^{-(1 / p-1 / r)}\left\|\left(\varphi^{j}\right)^{\vee} \chi_{G_{k} \backslash G_{k+1}}\right\|_{r} \\
& \leq\left(m_{n}\right)^{1 / p-1} \sum_{j=n}^{\infty}\left\|\left(\varphi^{j}\right)^{\vee}\right\|_{K(1 / p-1 / r, r, 1)} \leq C .
\end{aligned}
$$

Therefore,

$$
\|f\|_{H^{1}}=\int_{G_{n}} f^{*}(x) d \mu(x)+\int_{G \backslash G_{n}} f^{*}(x) d \mu(x) \leq C,
$$

that is, $\varphi \in \mathcal{M}\left(H^{1}\right)$.
We now show that $\varphi \in \mathcal{M}\left(H^{s}\right)$ for $1<s<\infty$. Since $\varphi \in \mathcal{M}\left(H^{1}\right)$ there exists a $C>0$ so that for all $f \in H^{1} \cap L^{2}$ we have

$$
\|T f\|_{1}:=\left\|(\varphi \hat{f})^{\vee}\right\|_{L^{1}} \leq\left\|(\varphi \hat{f})^{\vee}\right\|_{H^{1}} \leq C\|f\|_{H^{1}}
$$

that is, $\varphi \in \mathcal{M}\left(H^{1}, L^{1}\right)$. Since $H^{1} \cap L^{2}$ is a dense subset of H^{1}, the operator T can be extended to H^{1} so that $\|T f\|_{H^{1}} \leq C\|f\|_{H^{1}}$ for all $f \in H^{1}$. This implies immediately that T is of weak type $\left(H^{1}, 1\right)$ on H^{1}. Since $\varphi \in \mathcal{M}\left(L^{2}\right), T$ is of type $(2,2)$ on L^{2}. Thus, it follows from Theorem 3.22 and a standard duality argument that T is of type (s, s), that is, $\varphi \in$ $\mathcal{M}\left(L^{s}\right)=\mathcal{M}\left(H^{s}\right)$ for each $1<s<\infty$.

Theorem 4.7. Let $\varphi \in L^{\infty}(\Gamma)$ and $0<p \leq 1$. If

$$
\sup _{k}\left(m_{k}\right)^{1-p} \sum_{j=k}^{\infty}\left\|\left(\varphi^{j}\right)^{\vee}\right\|_{K(1 / p-1 / r, r, p)}^{p}<\infty
$$

for some r with $1 \leq r<\infty$ then $\varphi \in \mathcal{M}\left(H_{\alpha}^{p}\right)$ for $-1+p / r<\alpha \leq 0$.
Proof. Since $0<p \leq 1$ we have

$$
\begin{aligned}
& \left(m_{k}\right)^{1-p}\left(\sum_{j=k}^{\infty}\left\|\left(\varphi^{j}\right)^{\vee}\right\|_{K(1 / p-1 / r, r, 1)}\right)^{p} \leq\left(m_{k}\right)^{1-p} \sum_{j=k}^{\infty}\left\|\left(\varphi^{j}\right)^{\vee}\right\|_{K(1 / p-1 / r, r, 1)}^{p} \\
& \quad \leq C\left(m_{k}\right)^{1-p} \sum_{j=k}^{\infty}\left\|\left(\varphi^{j}\right)^{\vee}\right\|_{K(1 / p-1 / r, r, p)}^{p}<\infty .
\end{aligned}
$$

It follows from Lemma 4.6 that $\varphi \in \mathcal{M}\left(H^{s}\right)$ for $1 \leq s<\infty$.
To see that $\varphi \in \mathcal{M}\left(H_{\alpha}^{p}\right)$ for $-1+p / r<\alpha \leq 0$, let a be a $(p, \infty)_{\alpha}$ atom with supp $a \subset I=x_{0}+G_{n}$. Take any $k \in \mathbb{Z}$ and let $f=\left(\varphi_{k} \hat{a}\right)^{\vee}=\left(\varphi_{k}\right)^{\vee} * a$
and let $f^{*}=\sup _{l}\left|f * \Delta_{l}\right|$. We have

$$
\begin{aligned}
& \int_{G}\left(f^{*}(x)\right)^{p} d \mu_{\alpha}(x) \\
&=\int_{I}\left(f^{*}(x)\right)^{p} d \mu_{\alpha}(x)+\int_{G \backslash I}\left(f^{*}(x)\right)^{p} d \mu_{\alpha}(x):=A+B
\end{aligned}
$$

To estimate A we distinguish two cases.
(i) If $x_{0} \in G_{n}$ then for every $r \in[1, \infty)$ and each α with $-1+p / r<$ $\alpha \leq 0$ we have

$$
\begin{aligned}
A & \leq\left(\int_{G_{n}}\left(f^{*}(x)\right)^{r} d \mu(x)\right)^{p / r} \cdot\left(\int_{G_{n}}\left(v_{\alpha}(x)\right)^{r /(r-p)} d \mu(x)\right)^{(r-p) / r} \\
& \leq C\|a\|_{H^{r}}^{p} \cdot\left(m_{n}\right)^{-(\alpha+1-p / r)} \leq C
\end{aligned}
$$

where the second inequality is obtained by observing that $\varphi \in \mathcal{M}\left(H^{r}\right)$.
(ii) If $x_{0} \notin G_{n}$ then $x_{0} \in G_{l} \backslash G_{l+1}$ for some $l<n$ and $I \subset G_{l} \backslash G_{l+1}$. With r and α as in (i) we have

$$
\begin{aligned}
A & \leq\left(\int_{I}\left(f^{*}(x)\right)^{r} d \mu(x)\right)^{p / r} \cdot\left(\int_{I}\left(v_{\alpha}(x)\right)^{r /(r-p)} d \mu(x)\right)^{(r-p) / r} \\
& \leq C\|a\|_{H^{\prime}}^{p} \cdot\left(m_{l}\right)^{-\alpha}\left(m_{n}\right)^{-(1-p / r)} \leq C
\end{aligned}
$$

To find the appropriate estimate for B we closely follow Kitada's proof of [5, Theorem 2]. If we set $\psi(\gamma)=\overline{\gamma\left(x_{0}\right)} \varphi(\gamma), \psi^{l}=\psi \chi_{\Gamma_{l+1} \backslash \Gamma_{l}}$ and $b(x)=$ $a\left(x+x_{0}\right)$, then Kitada showed that

$$
f^{*}(x) \leq \sum_{j=n}^{\infty}\left|\left(\psi^{j}\right)^{\vee} * b(x)\right|
$$

Therefore,

$$
\begin{aligned}
B & =\int_{G \backslash I}\left(f^{*}(x)\right)^{p} d \mu_{\alpha}(x) \\
& \leq \sum_{j=n}^{\infty} \sum_{i=-\infty}^{n-1} \int_{J_{i}}\left|\left(\psi^{j}\right)^{\vee} * b(x)\right|^{p} d \mu_{\alpha}(x)
\end{aligned}
$$

where $J_{i}=I_{i} \backslash I_{i+1}$ and $I_{i}=x_{0}+G_{i}$. For each of the integrals in this sum Kitada showed that

$$
\begin{aligned}
B_{i j} & :=\int_{J_{i}}\left|\left(\psi^{j}\right)^{\vee} * b(x)\right|^{p} d \mu_{\alpha}(x) \\
& =\int_{J_{i}}\left|\left(\psi^{j}\right)^{\vee} \chi_{J_{i}} * b(x)\right|^{p} d \mu_{\alpha}(x)
\end{aligned}
$$

Consequently, applying [7, Lemma 1(b)] to obtain the third inequality, we see that

$$
\begin{aligned}
B_{i j} \leq & \left(\int_{J_{i}}\left|\left(\psi^{j}\right)^{\vee} \chi_{J_{i}} * b(x)\right|^{r} d \mu(x)\right)^{p / r} \\
& \cdot\left(\int_{J_{i}}\left(v_{\alpha}(x)\right)^{r /(r-p)} d \mu(x)\right)^{(r-p) / r} \\
\leq & \|b\|_{1}^{p}\left\|\left(\psi^{j}\right)^{\vee} \chi_{J_{i}}\right\|_{r}^{p} \cdot\left(\mu_{\alpha r /(r-p)}\left(I_{i}\right)\right)^{(r-p) / r} \\
\leq & \|a\|_{1}^{p}\left\|\left(\varphi^{j}\right)^{\vee} \chi_{G_{i} \backslash G_{i+1}}\right\|_{r}^{p} \cdot C\left(\left(m_{i}\right)^{-1} \inf \left\{v_{\alpha r /(r-p)}(y): y \in I_{i} \backslash\{0\}\right\}\right)^{(r-p) / r} \\
\leq & C\|a\|_{1}^{p}\left\|\left(\varphi^{j}\right)^{\vee} \chi_{G_{i} \backslash G_{i+1}}\right\|_{r}^{p} \\
& \cdot\left(m_{i}\right)^{(p-r) / r}\left(\inf \left\{v_{\alpha r / r(r-p)}(y): y \in I_{i} \backslash\{0\}\right\}\right)^{(r-p) / r}
\end{aligned}
$$

(a) If $I_{n}=I=G_{n}$ we have

$$
B_{i j} \leq C\left(m_{n}\right)^{\alpha+1-p}\left\|\left(\varphi^{j}\right)^{\vee} \chi_{G_{i} \backslash G_{i+1}}\right\|_{r}^{p} \cdot\left(m_{i}\right)^{(p-r) / r}\left(m_{n}\right)^{-\alpha} .
$$

(b) If $I_{n} \subset G_{l} \backslash G_{l+1}$ for some $l<n$ we have

$$
B_{i j} \leq C\left(m_{l}\right)^{\alpha}\left(m_{n}\right)^{1-p}\left\|\left(\varphi^{j}\right)^{\vee} \chi_{G_{i} \backslash G_{i+1}}\right\|_{r}^{p} \cdot\left(m_{i}\right)^{(p-r) / r}\left(m_{l}\right)^{-\alpha}
$$

Thus, in both cases we see that

$$
\begin{aligned}
B & \leq C\left(m_{n}\right)^{1-p} \sum_{j=n}^{\infty} \sum_{i=-\infty}^{n-1}\left(\left(m_{i}\right)^{1 / r-1 / p}\left\|\left(\varphi^{j}\right)^{\vee} \chi_{G_{i} \backslash G_{i+1}}\right\|_{r}\right)^{p} \\
& \leq C\left(m_{n}\right)^{1-p} \sum_{j=n}^{\infty}\left\|\left(\varphi^{j}\right)^{\vee}\right\|_{K(1 / p-1 / r, r, p)}^{p} \leq C .
\end{aligned}
$$

Thus, $\left\|f^{*}\right\|_{p, \alpha}=\|f\|_{H_{\alpha}^{p}} \leq C$ and this implies that $\varphi \in \mathcal{M}\left(H_{\alpha}^{p}\right)$.
For $0<p<1$ we have the following corollary.
Corollary 4.8. Let $\varphi \in L^{\infty}(\Gamma)$ and $0<p<1$. If

$$
\sup _{k}\left(m_{k}\right)^{1 / p-1}\left\|\left(\varphi^{k}\right)^{\vee}\right\|_{K(1 / p-1 / r, r, p)}<\infty
$$

for some r with $1 \leq r<\infty$ then $\varphi \in \mathcal{M}\left(H_{\alpha}^{p}\right)$ for $-1+p / r<\alpha \leq 0$.
Proof. For $0<p<1$ we have

$$
\left.\sum_{j=k}^{\infty}\right\rangle\left\langle\psi^{j}\right\rangle^{\vee} \backslash \prod_{K(1 / p-1 / r, r, p)}^{p} \leq \mathrm{C} \sum_{j=k}^{\infty}\left(m_{j}\right)^{0-1} \leq \mathbf{C}\left(m_{k}\right)^{0-1}
$$

The result follows immediately from Theorem 4.7.
We now show that Corollary 4.8 is sharp in a certain sense. The example we use to prove the sharpness result is a variation of the example used in [9] to prove that certain results of Kitada for H^{p} multipliers, $0<p<1$, were best possible.

Theorem 4.9. Let $0<p<1$ and $1 \leq r<\infty$. There exists a $\varphi \in L^{\infty}(\Gamma)$ so that
(i) $\sup _{k}\left(m_{k}\right)^{1 / p-1}\left\|\left(\varphi^{k}\right)^{\vee}\right\|_{K(1 / p-1 / r, r, q)}<\infty$ for every $q>p$;
(ii) $\varphi \in \mathcal{M}\left(H_{\alpha}^{q}\right)$ for all q with $p<q<1$ and α with $-1+q / r<\alpha \leq 0$;
(iii) $\varphi \notin \mathcal{M}\left(H_{\alpha}^{p}\right)$ for any α with $-1<\alpha \leq 0$.

Proof. Choose $\gamma_{1} \in \Gamma_{1} \backslash \Gamma_{0}$ and define $f: G \rightarrow \mathbb{C}$ by

$$
f(x)=\sum_{k=-\infty}^{-1}\left(\frac{m_{k}}{|k|}\right)^{1 / p} \gamma_{1}(x) \chi_{G_{k} \backslash G_{k+1}}(x)
$$

Then $f \in L^{1}(G)$ and for every $r \geq p$ we have

$$
\begin{aligned}
\|f\|_{K(1 / p-1 / r, r, q)}^{q} & =\sum_{k=-\infty}^{\infty}\left(m_{k}\right)^{-(1 / p-1 / r) q}\left\|f \chi_{G_{k} \backslash G_{k+1}}\right\|_{r}^{q} \\
& \cong \sum_{k=-\infty}^{-1}\left(\frac{1}{|k|}\right)^{q / p}<\infty \Leftrightarrow q>p .
\end{aligned}
$$

Moreover, if $q>p$ then

$$
\begin{aligned}
\|f\|_{K(1 / q-1 / r, r, q)}^{q} & =\sum_{k=-\infty}^{\infty}\left(m_{k}\right)^{-(1 / q-1 / r) q}\left\|f \chi_{G_{k} \backslash G_{k+1}}\right\|_{r}^{q} \\
& =\sum_{k=-\infty}^{-1}\left(m_{k}\right)^{-1+q / r}\left(\frac{m_{k}}{|k|}\right)^{q / p}\left(\mu\left(G_{k} \backslash G_{k+1}\right)\right)^{q / r} \\
& \leq C \sum_{k=-\infty}^{-1}\left(\frac{1}{|k|}\right)^{q / p}\left(m_{k}\right)^{-1+q / p}<\infty
\end{aligned}
$$

Also,

$$
\hat{f}(\gamma)=\sum_{k=-\infty}^{-1}\left(\frac{m_{k}}{|k|}\right)^{1 / p}\left(\hat{\chi}_{G_{k}}-\hat{\chi}_{G_{k+1}}\right)\left(\gamma-\gamma_{1}\right)
$$

with $\hat{\chi}_{G_{k}}=m_{k} \chi_{\Gamma_{k}}$. Thus supp $\hat{f} \subset \gamma_{1}+\Gamma_{0} \subset \Gamma_{1} \backslash \Gamma_{0}$. Let $\varphi=\hat{f}$. Then $\varphi \in L^{\infty}(\Gamma)$. Moreover, $\varphi^{k}=0$ for $k \neq 1$ and $\varphi^{k}=\varphi$ for $k=1$, so that $\left(\varphi^{1}\right)^{\vee}=f$ and $\left(\varphi^{k}\right)^{\vee}=0$ for $k \neq 1$. Therefore φ satisfies (i) and,
according to Corollary 4.8, φ satisfies (ii). To see that φ satisfies (iii), choose for every $i<0$ an $x_{i} \in G_{i} \backslash G_{i+1}$ and define, for $-1<\alpha \leq 0$, functions $g_{i}: G \rightarrow \mathbb{C}$ by

$$
g_{i}(x)=\left(m_{i}\right)^{\alpha / p}\left(m_{1} \chi_{x_{i}+G_{1}}-m_{0} \chi_{x_{i}+G_{0}}\right)(x) .
$$

Then g_{i} is a multiple of a $(p, \infty)_{\alpha}$ atom and $\left\|g_{i}\right\|_{H_{a}^{p}} \leq m_{1}$. Moreover,

$$
\hat{g}_{i}(\gamma)=\left(m_{i}\right)^{\alpha / p} \overline{\gamma\left(x_{i}\right)}\left(\chi_{\Gamma_{1}}-\chi_{\Gamma_{0}}\right)(\gamma),
$$

so supp $\hat{g}_{i} \subset \Gamma_{1} \backslash \Gamma_{0}$.
Furthermore, if we define $h_{i}: G \rightarrow \mathbb{C}$ by

$$
h_{i}(x)=\left(m_{i}\right)^{\alpha / p} \sum_{k=-\infty}^{-1}\left(\frac{m_{k}}{|k|}\right)^{1 / p} \gamma_{1}\left(x-x_{i}\right) \chi_{G_{k} \backslash G_{k+1}}\left(x-x_{i}\right)
$$

then $h_{i} \in L^{1}(G)$, and a straightforward computation shows that $\hat{h}_{i}=\varphi \hat{g}_{i}$, that is, $h_{i}=\left(\varphi \hat{g}_{i}\right)^{\vee}$. Furthermore, we have

$$
\left\|h_{i}\right\|_{p, \alpha}^{p}=\int_{G}\left|h_{i}(x)\right|^{p} d \mu_{\alpha}(x) \geq C \sum_{k=i}^{-1}|k|^{-1}
$$

so $\lim _{i \rightarrow-\infty}\left\|h_{i}\right\|_{p, \alpha}=\infty$. Since each $h_{i} \in L^{1}(G)$ we have

$$
\left\|h_{i}\right\|_{H_{\alpha}^{p}}=\left\|h_{i}^{*}\right\|_{p, \alpha} \geq\left\|h_{i}\right\|_{p, \alpha},
$$

so

$$
\lim _{i \rightarrow-\infty}\left\|\left(\varphi \hat{g}_{i}\right)^{\vee}\right\|_{H_{\alpha}^{p}}=\lim _{i \rightarrow-\infty}\left\|h_{i}\right\|_{H_{\alpha}^{p}}=\lim _{i \rightarrow-\infty}\left\|h_{i}^{*}\right\|_{p, \alpha}=\infty
$$

and this implies that $\varphi \notin \mathcal{M}\left(H_{\alpha}^{p}\right)$.
In his most recent paper on multipliers on $H^{p}(G)$ spaces [6], Kitada proved a multiplier result for Hardy spaces on locally compact Vilenkin groups in which his assumptions are the natural analogue for G of the usual Hörmander condition for multipliers for function spaces on \mathbb{R}^{n}. Before stating Kitada's main result we first repeat a definition given in [6].

Definition 4.10. Let $\varphi \in L^{\infty}(\Gamma)$. For $\lambda>0$ and $j \in \mathbb{Z}$ let $D^{\lambda} \varphi^{j}$ be defined by

$$
D^{\lambda} \varphi^{j}=\left(|x|^{\lambda}\left(\varphi^{j}\right)^{\vee}(x)\right)^{\wedge} .
$$

We say that $\varphi \in M(s, \lambda)$, where $1 \leq s \leq \infty$, if

$$
B(\varphi, s, \lambda):=\|\varphi\|_{\infty}+\sup _{j}\left(m_{j}\right)^{\lambda-1 / s}\left\|D^{\lambda} \varphi^{j}\right\|_{s}<\infty .
$$

In [6, Theorem 2] Kitada proved the following, which is the analogue for G of [12, Theorem (4.11)].

Theorem K. Let $0<p \leq 1$ and $1 \leq s<\infty$. If $\varphi \in M(s, \lambda)$ for $\lambda>1 / p-1 / \max \left(2, s^{\prime}\right)$ then $\varphi \in \mathcal{M}\left(H^{p}\right)$.

We conclude this paper by extending Theorem K to power-weighted Hardy spaces. Our proof depends on Corollary 4.8 and is somewhat different form Kitada's proof of Theorem K. We first establish a simple lemma.

Lemma 4.11. Let $\varphi \in L^{\infty}(\Gamma)$, let $0<p \leq 1$ and $1 \leq r<\infty$. If

$$
\begin{equation*}
\sup _{k}\left(m_{k}\right)^{1 / p-1+\varepsilon}\left\|\left(\varphi^{k}\right)^{\vee}\right\|_{K(1 / p-1 / r+\varepsilon, r, \infty)}<\infty \quad \text { for some } \varepsilon>0 \tag{4.12}
\end{equation*}
$$ then

$$
\begin{equation*}
\sup _{k}\left(m_{k}\right)^{1 / p-1}\left\|\left(\varphi^{k}\right)^{\vee}\right\|_{K(1 / p-1 / r, r, p)}<\infty . \tag{4.13}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
\left\|\left(\varphi^{k}\right)^{\vee}\right\|_{K(1 / p-1 / r, r, p)}^{p}= & \sum_{i=-\infty}^{k}\left(m_{i}\right)^{-1+p / r}\left\|\left(\varphi^{k}\right)^{\vee} \chi_{G_{i} \backslash G_{i+1}}\right\|_{r}^{p} \\
& +\sum_{i=k+1}^{\infty}\left(m_{i}\right)^{-1+p / r}\left\|\left(\varphi^{k}\right)^{\vee} \chi_{G_{i} \backslash G_{i+1}}\right\|_{r}^{p} \\
:= & A+B .
\end{aligned}
$$

Assumption (4.12) implies that

$$
\begin{aligned}
A & \leq C \sum_{i=-\infty}^{k}\left(m_{i}\right)^{-1+p / r}\left(m_{i}\right)^{1-p / r+\varepsilon p}\left(m_{k}\right)^{-1+p-\varepsilon p} \\
& \leq C\left(m_{k}\right)^{-1+p-\varepsilon p} \sum_{i=-\infty}^{k}\left(m_{i}\right)^{\varepsilon p} \leq C\left(m_{k}\right)^{-1+p}
\end{aligned}
$$

since $\varepsilon p>0$.
To estimate B first observe that

$$
\left\|\left(\varphi^{k}\right)^{\vee}\right\|_{\infty} \leq\left\|\varphi^{k}\right\|_{1} \leq\left\|\varphi^{k}\right\|_{\infty} \cdot \lambda\left(\Gamma_{k+1} \backslash \Gamma_{k}\right) \leq C\|\varphi\|_{\infty} \cdot m_{k} .
$$

Therefore,

$$
\begin{aligned}
B & \leq C \sum_{i=k+1}^{\infty}\left(m_{i}\right)^{-1+p / r}\left(m_{k}\right)^{p}\left(m_{i}\right)^{-p / r} \\
& =C\left(m_{k}\right)^{p} \sum_{i=k+1}^{\infty}\left(m_{i}\right)^{-1} \leq C\left(m_{k}\right)^{p-1}
\end{aligned}
$$

From the inequalities for A and B we immediately obtain (4.13).

Corollary 4.14. Let $\varphi \in L^{\infty}(\Gamma)$, let $0<p \leq 1$ and $1 \leq r<\infty$. If φ satisfies (4.12) then $\varphi \in \mathcal{M}\left(H_{\alpha}^{p}\right)$ for $-1+p / r<\alpha \leq 0$.

Proof. For $p=1$ this is [5, Theorem 2]. For $0<p<1$ we apply Lemma 4.11 and Corollary 4.8.

Theorem 4.15. Let $\varphi \in L^{\infty}(\Gamma)$, let $0<p \leq 1,1<r \leq \infty$ and $\lambda>1 / p-$ $1 / \max \left(2, r^{\prime}\right)$. If $\varphi \in M(r, \lambda)$ then $\varphi \in \mathcal{M}\left(H_{\alpha}^{p}\right)$ for $-1+p / \min \left(2, r^{\prime}\right)<$ $\alpha \leq 0$.

Proof. We first assume that $1<r \leq 2$ so that $\max \left(2, r^{\prime}\right)=r^{\prime}$. Since $\lambda>1 / p-1 / r^{\prime}$, there exists an $\varepsilon>0$ so that $\lambda=1 / p-1 / r^{\prime}+\varepsilon$. Now we consider

$$
\begin{aligned}
& \left\|\left(\varphi^{j}\right)^{\vee}\right\|_{K\left(1 / p-1 / r^{\prime}+\varepsilon, r^{\prime}, \infty\right)}=\left\|\left(\varphi^{j}\right)^{\vee}\right\|_{K\left(\lambda, r^{\prime}, \infty\right)} \leq\left\|\left(\varphi^{j}\right)^{\vee}\right\|_{K\left(\lambda, r^{\prime}, r^{\prime}\right)} \\
& \quad=\left\|\left(\varphi^{j}\right)^{\vee}\right\|_{r^{\prime}, \lambda r^{\prime}}=\left\||x|^{\lambda}\left(\varphi^{j}\right)^{\vee}\right\|_{r^{\prime}}=\left\|\left(D^{\lambda} \varphi^{j}\right)^{\vee}\right\|_{r^{\prime}} \leq\left\|\left(D^{\lambda} \varphi^{j}\right)\right\|_{r^{\prime}}
\end{aligned}
$$

Thus, if $\varphi \in M(r, \lambda)$ then φ satisfies inequality (4.12), and Corollary 4.14 implies that $\varphi \in \mathcal{M}\left(H_{\alpha}^{p}\right)$ for $-1+p / r^{\prime}<\alpha \leq 0$.

If $2<r \leq \infty$ then $\max \left(2, r^{\prime}\right)=2$. In this case there exists an $\varepsilon>0$ such that $\lambda=1 / p-1 / 2+\varepsilon$ and we have

$$
\left\|\left(\varphi^{j}\right)^{\vee}\right\|_{K(1 / p-1 / 2+\varepsilon, 2, \infty)}=\left\|\left(\varphi^{j}\right)^{\vee}\right\|_{K(\lambda, 2, \infty)} \leq\left\|\left(\varphi^{j}\right)^{\vee}\right\|_{K(\lambda, 2,2)} \leq\left\|D^{\lambda} \varphi^{j}\right\|_{2}
$$

An application of [6, Proposition 2] to obtain the third inequality, shows that

$$
\begin{aligned}
& \sup _{j}\left(m_{j}\right)^{1 / p-1+\varepsilon}\left\|\left(\varphi^{j}\right)^{\vee}\right\|_{K(1 / p-1 / 2+\varepsilon, 2, \infty)} \\
& \quad \leq \sup _{j}\left(m_{j}\right)^{\lambda-1 / 2}\left\|D^{\lambda} \varphi^{j}\right\|_{2} \leq B(\varphi, 2, \lambda) \\
& \quad \leq C B(\varphi, r, \lambda)<\infty
\end{aligned}
$$

and the conclusion of the theorem follows again from Corollary 4.14. This completes the proof of Theorem 4.15 .

Remark. Professor Kitada informed the authors that he obtained independently essentially the same result as our Theorem 4.15.

References

[1] R. Coifman and G. Weiss, 'Extensions of Hardy spaces and their use in analysis', Bull. Amer. Math. Soc. 83 (1977), 569-645.
[2] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and multiplier theory, (SpringerVerlag, Berlin, 1977).
[3] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, (North-Holland Mathematics Studies 116, North-Holland, Amsterdam, 1985).
[4] T. Kitada, ' H^{p}-multiplier theorems on certain totally disconnected groups', Sci. Rep. Hirosaki Univ. 34 (1987), 1-7.
[5] T. Kitada, 'Multipliers on weighted Hardy spaces over certain totally disconnected groups', Internat. J. Math. Math. Sci. 11 (1988), 665-675.
[6] T. Kitada, ' $\boldsymbol{H}^{\boldsymbol{p}}$ multiplier theorem on certain totally disconnected groups, II', preprint.
[7] C. W. Onneweer, 'Multipliers on weighted L^{p}-spaces over certain totally disconnected groups', Trans. Amer. Math. Soc. 288 (1985), 347-357.
[8] C. W. Onneweer and T. S. Quek, 'Multipliers on weighted L^{p}-spaces over locally compact Vilenkin groups', Proc. Amer. Math. Soc. 105 (1989), 622-631.
[9] C. W. Onneweer and T. S. Quek, ' H^{p} multiplier results on locally compact Vilenkin groups', Quart. J. Math. Oxford Ser. (2) 40 (1989), 313-323.
[10] M. H. Taibleson, 'Harmonic analysis on n-dimensional vector spaces over local fields, III. Multipliers', Math. Ann. 187 (1970), 259-271.
[11] M. H. Taibleson, Fourier analysis on local fields, (Mathematical Notes 15, Princeton University Press, 1975).
[12] M. H. Taibleson and G. Weiss, The molecular characterization of certain Hardy spaces, (Astérisque 77, pp. 68-149, 1980).
[13] N. Ya. Vilenkin, On a class of complete orthonormal systems, (Amer. Math. Soc. Transl. (2) 28, pp. 1-35, 1963).

Department of Mathematics and Statistics
University of New Mexico Albuquerque, New Mexico 87131 U.S.A.

[^0]: (C) 1990 Australian Mathematical Society 0263-6115/90 \$A2.00 +0.00

