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1. Introduction

All groups considered will be finite. For a formation F and a group G, we denote by GF

the F-residual of G. Throughout this paper, N , Np and U will denote the class of
nilpotent, p-nilpotent and supersolvable groups, respectively.

The ways in which minimal subgroups can be embedded in a nilpotent, p-nilpotent or
supersolvable group have been investigated by a number of scholars. For example, a well-
known theorem due to Itô [9, Satz III.5.3] asserts that a group G of odd order is nilpotent
if every minimal subgroup of G lies in the centre of G. Another well-known theorem of
Itô [9, Satz IV.5.5] states that a group G is p-nilpotent if every cyclic subgroup of G with
order p or 4 (if p = 2) lies in the centre of G. Along the same lines, Buckley [3] showed
in 1970 that a group G of odd order is supersolvable if every minimal subgroup of G is
normal in G.

Since then, a series of papers have dealt with generalizations of the results of Itô and
Buckley. Roughly speaking, one aim of these generalizations is to replace the normality
condition by a weaker condition (see, for example, [2,16,17]). Another aim is to minimize
the number of minimal subgroups or replace the global condition by a localized condition
(see, for example, [11, 19]). One further aim is to extend the results to a saturated
formation by using the formation theory (examples are given in [1,12,20–22]).
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So many related works inspire us to ask the following questions.

(i) To what degree does one weaken the sufficient conditions so that they become
necessary?

(ii) To what degree can the directions mentioned be unified?

To answer these questions, we first note the following fact: a group G lies in a formation F
if and only if (iff) the F-residual GF is an identity group. This observation indicates that
if the sufficient conditions are restricted on GF , then they are naturally necessary and
hence are sharp. Our second observation is focused on the concept of c-supplementation,
which is weaker than both complementation and normality. The accepted concept of
complementation was introduced by Hall and applied to characterizing the structure of
solvable groups in his well-known series of papers [7,8]. The concept of c-supplementation
was introduced in 2000 by Wang [18] and has since often been applied to determine
the structure of some class of groups in recent years (see [19, 20, 22]). As a result of
our observations, we give answers to the above questions by using the c-supplemented
property of minimal subgroups of the residual subgroup. Our results actually record ‘iff’
and ‘localized’ versions of theorems by Itô and Buckley and some further related results.

A subgroup H of a group G is said to be c-supplemented in G if there exists a sub-
group K of G such that G = HK and H ∩ K � coreG(H) (the maximal normal sub-
group of G that is contained in H). Hence, a complemented or normal subgroup must
be a c-supplemented subgroup. But the converses do not hold in general (see [18]). A
group G is called quasinilpotent if, given any chief factor A/B of G, every automorphism
of A/B induced by an element of G is inner.

2. Preliminaries

We begin by giving some lemmas, which will be needed in §§ 3 and 4.

Lemma 2.1 (Wang [18, Lemma 2.1]). Let G be a group. Then the following
conditions apply.

(i) If H is c-supplemented in G, H � M � G, then H is c-supplemented in M .

(ii) Let K � G and K � H. Then H is c-supplemented in G if and only if H/K is
c-supplemented in G/K.

(iii) Let π be a set of primes. Let N be a normal π′-subgroup of G and H a π-subgroup
of G. If H is c-supplemented in G, then HN/N is c-supplemented in G/N . If
furthermore N normalizes H, then the converse also holds.

(iv) Let L be a subgroup of G and H � Φ(L). If H is c-supplemented in G, then H �G

and H � Φ(G).

Lemma 2.2. Let G be a group and let p be a prime number dividing |G|, with
(|G|, p − 1) = 1. Then
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(i) if N is normal in G of order p, then N lies in Z(G),

(ii) if G has cyclic Sylow p-subgroups, then G is p-nilpotent,

(iii) if M is a subgroup of G with index p, then M is normal in G.

Proof. (i) Since |Aut(N)| = p − 1 and G/CG(N) is isomorphic to a subgroup of
Aut(N), |G/CG(N)| must divide (|G|, p − 1) = 1. It follows that G = CG(N) and
N � Z(G).

(ii) Let Gp be a Sylow p-subgroup of G with order pn. Since Gp is cyclic, |Aut(Gp)| =
pn−1(p−1). Again, NG(Gp)/CG(Gp) is isomorphic to a subgroup of Aut(Gp), so the order
|NG(Gp)/CG(Gp)| must divide (|G|, p−1) = 1. Thus, NG(Gp) = CG(Gp), and statement
(ii) follows by the well-known Burnside theorem.

(iii) We may assume that coreG(M) = 1 by induction. As is widely known, the result
is true in the case in which p = 2. So we assume that p > 2 and consequently G is of
odd order as (|G|, p− 1) = 1. Now we know that G is solvable by the odd-order theorem.
Let N be a minimal normal subgroup of G. Then N is an elementary abelian q-group for
some prime q. It is obvious that G = MN and that M ∩ N is normal in G. Therefore,
M ∩ N = 1 and |N | = |G : M | = p. Now N � Z(G) by statement (i) and, of course,
M is normal in G, as desired. �

We remark that the hypothesis (|G|, p − 1) = 1 in Lemma 2.2 always holds when p is
the smallest prime divisor of |G|. Hence, Lemma 2.2 (iii) extends a result of Frobenius
(see [13]).

Lemma 2.3. Let the p′-group H act on the p-group P . If H acts trivially on Ω1(P )
and P is quaternion-free if p = 2, then H acts trivially on P .

Proof. Let P be a minimal counterexample. Then H acts trivially on every H-invari-
ant proper subgroup of P . We may assume that H = 〈x〉 is of order q with q �= p.

Set G = [P ]H. Then G is not p-nilpotent. We shall show that every proper subgroup V

of G is p-nilpotent: if |V | = pn, then V is p-nilpotent, as desired. Assume q divides |V |.
There then exists an element y in G such that H � V y. Hence, V y = (V y ∩ P )H. Since
V y ∩ P is an H-invariant proper subgroup of P , H acts trivially on V y ∩ P , so V y is
p-nilpotent and so is V .

Now G is a minimal non-p-nilpotent group (that is, every proper subgroup of a group is
p-nilpotent but is not itself p-nilpotent). By the results of Itô and Schmidt [9, Sätze IV.5.4
and III.5.2], P is of exponent p if p > 2, and of exponent at most 4 if p = 2. If P is of expo-
nent p, then H acts trivially on Ω1(P ) = P : a contradiction. Hence, P is of exponent 4.
On the other hand, Ω1(P )Hg < G for any g ∈ G; therefore, Ω1(P )Hg = Ω1(P ) × Hg. It
follows from HG = G that Ω1(P ) � Z(G). Pick a, b ∈ P \ Ω1(P ) such that c = [a, b] �= 1.
Then c is of order 2 as both c and b2 are in Z(G). Denote R̄ = 〈a, b〉/〈a2b2, ca2〉. We
have R̄ = 〈a, b̄ | a4 = 1, ā2 = b̄2, āb̄ā = b̄〉. Hence, R̄ is a quaternion and a section of P ,
which is contrary to the hypothesis. Thus, H must act trivially on P and the proof is
complete. �
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Let G be a group. The generalized Fitting subgroup F ∗(G) of G is the unique max-
imal normal quasinilpotent subgroup of G. It is a natural generalization of the Fitting
subgroup F (G) of G. Its definition and properties can be found in [10, § X.13]. We now
list the following basic facts which will be used.

Lemma 2.4 (Wei et al . [22, Lemma 2.3]). Let G be a group and N be a subgroup
of G.

(i) If N is normal in G, then F ∗(N) � F ∗(G).

(ii) F ∗(G) �= 1 if G �= 1; in fact, F ∗(G)/F (G) = soc(F (G)CG(F (G))/F (G)).

(iii) F ∗(F ∗(G)) = F ∗(G) � F (G); if F ∗(G) is solvable, then F ∗(G) = F (G).

(iv) CG(F ∗(G)) � F ∗(G).

(v) If N � Z(G), then F ∗(G/N) = F ∗(G)/N .

(vi) If N � G and N � Op(G) for some prime p, then F ∗(G/Φ(N)) = F ∗(G)/Φ(N).

Now recall that a class F of groups is called a formation provided that (i) if G ∈ F
and N � G, then G/N ∈ F , and (ii) if N1, N2 � G such that G/N1, G/N2 ∈ F , then
G/(N1 ∩ N2) ∈ F .

Let P be the set of all prime numbers. Then, by a formation function f , we mean a
function f defined on P such that f(P), possibly empty, is a formation. A chief factor
H/K of a group G is called f -central in G if G/CG(H/K) ∈ f(p) for all primes p dividing
|H/K|. A formation F is said to be a local formation if there exists a formation function f

such that F is the class of all groups G for which every chief factor of G is f -central in G.
In this case, we write F = LF (f) and call f a local definition of F . A formation F is
called saturated if G/Φ(G) ∈ F implies that G ∈ F . It is well known that a formation F
is saturated if and only if F is a local formation [4, § IV].

Let F = LF (f) with f integrated (i.e. f(p) ⊆ F for all p ∈ P). A normal subgroup N of
a group G is said to be F-hypercentral in G provided that every G-chief factor below N

is f -central. The product of all F-hypercentral subgroups is again an F-hypercentral
subgroup of G. This unique maximal normal subgroup is called the F-hypercentre of G

and denoted by ZF (G). We remark that ZF (G) does not depend on the chosen integrated
local definition and that Z∞(G) becomes ZN (G) in this notation (see [4, § IV.6.8]).

Lemma 2.5 (Wei et al . [22, Theorem 1.2]). Let F be a saturated formation
containing U . Suppose that G is a group with a normal subgroup H such that G/H ∈ F . If
all minimal subgroups and all cyclic subgroups with order 4 of F ∗(H) are c-supplemented
in G, then G ∈ F .

Lemma 2.6 (Wang and Li [19, Theorem 4.5]). Let F be a saturated formation
containing U . Suppose that G is a group with a normal subgroup H such that G/H ∈ F .
If every minimal subgroup of F ∗(H) is c-supplemented in G and F ∗(H) is quaternion-
free, then G ∈ F .
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Lemma 2.7 (Asaad et al . [1, Lemma 2]). Let F be a saturated formation. Assume
that G is a non-F-group and there exists a maximal subgroup M of G such that M ∈ F
and G = F (G)M , where F (G) is the Fitting subgroup of G. Then

(i) GF/(GF )′ is a chief factor of G,

(ii) GF is a p-group for some prime p,

(iii) GF has exponent p if p > 2 and exponent at most 4 if p = 2,

(iv) GF is either an elementary abelian group or (GF )′ = Z(GF ) = Φ(GF ) is an ele-
mentary abelian group.

Lemma 2.8 (Ballester-Bolinches et al . [2, Theorem 4.3]). Let G be a group.
Suppose that every cyclic subgroup of GN with order 4 is c-supplemented in G. Then G

is nilpotent if and only if every minimal subgroup of GN lies in ZN (G).

Lemma 2.9 (Dornhoff [5, Theorem 2.8]). If a solvable group has a 2-Sylow sub-
group P which is quaternion-free, then P ∩ Z(G) ∩ GN = 1.

3. Main results

Theorem 3.1. Let Gp be a Sylow p-subgroup of a group G, where p is a prime divisor
of |G| with (|G|, p − 1) = 1. Then G is p-nilpotent if and only if every cyclic subgroup of
Gp ∩ GNp with order p or 4 (if p = 2) is c-supplemented in G.

Proof. If G is p-nilpotent, then GNp = 1, so the necessary condition holds.
Conversely, we shall prove that G is p-nilpotent under the sufficient condition.

Let G be a minimal counterexample and let M be a maximal subgroup of G. Since
M/M ∩ GNp ∼= MGNp/GNp is p-nilpotent, MNp � M ∩ GNp . Now let Mp be a Sylow
p-subgroup of M . Without losing generality we may assume that Mp � Gp. Then
Mp ∩ MNp � Gp ∩ GNp . Hence, every cyclic subgroup of Mp ∩ MNp with order p or 4
(if p = 2) is c-supplemented in M by Lemma 2.1 and M satisfies the hypotheses of the
theorem. The minimality of G implies that M is p-nilpotent. Thus, G is a minimal non-
p-nilpotent group. By results of Itô and Schmidt [9, Sätze IV.5.4 and III.5.2], G has a
normal Sylow p-subgroup Gp and a cyclic Sylow q-subgroup Gq such that G = [Gp]Gq.
Moreover, Gp is of exponent p if p > 2 and of exponent at most 4 if p = 2. On the
other hand, the minimality of G implies that GNp = Gp. Let P0 be a minimal subgroup
of Gp. Then, by the hypotheses, there exists a subgroup K0 of G such that G = P0K0

and P0 ∩ K0 � coreG(P0). If P0 is not normal in G, then K0 is a maximal subgroup
of G with index p. By applying Lemma 2.2 we see that K0 is a normal subgroup
of G. It follows from the fact that K0 is nilpotent that Gq is normal in G: a contra-
diction. Therefore, every minimal subgroup of Gp is normal in G and, by Lemma 2.2,
every minimal subgroup of Gp must be in the centre of G. If Gp has exponent p, then
Gp = Ω1(Gp) and G = Gp × Gq: a contradiction. Thus, p = 2 and G2 has exponent 4.
Now let P1 = 〈x〉 be a cyclic subgroup of G2 with order 4. Then, by the hypotheses there
is a subgroup K1 of G such that G = P1K1 and P1 ∩ K1 � coreG(P1). If, furthermore,
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|G : K1| = 4, then |G : K1〈x2〉| = 2, and hence K1〈x2〉 is normal in G and so is Gq: a
contradiction. If |G : K1| = 2, then K1 itself is normal in G. We still get a contradiction.
Henceforth K1 = G and P1 is normal in G. Lemma 2.2 implies that P1Gq = P1 × Gq

and, consequently, G2 = Ω2(G2) centralizes Gq. This is a final contradiction. The proof
is complete. �

Some authors prefer the following equivalent form of Theorem 3.1. Similar equivalent
forms of other results will be omitted.

Corollary 3.2. Let H be a normal subgroup of a group G such that G/H is p-
nilpotent, where p is a prime divisor of |G| with (|G|, p − 1) = 1. Then G is p-nilpotent
if and only if every cyclic subgroup of H with order p or 4 (if p = 2) is c-supplemented
in G.

An identical argument using Lemma 2.3 yields the following result.

Theorem 3.3. Let Gp be a Sylow p-subgroup of a group G and assume that Gp

is quaternion-free, where p is a prime divisor of |G| with (|G|, p − 1) = 1. Then G is
p-nilpotent if and only if every minimal subgroup of Gp ∩ GNp is c-supplemented in G.

If p is an arbitrary prime number, the corresponding result is as follows, which is an
‘iff’ version of Itô’s theorem on p-nilpotence.

Theorem 3.4. Let Gp be a Sylow p-subgroup of a group G, where p is a prime divisor
of |G|. Then G is p-nilpotent if and only if every minimal subgroup of Gp ∩ GNp lies in
ZNp(G) and every cyclic subgroup of Gp ∩ GNp with order 4 (if p = 2) is c-supplemented
in G.

Proof. It will suffice to prove the ‘if’ part.
Let G be a minimal counterexample and let M be a maximal subgroup of G. We

shall show that M satisfies the hypotheses of the theorem. First we see easily that
Np = LF (f), where f(q) = {1} if q = p and f(q) = {all groups} if q �= p. By [4,
§ IV.3.8.(b)], Np = LF (F ) with F integrated and full (i.e. SqF (q) = F (q) for all q ∈ P),
where F (q) = Sqf(q) ∩ Np. Now let H/K be a G-chief factor below ZNp

(G). Since H/K

is F -central in G, G/CG(H/K) ∈ F (q), where q is an arbitrary prime divisor of |H/K|.
Noting that M ∩ H/M ∩ K ∼= MK ∩ H/K � H/K, we have

M/CM (M ∩ H/M ∩ K) ∼= M/CM (MK ∩ H/K).

On the other hand, CG(H/K) � CG(MK ∩ H/K), so

G/CG(H/K) ∼ G/CG(MK ∩ H/K) ∈ F (q).

It follows that

M/CM (M ∩ H/M ∩ K) ∼= M/CM (MK ∩ H/K)
∼= MCG(MK ∩ H/K)/CG(MK ∩ H/K)

� G/CG(MK ∩ H/K) ∈ F (q).
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Hence, M/CM (M ∩ H/M ∩ K) ∈ F (q) for any prime divisor q of |H/K|. This shows
that M ∩ ZNp(G) � ZNp(M). Now let Mp be a Sylow p-subgroup of M . Without loss of
generality, we may assume that Mp � Gp. For any minimal subgroup P1 of Mp ∩ MNp , by
the hypotheses, we have P1 � M ∩ ZNp(G) � ZNp(M). Moreover, every cyclic subgroup
of Mp ∩ MNp with order 4 (if p = 2) is c-supplemented in M . Hence, M satisfies the
hypotheses of the theorem. The minimality of G implies that M is p-nilpotent. Now,
G is minimal non-p-nilpotent. It follows that G has a normal Sylow p-subgroup Gp and a
cyclic Sylow q-subgroup Gq such that G = [Gp]Gq. Moreover, Gp is of exponent p if p > 2
and of exponent at most 4 if p = 2. Given that ZNp(G) < G, ZNp(G) is nilpotent. Let P

and Q be the Sylow p-subgroup and the Sylow q-subgroup of ZNp
(G), respectively. Then

both P and Q are normal in G and, since Q < Gq and Gq is cyclic, Q � Φ(Gq) � Z(G).
If H/K is a G-chief factor below P , then H � ZN (G) as G = CG(H/K). Thus, we have
P � ZN (G) and therefore ZNp(G) = ZN (G) = Z(G). It follows from GNp = Gp and the
hypotheses that Ω1(Gp) � Z(G). If Gp is of exponent p, then Gp = Ω1(Gp) � Z(G), and
G = Gp × Gq: a contradiction. Therefore, p = 2 and G2 is of exponent 4. By applying
Theorem 3.1 we conclude that G is 2-nilpotent, which is contrary to the hypothesis on G.
This completes the proof. �

By minimizing the number of minimal subgroups, we can give an extension of Lemma
2.8. It is also an ‘iff’ version of Itô’s theorem on nilpotence.

Theorem 3.5. A group G is nilpotent if and only if every minimal subgroup
of F ∗(GN ) lies in ZN (G) and every cyclic subgroup of F ∗(GN ) with order 4 is
c-supplemented in G.

Proof. Only the ‘if’ part needs to be verified.
Let G be a counterexample of minimal order. Then we have the following hypotheses.

(i) Every proper normal subgroup of G is nilpotent.

Suppose that M is a maximal normal subgroup of G. Since MN � M ∩ GN

and M ∩ GN � GN , by Lemma 2.4 (i), F ∗(MN ) � F ∗(M ∩ GN ) � F ∗(GN ). Moreover,
M ∩ ZN (G) � ZN (M). Now we see easily that M satisfies the hypotheses of the theorem.
The minimal choice of G implies that M is nilpotent.

(ii) F (G) is the unique maximal normal subgroup of G.

In fact, since the class of nilpotent groups is a Fitting class, G has a unique maximal
normal subgroup M , say. The nilpotency of M implies that M = F (G).

(iii) GN = G, G′ = G and F ∗(G) = F (G) < G.

If GN < G, then GN is nilpotent by (i). Thus, F ∗(GN ) = GN by Lemma 2.4 (iii).
Now Lemma 2.8 implies immediately that G is nilpotent: a contradiction. Hence, we
must have GN = G. From (ii) we know that G/F (G) is simple. If G/F (G) is cyclic
of prime order, then GN � F (G) and consequently G = F (G) is nilpotent, which is a
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contradiction. Thus, G/F (G) is a simple non-abelian group. Now G′ �� F (G) implies that
G′ = G. If F (G) < F ∗(G), then F ∗(G) = G by (ii). Again by Lemma 2.8, G is nilpotent,
which is a contradiction.

(iv) The final contradiction.

Since F ∗(G) = F (G) is not an identity group, we may choose the smallest prime
divisor p of |F (G)| such that Op(G) �= 1. For any Sylow q-subgroup Gq of G, where
q �= p, consider the subgroup G0 = Op(G)Gq. It is clear that GN

0 � Op(G) and
G0 ∩ ZN (G) � ZN (G0). Hence, every minimal subgroup of GN

0 lies in ZN (G0) and every
cyclic subgroup of GN

0 with order 4 is c-supplemented in G0. By Lemma 2.8, G0 is nilpo-
tent. Hence, G0 = Op(G) × Gq and Op(G) � CG(Op(G)). Consequently, G/CG(Op(G)) is
a p-group and, by (i) and (iii), CG(Op(G)) = G, namely Op(G) � Z(G). Now we consider
the factor group Ḡ = G/Op(G). First we have F ∗(Ḡ) = F ∗(G)/Op(G) by Lemma 2.4 (v).
For any element x̄ of odd prime order in F ∗(Ḡ), since Op(G) is the Sylow p-subgroup of
F ∗(G), x̄ can be viewed as the image of an element x of odd prime order in F ∗(G). It
follows that x lies in ZN (G) and ȳ lies in ZN (Ḡ), for ZN (G/Op(G)) = ZN (G)/Op(G).
This shows that Ḡ satisfies the hypotheses of the theorem. By the choice of G, we con-
clude that Ḡ is nilpotent and so G is nilpotent. This is the final contradiction and we are
done. �

Now we turn our attention to the topic of localization. First we can localize the con-
ditions in Theorem 3.1 as follows.

Theorem 3.6. Let G be a group such that G is S4-free and let Gp be a Sylow
p-subgroup of G, where p is a prime divisor of |G| with (|G|, p − 1) = 1. Then G is
p-nilpotent if and only if every cyclic subgroup of Gp ∩ GNp with order p or 4 (if p = 2)
is c-supplemented in NG(Gp).

Proof. We only need to prove the ‘if’ part.
Suppose that G is a minimal counterexample. Then we have the following claims.

(i) M is p-nilpotent whenever Gp � M < G. In particular, NG(Gp) is p-nilpotent.

It is clear that M satisfies the hypotheses of the theorem. The minimality of G implies
that M is p-nilpotent. If NG(Gp) = G, then, by Theorem 3.1, G is p-nilpotent: a contra-
diction. Hence, NG(Gp) < G and NG(Gp) is p-nilpotent.

(ii) Op′(G) = 1.

If not, write N = Op′(G) and consider G/N . Then GpN/N is a Sylow p-subgroup
of G/N . Since (G/N)Np = GNpN/N , (GpN/N) ∩ (G/N)Np = (Gp ∩ GNp)N/N . Now let
P1N/N be a cyclic subgroup of (GpN/N) ∩ (G/N)Np with order p or 4. We may assume
that P1 = 〈x〉 is a cyclic subgroup of Gp ∩ GNp such that x is of order p or 4 (if p = 2).
Since P1 is c-supplemented in M = NG(Gp), there exists a subgroup K1 of M such
that M = P1K1 and P1 ∩ K1 � coreM (P1). It follows that MN/N = (P1N/N)(K1N/N),
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where (P1N/N) ∩ (K1N/N) = (P1 ∩ K1N)N/N . If P1 ∩ K1N = P1, then P1 � K1N and
|K1|p = |K1N |p = |MN |p = |M |p. Furthermore, K1 = M and P1 is normal in M .
Consequently, P1N/N is normal in MN/N . Now assume that P1 ∩ K1N < P1. Then
P1 ∩ K1N � 〈xp〉 and either P1 ∩ K1N = 1 or P1 ∩ K1N = 〈xp〉. If the former holds,
then P1N/N is complemented in MN/N . If the latter holds, then P1 ∩ K1N lies in Φ(M)
as xp ∈ Φ(Gp) � Φ(M). We can infer from the fact that 〈xp〉 is c-supplemented in M that
P1 ∩K1N is normal in M . In this case P1N/N is c-supplemented in MN/N . To summa-
rize, every cyclic subgroup of (GpN/N) ∩ (G/N)Np with order p or 4 is c-supplemented in
MN/N = NG/N (GpN/N). The choice of G implies that G/N is p-nilpotent and hence G

is p-nilpotent: a contradiction.

(iii) G/Op(G) is p-nilpotent and CG(Op(G)) � Op(G).

Suppose that G/Op(G) is not p-nilpotent. Then, by Frobenius’s theorem (see [14, The-
orem 10.3.2]), there exists a subgroup of Gp properly containing Op(G) such that its
G-normalizer is not p-nilpotent. By applying (i), we may choose a subgroup P1 of Gp

properly containing Op(G) such that NG(P1) is not p-nilpotent but NG(P2) is p-nilpotent
whenever P1 < P2 � Gp. It is clear that P1 < P0 � Gp for some Sylow p-subgroup P0

of NG(P1). Since P0 ∩ (NG(P1))Np � Gp ∩ GNp , by Lemma 2.1 (i), every cyclic sub-
group of P0 ∩ (NG(P1))Np with order p or 4 is c-supplemented in P0. The choice of P1

implies that NG(P0) is p-nilpotent, and hence NNG(P1)(P0) is also p-nilpotent. It follows
that every cyclic subgroup of P0 ∩ (NG(P1))Np with order p or 4 is c-supplemented in
NNG(P1)(P0). This shows that NG(P1) satisfies the hypotheses of the theorem. There-
fore, NG(P1) is p-nilpotent by the minimality of G, which is contrary to our choice. Now,
G/Op(G) is p-nilpotent, so G is p-solvable with Op′(G) = 1. Consequently, we obtain
CG(Op(G)) � Op(G) (by [6, Theorem 6.3.2]).

(iv) G = GpGq, where Gq is an elementary abelian Sylow q-subgroup of G for a prime
q �= p. Moreover, Gp is maximal in G and GqOp(G)/Op(G) is a minimal normal in
G/Op(G).

For any prime divisor q of |G| not equal to p, since G is p-solvable, there is a Sylow
q-subgroup Gq of G such that G0 = GpGq is a subgroup of G (see [6, Theorem 6.3.5]). If
G0 < G, then G0 is p-nilpotent by (i). This leads to Gq � CG(Op(G)) � Op(G): a contra-
diction. Thus, G = GpGq is solvable. Now let T/Op(G) be a minimal normal subgroup of
G/Op(G) contained in Opp′(G)/Op(G). Then T = Op(G)(T ∩ Gq). If T ∩ Gq < Gq, then
GpT < G and therefore GpT is p-nilpotent. As a result, 1 < T ∩ Gq � CG(Op(G)) �
Op(G): a contradiction. Thus, T = Opp′(G) and hence GqOp(G)/Op(G) is an elementary
abelian q-group complementing Gp/Op(G). This yields that Gp is maximal in G.

(v) |Gp : Op(G)| = p.

Let P0 be a maximal subgroup of Gp containing Op(G) and let G0 = P0Opp′(G).
Then P0 is a Sylow p-subgroup of G0. The maximality of Gp in G implies that either
NG(P0) = G or NG(P0) = Gp. If the latter holds, then NG0(P0) = P0. It is easy to
see that G0 satisfies the hypotheses of the theorem. Therefore, G0 is p-nilpotent and
Gq � CG(Op(G)) � Op(G): a contradiction. Hence, NG(P0) = G and P0 = Op(G).
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(vi) G = GNpL, where L = 〈a〉[Gq] is a non-abelian split extension of a normal Sylow
q-subgroup Gq by a cyclic p-subgroup 〈a〉, ap ∈ Z(L) and the action of a (by con-
jugate) on Gq is irreducible.

From (iii) we see that GNp � Op(G). Clearly, T = GNpGq is normal in G. Let P0

be a maximal subgroup of Gp containing GNp . Then, by the maximality of Gp, either
NG(P0) = Gp or NG(P0) = G. If NG(P0) = Gp, then NM (P0) = P0, where M = P0T =
P0Gq. Evidently, P0 ∩ MNp � Gp ∩ GNp , and hence M satisfies the hypotheses of the
theorem. By the minimality of G, M is p-nilpotent. It follows that T = GNpGq = GNp ×
Gq and so Gq�G: a contradiction. Therefore, P0 � G and P0 � Op(G). We may thus infer
from (v) that Op(G) = P0 and hence that Gp/GNp is a cyclic group. Now, applying the
Frattini argument, we have G = GNpNG(Gq). Therefore, we may assume that G = GNpL,
where L = 〈a〉[Gq] is a non-abelian split extension of a normal Sylow q-subgroup Gq by a
cyclic p-group 〈a〉. Now that |Gp : Op(G)| = p and Op(G) ∩ NG(Gq) � NG(Gq), we have
ap ∈ Z(L). Also since Gp is maximal in G, GNpGq/GNp is minimal normal in G/GNp

and consequently a acts irreducibly on Gq.

(vii) GNp has exponent p if p > 2 and exponent at most 4 if p = 2.

By Lemma 2.7 it will suffice to show that there exists a p-nilpotent maximal sub-
group M of G such that G = GNpM . In fact, let M be a maximal subgroup of G contain-
ing L. Then M = L(M ∩ GNp) and G = GNpM . It is clear that M ∩ GNp � G, and hence
M = (〈a〉(M ∩ GNp))Gq. Write P0 = 〈a〉(M ∩ GNp) and let M0 be a maximal subgroup
of M containing P0. Then M0 = P0(M0 ∩ Gq) and GNpM0 < G. By applying (i) we see
that GNpM0 is p-nilpotent. Therefore, M0 ∩ Gq � CG(Op(G)) � Op(G). It follows that
M0 ∩ Gq = 1 and so P0 is maximal in M . In this case, if P0 � M , then 〈a〉 = P0 ∩ L � L,
which is contrary to (vi). Hence, NM (P0) = P0 and M satisfies the hypotheses of the
theorem. The choice of G implies that M is p-nilpotent, as desired.

(viii) The exponent of GNp is not p.

Assume that GNp has exponent p. If GNp � Z(Gp), then, by the Frattini argument,

G = NG(GNp) = CG(GNp)NG(Gp).

Since NG(Gp) = Gp and Gp � CG(GNp), G = NG(GNp) = CG(GNp). Consequently,
GNpGq = GNp × Gq and Gq � G: a contradiction. Now we assume that GNp �� Z(Gp).

Let P1 be a minimal subgroup of GNp not contained in Z(Gp). Then, by the hypotheses,
there is a subgroup K1 of Gp such that Gp = P1K1 and P1 ∩ K1 = 1. In general, we may
find minimal subgroups P1, P2, . . . , Pm of GNp and also subgroups K1, K2, . . . , Km of Gp

such that Gp = PiKi, Pi ∩ Ki = 1, for each i and

1 �= GNp ∩ K1 ∩ · · · ∩ Km � Z(Gp).

Furthermore, we may assume that Pi � K1 ∩ · · · ∩ Ki−1, i = 2, 3, . . . , m. Henceforth,

K1 ∩ · · · ∩ Ki−1 = Pi(K1 ∩ · · · ∩ Ki)
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for i = 2, 3, . . . , m. Since Ki is maximal in Gp, GNp ∩ Ki is normal in Gp. We may assume
that Gp = GNp〈a〉. It is easy to see that (GNp ∩ Ki)〈a〉 is a complement of Pi in Gp,
so we may replace Ki by (GNp ∩ Ki)〈a〉 and so we may further assume that 〈a〉 � Ki

for each i. As Gp = GNp〈a〉, K1 ∩ · · · ∩ Km = (GNp ∩ K1 ∩ · · · ∩ Km)〈a〉. It follows from
GNp ∩ K1 ∩ · · · ∩ Km � Z(Gp) that K1 ∩ · · · ∩ Km is abelian.

Now we claim that p is even. If it is not the case, then, by [6, Theorem 6.5.2],
K1 ∩ · · · ∩ Km � Op(G). Consequently, Gp = GNp(K1 ∩ · · · ∩ Km) � Op(G): a contra-
diction. We proceed to consider the following two cases.

Case 1 (|〈a〉| = 2n, n > 1). Since K1∩· · ·∩Km is an abelian normal subgroup of G2

and a ∈ K1∩· · ·∩Km, Φ(K1∩· · ·∩Km) = 〈a2〉�G2 and so Ω1(〈a2〉) = 〈c〉 � Z(G2), where
c = a2n−1

. Again, c ∈ Z(L) by (vi), so c ∈ Z(G). Now we consider the factor group G/〈c〉.
For any element x of GN2 , since GN2 has exponent 2, by the hypotheses, G2 = 〈x〉K with
〈x〉 ∩ K � coreG2(〈x〉). In view of c ∈ Φ(G2) we see that G2/〈c〉 = (〈x〉〈c〉/〈c〉)(K/〈c〉)
and (〈x〉〈c〉/〈c〉) ∩ (K/〈c〉) � coreG2/〈c〉(〈x〉〈c〉/〈c〉). This shows that G/〈c〉 satisfies the
hypotheses of the theorem. The choice of G implies that G/〈c〉 is 2-nilpotent and there-
fore G is also 2-nilpotent: a contradiction.

Case 2 (|〈a〉| = 2). As G2 = GN2〈a〉 is not normal in G, we have 〈a〉 ∩ GN2 = 1.
On the other hand, since a acts irreducibly on Gq, a is an involutive automorphism
of Gq; consequently, Gq is cyclic of order q and ba = b−1, where Gq = 〈b〉. In this case,
GN2 is minimal normal in G. In fact, let N be a minimal normal subgroup of G con-
tained in GN2 and let H = NL. Since N〈a〉 is maximal but not normal in H, we
see that NH(N〈a〉) = N〈a〉. Noting that N〈a〉 ∩ HN2 � N , every minimal subgroup
of N〈a〉 ∩ HN2 is c-supplemented in NH(N〈a〉) = N〈a〉 by Lemma 2.1 (i). If further
H < G, then the choice of G implies that H is 2-nilpotent. Consequently, NGq = N × Gq

and so 1 �= N ∩ Z(G2) � Z(G). The choice of N implies that N is of order 2. In this
case, if N �� Φ(G2), then N has a complement to G2. By applying the theorem of
Gaschütz [9, Satz I.17.4], N also has a complement to G, say M . It follows that M

is a normal subgroup of G. Furthermore, G/M is cyclic of order 2 and so N � GN2 � M :
a contradiction. Hence, N � Φ(G2). Now we consider the factor group G/N . For any
minimal subgroup 〈x〉N/N of (G/N)N2 = GN2/N , by the hypotheses, G2 = 〈x〉K with
〈x〉 ∩ K � coreG2〈x〉, where x ∈ GN2 . Now we see that G2/N = (〈x〉N/N)(K/N) with
(〈x〉N/N) ∩ (K/N) � coreG2/N (〈x〉N/N), so 〈x〉N/N is c-supplemented in G2/N . This
yields at once that G/N is 2-nilpotent. Consequently, GN2 � N and so GN2 = N ,
which is contrary to H < G. Hence, GN2 must be a minimal normal subgroup
of G and hence it is an elementary abelian 2-group. Since GN2 ∩ NG(Gq) � NG(Gq),
we know that GN2 ∩ NG(Gq) = 1 and so b acts fixed-point-freely on GN2 . We may
assume that N1 = {1, c1, c2, . . . , cq} is a subgroup of GN2 with c1 ∈ Z(G2) and that
b = (c1, c2, . . . , cq) is a permutation of the set {c1, c2, . . . , cq}. Noting that ba = b−1 and
(c1)a−1ba = (c1)b−1

, (c2)a = cq. By using (bi)a = b−i and (c1)a−1bia = (c1)b−i

, we see that
(ci+1)a = cq−i+1 for i = 1, 2, . . . , (q + 1)/2. Hence, N1 is normalized by both GN2 and L,
and so N1 is normal in G. The minimal normality of GN2 implies that GN2 = N1. Thus,
we have Z(G2) = {1, c1}. Since GN2 , K1, . . . , Km are maximal subgroups of G2 and
1 �= GN2 ∩ K1 ∩ · · · ∩ Km � Z(G2), we get Φ(G2) � Z(G2). In view of the fact that G2
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is not abelian, Φ(G2) = G′
2 = Z(G2), namely G2 is an extra-special 2-group. By apply-

ing [14, Theorem 5.3.8], there exists some positive integer h such that |G2| = 22h+1.
Hence, |GN2 | = 22h. However, 22h − 1 = (2h + 1)(2h − 1) and q = 22h − 1, and hence
h = 1, q = 3 and |G2| = 23. Now we see that L ∼= S3 and GN2G3 ∼= A4. Therefore,
G ∼= S4, which is contrary to the hypothesis on G.

(ix) The final contradiction.

By (vii) and (viii) we see that p = 2 and GN2 has exponent 4. Now, using Lemma 2.7,
we see that Φ(GN2) is an elementary abelian 2-group. For any minimal subgroup P1 of
Φ(GN2), since P1 is c-supplemented in G2, we have P1 � G2 and therefore Φ(GN2) �
Z(G2). By the Frattini argument we further obtain

G = NG(Φ(GN2)) = CG(Φ(GN2))NG(G2).

As NG(G2) = G2 and G2 � CG(Φ(GN2)), we get Φ(GN2) � Z(G).
Next we consider the factor group G/Φ(GN2). Let x be an element of GN2 . Then x

is of order at most 4 and, by the hypotheses, G2 = 〈x〉K with 〈x〉 ∩ K � coreG2〈x〉.
But x2 ∈ Φ(GN2), so 〈x2〉K is a group. Now that |G2 : 〈x2〉K| � 2, Φ(GN2) � 〈x2〉K. It
follows that

G2/Φ(GN2) = (〈x〉Φ(GN2)/Φ(GN2))(〈x2〉K/Φ(GN2))

with

(〈x〉Φ(GN2)/Φ(GN2)) ∩ (〈x2〉K/Φ(GN2)) = (〈x〉 ∩ K)Φ(GN2)/Φ(GN2)

� coreG2/Φ(GN2 )(〈x〉Φ(GN2)/Φ(GN2)).

This means that G/Φ(GN2) satisfies the hypotheses of the theorem. By the choice of G,
G/Φ(GN2) is 2-nilpotent. Of course, G is 2-nilpotent, which is the final contradiction.
Our proof is now complete. �

Similarly, by using Lemma 2.9 in the first paragraph of claim (ix), we can also localize
the conditions in Theorem 3.3.

Theorem 3.7. Let G be a group such that G is S4-free. Also let Gp be a Sylow p-
subgroup of G and assume that Gp is quaternion-free, where p is a prime divisor of |G|
with (|G|, p − 1) = 1. Then G is p-nilpotent if and only if every minimal subgroup of
Gp ∩ GNp is c-supplemented in NG(Gp).

4. Applications

Thompson once proved that a group G is solvable if G has a nilpotent maximal sub-
group M of odd order [14, Theorem 10.4.2]. Later on, Deskins and Janko showed that
the result still holds if the Sylow 2-subgroup of M is allowed to have class at most 2 [9,
Satz IV.7.4]. As an application of our main results, we can give another generalization
of Thompson’s result.
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Theorem 4.1. Let M be a nilpotent maximal subgroup of a group G and let M2 be
a Sylow 2-subgroup of M . If one of the following conditions holds, then G is solvable.

(i) Every cyclic subgroup of M2 ∩ GN2 with order 2 or 4 is c-supplemented in G,

(ii) Every minimal subgroup of M2∩GN2 is c-supplemented in G and M2 is quaternion-
free.

(iii) G is S4-free and every cyclic subgroup of M2 ∩ GN2 with order 2 or 4 is c-supple-
mented in M2.

(iv) G is S4-free and quaternion-free and very minimal subgroup of M2 ∩ GN2 is c-sup-
plemented in M2.

Proof. Let G be a minimal counterexample and let M2′ be the normal 2-complement
of M . Then M2′ is normal in G by [15, Theorem 1]. It is clear that G/M2′ satisfies
the hypotheses of the theorem. The minimality of G implies that G/M2′ is solvable and
therefore G is solvable as M is nilpotent: a contradiction. Hence, M2′ = 1 and M2 is
maximal in G. If M2 is normal in G, then G/M2 is cyclic and, of course, G is solvable: a
contradiction. Therefore, M2 = NG(M2) and M2 is a Sylow 2-subgroup of G. By apply-
ing our main results we find that G is 2-nilpotent. Of course G is still solvable. This
contradiction shows that Theorem 4.1 holds. �

In the following, we shall extend Theorem 3.5 to formations. The result is an ‘iff’
version of Itô’s theorem on nilpotence in the formation universe.

Theorem 4.2. Let F be a saturated formation containing N . Then a group G ∈ F if
and only if every minimal subgroup of F ∗(GF ) lies in ZF (G) and every cyclic subgroup
of F ∗(GF ) with order 4 is c-supplemented in G.

Proof. Of course it is only the sufficiency of the condition that is in question.
Suppose that G is a minimal counterexample. Then GF �= 1, ZF (G) < G and

G/ZF (G) �∈ F . It follows that there is a maximal subgroup M of G containing ZF (G)
such that G/ coreG(M) �∈ F , otherwise we would have (G/ZF (G))/(Φ(G/ZF (G))) ∈ F
and then G/ZF (G) ∈ F as F is saturated: a contradiction. Furthermore, GF �� M

and G = GFM . Therefore, M/M ∩ GF ∼= G/GF ∈ F and MF � M ∩ GF . In
view of [4, § IV.6.10] we see that [GF , ZF (G)] = 1, and hence every minimal sub-
group of F ∗(GF ) lies in Z(GF ). Moreover, if |F ∗(GF )| is even, every cyclic subgroup
of F ∗(GF ) with order 4 is c-supplemented in GF . By Theorem 3.5, GF is nilpotent,
and hence F ∗(GF ) = GF � F (G) and G = F (G)M . Now, every G-chief factor
H/K below ZF (G) is actually an M -chief factor and AutM (H/K) is isomorphic to
AutG(H/K) as F (G) centralizes H/K. Hence, ZF (G) � ZF (M) and every minimal sub-
group of F ∗(GF ∩ M) = GF ∩ M lies in ZF (M). Moreover, every cyclic subgroup of
F ∗(MF ) = MF with order 4 is c-supplemented in M . By the minimality of G, M ∈ F ;
consequently, GF is a p-group for some prime p by Lemma 2.7 (ii). If GF has exponent
p, then GF = Ω1(GF ) � ZF (G) and so G/ZF (G) ∈ F : a contradiction. Hence, p = 2
and GF has exponent 4. At the same time, Ω1(GF ) � M , otherwise G = ZF (G)M
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and G/ZF (G) ∼= M/M ∩ ZF (G) ∈ F , which is also a contradiction. Hence, there is an
element x of GF with order 4 such that x �∈ M . By the hypotheses, there is a subgroup
L of G such that G = 〈x〉L and 〈x〉 ∩ L � coreG(〈x〉). Now we claim that 〈x〉 � G. If
this claim is false, then L < G. Let S be a maximal subgroup of G containing L. Since
x2 ∈ Φ(GF ) � Φ(G), x2 ∈ S and |G : S| = 2. Thus, S � G, and G/S is a 2-group.
Furthermore, x ∈ GF � S: a contradiction. Now we see that G = 〈x〉M and 〈x2〉 � M ,
so |G : M | = 2 and M � G. We can infer from the fact that G/M is a 2-group that
x ∈ GF � M , which is a final contradiction. This completes the proof. �

Using Theorems 3.6 and 3.7, we can localize Lemmas 2.5 and 2.6 as follows. They are
‘iff’ and ‘localized’ versions of Buckley’s theorem in the formation universe.

Theorem 4.3. Let F be a saturated formation containing U and let G be a group
such that G is S4-free. Then G ∈ F if and only if, for every prime divisor p of |G0| and
some Sylow p-subgroup P of G0, every cyclic subgroup of P ∩ (G0)Np with order p or 4
(if p = 2) is c-supplemented in NG(P ), where G0 = F ∗(GF ).

Proof. Only the ‘if’ part needs to be verified.
Let p be the smallest prime divisor of |G0|. Since every cyclic subgroup of P ∩ (G0)Np

with order p or 4 (if p = 2) is c-supplemented in NG0(P ), G0 is p-nilpotent. In partic-
ular, G0 is solvable by the odd-order theorem. Now, applying Lemma 2.4, we see that
F ∗(GF ) = F (GF ). Therefore, NG(P ) = G for any prime divisor p of |G0| and the result
follows by Lemma 2.5. This completes the proof. �

Similarly we can prove the following.

Theorem 4.4. Let F be a saturated formation containing U and let G be a group such
that G is S4-free and quaternion-free. Then G ∈ F if and only if, for every prime divisor p

of |G0| and some Sylow p-subgroup P of G0, every minimal subgroup of P ∩ (G0)Np is
c-supplemented in NG(P ), where G0 = F ∗(GF ).

Remark 4.5. The hypothesis that (|G|, p − 1) = 1 is always satisfied when p is the
smallest prime divisor of |G|. Hence, in this case the related theorems are always true.
However, this hypothesis is necessary. For example, if we let G = S3 be the symmetric
group of degree 3 and p = 3, then G is not 3-nilpotent.

Remark 4.6. The hypothesis that G is S4-free in the localized results is necessary.
For instance, if we let G = S4, and let G2 be a Sylow 2-subgroup of G, then G2 is a
dihedral group of order 8 and NG(G2) = G2. It is easy to see that every cyclic subgroup
of G2 ∩ GN2 with order 2 or 4 is c-supplemented in NG(G2) and G2 is quaternion-free,
but G is not 2-nilpotent.

Remark 4.7. The theorems in § 4 are not true for non-saturated formations. For
example, let F be the formation composed of all groups G such that GU is an elementary
abelian. Clearly, U ⊆ F , but F is not saturated. Set G = SL(2, 3), H = Z(G). Then
G/H is isomorphic to A4 and so G/H ∈ F . The other hypotheses in the theorems are
satisfied since H is of order 2, but G does not belong to F .
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Remark 4.8. The quaternion-free hypothesis in the related results is necessary. For
instance, if we take G = GL(2, 3), then we see that the elements

a =

(
0 1
1 1

)
, b =

(
2 0
2 1

)
, c =

(
1 0
1 1

)

generate GL(2, 3), and the following relations hold:

a8 = b2 = c3 = 1, b−1ab = a3, c−1a2c = ab, c−1abc = aba2, b−1cb = c2.

Also, we see that G2 = 〈a, b〉 is a Sylow 2-subgroup of GL(2, 3) and a semi-dihedral group
of order 16. Furthermore, GN2 = G′′ = 〈a2, ab〉 is a quaternion group of order 8. It is easy
to see that every minimal subgroup of G2 ∩ GN2 is contained in Z(G) = 〈a4〉, but G itself
is not 2-nilpotent.
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