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Abstract
We propose an abstract notion of a type theory to unify the semantics of various type theories including
Martin–Löf type theory, two-level type theory, and cubical type theory. We establish basic results in the
semantics of type theory: every type theory has a bi-initial model; every model of a type theory has its
internal language; the category of theories over a type theory is bi-equivalent to a full sub-2-category of the
2-category of models of the type theory.
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1. Introduction
One of the key steps in the semantics of type theory and logic is to establish a correspondence
between theories and models. Every theory generates a model called its syntactic model, and every
model has a theory called its internal language. Classical examples are simply typed λ-calculi
and cartesian closed categories (Lambek and Scott 1986); generalized algebraic theories and con-
textual categories (Cartmell 1978); extensional Martin–Löf theories and locally cartesian closed
categories (Seely 1984); first-order theories and hyperdoctrines (Seely 1983); higher order theories
and elementary toposes (Lambek and Scott 1986). Recently, homotopy type theory (TheUnivalent
Foundations Program 2013) is expected to provide an internal language for what should be called
“elementary (∞, 1)-toposes.” As a first step, Kapulkin and Szumiło (2019) showed that there is an
equivalence between intensional Martin–Löf theories and finitely complete (∞, 1)-categories.

As there exist correspondences between theories and models for almost all type theories and
logics, it is natural to ask if one can define a general notion of a type theory or logic and establish
correspondences between theories and models uniformly. First, we clarify what we informally
mean by “type theory,” “logic,” “theory,” and “model”. By a type theory or logic, we mean a formal
system for deriving judgments which is specified by a collection of inference rules. For example,
first-order logic is a logic and has inference rules for logical connectives and quantifiers such as
∧ and ∀. For a type theory or logic T, by a T-theory or theory over T we mean a set of constants
and axioms written in T, while by a model of T we mean a mathematical structure that admits an
interpretation of the inference rules of T. For example, a first-order theory is a theory over first-
order logic and consists of type constants, term constants, predicate constants, and axioms, while
a hyperdoctrine is a model of first-order logic and interprets, for instance, the universal quantifier
∀ as a right adjoint.

A successful syntactic approach to defining general type theories and logics is a logical frame-
work such as the Edinburgh Logical Framework (Harper et al. 1993) and Martin–Löf ’s logical
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framework (Nordström et al. 1990). A logical framework is a special kind of type theory such that
a variety of type theories are encoded by a theory over the logical framework which is also called
a signature. However, a logical framework often lacks a good notion of a model of a signature.
Models of a signature may not even form a category (Capriotti 2016).

In this paper, we propose an abstract notion of a type theory from a semantic point of view and
establish a correspondence between theories and models. Our notion of a type theory includes
a wide range of type theories: Martin–Löf type theory (Martin-Löf 1975); two-level type theory
(Altenkirch et al. 2016; Annenkov et al. 2023; Voevodsky 2013) ; cubical type theory (Cohen et al.
2018). Roughly speaking, our type theories are the type theories that admit semantics based on
categories with families (cwfs) (Dybjer 1996). Our contribution is to establish a correspondence
between theories and cwf-like models for a wide variety of type theories.

Our notion of a type theory is inspired by the notion of a natural model of homotopy type
theory given by Awodey (2018). He pointed out that a category with families is the same thing as
a representable map of presheaves1 and that type and term constructors are modeled by algebraic
operations on presheaves. Thus, a cwf-model of a type theory is a diagram in a presheaf category in
which somemaps are required to be representable. In other words, a cwf-model is a functor F from
a category T to a presheaf category such that some arrows in T are marked “representable” and F
sends representable arrows inT to representable maps of presheaves. The categoryT is considered
to encode derivations as arrows, and the functor F is considered to interpret derivations as maps
of presheaves. From this observation, we define a type theory to be a category with representable
arrows and a model of a type theory to be a functor to a presheaf category that sends representable
arrows to representable maps of presheaves.

For a type theory T in this sense, a T-theory is also defined as a functor from T but to the
category of sets. The intuition behind this definition is different from that of a model of T: for a
model of T, the values at arrows are relevant; for a T-theory, the values at objects are relevant.
Objects in T are domains and codomains of derivations and thought of as judgment forms such as
“is a type” and “is a term of a type” inMartin–Löf type theory (Nordström et al. 1990). We identify
aT-theory K with the assignment to each objectA ∈T of the set of closed derivations of judgment
form A that are derivable using inference rules of T and constants of K.

With these definitions of a type theory, a model of a type theory and a theory over a type
theory, we establish a correspondence between theories and models in a purely categorical way.
For a type theory T, the models of T form a 2-category ModT and the theories over T form a
category ThT. We construct a 2-functor LT :ModT → ThT (regarding ThT as a locally discrete
2-category) which assigns to each model of T its internal language. We have two main results. The
first main result is that the 2-functor LT has a left bi-adjoint MT (Theorem 7.20), which assigns
to each theory over T its syntactic model. It will turn out that the left bi-adjoint MT is locally an
equivalence and thus induces a bi-equivalence betweenThT and the bi-essential image ofMT. The
second main result is a characterization of the models of T that belong to the bi-essential image
ofMT. We introduce a notion of a democratic model of T, generalizing the notion of a democratic
cwf (Clairambault and Dybjer 2014), and show that the bi-essential image of MT is precisely the
class of democratic models. Consequently, we have a bi-equivalence between the locally discrete
2-category ThT and the full sub-2-category Moddem

T
⊂ModT consisting of democratic models

(Theorem 7.31).
A logical framework is still useful to construct concrete examples of our type theories. We

introduce a logical framework whose signatures can be identified with type theories in our sense.
This logical framework is semantically motivated and thus designed to have a nice 2-category of
models of a signature. At the same time, this logical framework is sufficiently expressive to encode
various type theories including Martin–Löf type theory, two-level type theory, and cubical type
theory as promised.
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1.1 Organization
In Section 3, we review natural models of type theories. Natural models are described in terms of
presheaves, but we will work with discrete fibrations instead of presheaves. In Section 4, we intro-
duce a notion of a category equipped with a class of representable arrows and call it a representable
map category. A type theory is then defined to be a (small) representable map category. We also
define the 2-categoryModT of models of a type theory T.

The rest of the paper splits into two branches independent of each other. One branch
(Section 5) is devoted to giving examples of our type theories. We introduce a logical framework
whose signatures can be identified with representable map categories. We construct a syntactic
representable map category from a signature of the logical framework and show that the syntactic
representable map category of a signature has an appropriate universal property (Theorem 5.17).
Using the universal property, we concretely describe the 2-category of models of a type theory
defined in the logical framework (Theorem 5.19).

On the other branch (Sections 6 and 7), we develop the semantics of our type theories. In
Section 6, we construct a bi-initial model of a type theory (Theorem 6.10). We also introduce the
notion of a democratic model here. In Section 7, we define the category ThT of theories over a
type theory T and show the main results. Using bi-initial models we construct the left bi-adjoint
of the internal language 2-functor LT :ModT → ThT (Theorem 7.20). We then show that this
bi-adjunction induces a bi-equivalenceModdem

T
� ThT (Theorem 7.31).

1.2 Related work
Bauer et al. (2020) propose a general definition of syntax and rules for dependent type theories.
Properties on sets of rules such as admissibility of substitution are proved at a high level of gener-
ality. Such properties are not in the scope of our semantic framework because we take substitution
for granted as part of the structure of a model of a type theory. The author’s PhD thesis (Uemura
2021, Chapter 4) contains a generalization of Bauer et al.’s approach as syntactic counterparts of
representable map categories.

Our style of the semantics of type theories is a variant of the functorial semantics initiated
by Lawvere (1963). The original work is the functorial semantics of algebraic theories in which
an algebraic theory is identified with a category of some sort and a model of an algebraic the-
ory is identified with a set-valued functor from that category. A noticeable difference is that a
model in our functorial semantics of type theories is a functor valued in presheaves over a cate-
gory instead of sets. The base category plays the role of the category of contexts and substitutions
and is essential to interpretation of context extensions.

One limitation of our framework is that nontrivial operations on contexts are not allowed.
Thus, type theories with “dual-contexts” (e.g. Licata et al. 2018; Pfenning and Davies 2001;
Shulman 2018) or modal type theories (e.g. Birkedal et al. 2020; Gratzer et al. 2021) are not cov-
ered by our definition. The framework of Licata et al. (2017) is suitable for defining simple type
theories with operations on contexts, but its dependently typed version (Licata et al. 2019) has not
been finished.

After the manuscript of this paper had been written, Hoang Kim Nguyen and the author have
developed a theory of an ∞-categorical generalization of type theories called ∞-type theories
(Nguyen and Uemura 2022). The results of Sections 6 and 7 are subsumed by analogous results
on ∞-type theories. Nevertheless, it is still worth presenting the 1-categorical case because all the
constructions in this paper are explicit, while the ∞-categorical proofs are nonconstructive in
the current foundations for ∞-category theory using quasicategories (Cisinski 2019; Lurie 2009).
Also, a logical framework for ∞-type theories has not yet been developed.
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2. Preliminaries
We fix terminology and notation on categories and 2-categories.

(1) We refer the reader to Kelly and Street (1974) for basic concepts of 2-category theory.
(2) In general we use prefix “2-” for strict 2-categorical notions and prefix “bi-” or “pseudo-”

for weak 2-categorical notions: the composition of 1-cells in a 2-category is associative up
to equality, while that in a bi-category is associative only up to coherent isomorphism;
a 2-functor preserves composition of 1-cells on the nose, while a pseudo-functor does
only up to coherent isomorphism. An exception is that pseudo-(co)limits satisfy strict
2-categorical universal properties.

(3) Let P be some property on a functor.We say a 2-functor F :A→B is locally P if the functor
F :A(A,A′)→B(FA, FA′) satisfies P for all objectsA,A′ ∈A. For example, F is locally fully
faithful if the functor F :A(A,A′)→B(FA, FA′) is fully faithful for all objects A,A′ ∈A.

(4) Let F :A→B be a 2-functor.We say F is bi-essentially surjective on objects if, for any object
B ∈B, there exists an object A ∈A such that FA is equivalent to B in B. We say F is a bi-
equivalence if it is bi-essentially surjective on objects, locally essentially surjective on objects
and locally fully faithful.

(5) A 2-functor F :A→B is said to have a left bi-adjoint if, for any object B ∈B, there exist
an object GB ∈A and a 1-cell ηB : B→ FGB such that, for any object A ∈A, the composite

A(GB,A) B(FGB, FA) B(B, FA)F η∗
B

is an equivalence of categories. The 1-cell ηB : B→ FGB is called the unit. For an object
A ∈A, we have a 1-cell εA :GFA→A called the counit such that FεA ◦ ηFA is isomorphic
to the identity on FA.

(6) One can show that if a 2-functor F has a left bi-adjoint and the unit and counit are
equivalences, then F is a bi-equivalence.

(7) We say a category C is contractible if the unique functor C → 1 into the terminal category
is an equivalence. In other words, C has some object and, for any objects A, B ∈ C , there
exists a unique arrow A→ B.

(8) An object A of a 2-category A is bi-initial if the category A(A, B) is contractible for any
object B ∈A.

(9) For a category C , we denote by |C | the largest groupoid contained in C , that is, the
subcategory of C consisting of all the objects and the isomorphisms.

(10) A cartesian category is a category that has finite limits. A cartesian functor between cartesian
categories is a functor that preserves finite limits.

(11) We fix a Grothendieck universe U . By “small” we mean “U -small”.
(12) Set denotes the category of small sets. Cat denotes the 2-category of small categories.
(13) For a functor K : C → Set and an arrow f :A→A′ in C , we denote by (f · −) the map

K(f ) :K(A)→K(A′). For a contravariant functor P : C op → Set, we denote by (− · f ) the
map P(f ) : P(A′)→ P(A) for an arrow f :A→A′ inC . We use similar notation for pseudo-
functors C → Cat.

3. Natural Models of Type Theory
We review natural models of dependent type theory (Awodey 2018). Natural models are described
in terms of presheaves and representable natural transformations, but we prefer to work with
discrete fibrations instead of presheaves.While presheaves are intuitive and convenient to describe
concrete examples of models of a type theory, discrete fibrations are convenient for the study of
the 2-category of models of a type theory. Concretely, a model of a type theory will simply be
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a Cat-valued 2-functor (Remark 4.7). This section is mostly devoted to rephrasing the theory of
natural models in terms of discrete fibrations. Proposition 3.21 might be new to the reader: the
pushforward along a representable map of discrete fibrations is given by the pullback along the
right adjoint of the representable map.

3.1 Discrete fibrations
Definition 3.1. A discrete fibration is a functor p :A→ S such that, for any object a ∈A and
arrow u : J → p(a) in S , there exists a unique arrow m : b→ a such that p(m)= u. Such a unique
arrow is denoted by ua : u∗a→ a or a · u→ a. When p :A→ S is a discrete fibration, we say A
is a discrete fibration over S and refer to the functor p as pA. For a discrete fibration A over S , a
discrete fibration B over T and a functor F : S → T , amap A→ B of discrete fibrations over F is
a functor f :A→ B such that pB ◦ f = F ◦ pA. A map of discrete fibrations over the identity functor
onS is called a map of discrete fibrations overS . For discrete fibrations A and B overS , we denote
by DFibS (A, B) the class of maps A→ B of discrete fibrations over S . For a small category S , we
will refer to the category of small discrete fibrations over S and their maps as DFibS .

We recall some basic properties on discrete fibrations.

Proposition 3.2. For a functor p :A→ S , the following are equivalent.

(1) p is a discrete fibration.
(2) The diagram

A→ S →

A S

p→

cod cod

p

is a pullback.
(3) For any object a ∈A, the functor A/a→ S /p(a) induced by p is an isomorphism.

Proof. The implications 2⇒ 3 and 3⇒ 1 are immediate. To see 1⇒ 2, suppose that p is a discrete
fibration. By definition, the functor A→ →A×S S → is bijective on objects. To see that this
functor is also fully faithful, let f1 : a1 → a′

1 and f2 : a2 → a′
2 be objects in A→, let g : a′

1 → a′
2 be

an arrow in A, let u : p(a1)→ p(a2) be an arrow in S , and suppose that p(f2) ◦ u= p(g) ◦ p(f1).
We have to show that there exists a unique arrow û : a1 → a2 in A such that p(̂u)= u and f2 ◦ û=
g ◦ f1. Such a ûmust be ua2 : u∗a2 → a2 by the condition p(̂u)= u, and it indeed satisfies f2 ◦ ua2 =
g ◦ f1 since both f2 ◦ ua2 and g ◦ f1 have the same codomain and are sent by p to p(f2) ◦ u= p(g) ◦
p(f1).

Proposition 3.3. A discrete fibration p :A→ S is faithful and reflects isomorphisms: an arrow
f : a→ a′ in A is an isomorphism whenever p(f ) is.

Proof. Let f , g : a→ a′ be arrows in A such that p(f )= p(g). Then both f and g must be equal
to p(f )a′ : p(f )∗a′ → a′, and thus p is faithful. A morphism f : a→ a′ in A is an isomorphism if
and only if it is the terminal object in A/a′. Therefore, by Item 3 of Proposition 3.2, p reflects
isomorphisms.

For a small category S , the category DFibS is equivalent to the category of presheaves over
S : for a presheaf P overS , its category of elements

∫
S P together with the projection

∫
S P → S

is a discrete fibration overS ; for a discrete fibrationA overS , we have a presheaf I →A(I) where
A(I) denotes the fiber p−1

A (I). A representable presheaf S (−, I) corresponds to the slice category
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S /I with domain functor S /I → S . We say a discrete fibration A over S is representable if it
is isomorphic to S /I for some I ∈ S . We call the functor S � I → S /I ∈DFibS the Yoneda
embedding. The Yoneda Lemma for discrete fibrations is formulated as follows.

Theorem 3.4. The Yoneda Lemma. LetS be a category and A a discrete fibration overS . For any
object I ∈ S , the map

DFibS (S /I,A) � f → f (idI) ∈A(I)
is bijective.

By the Yoneda Lemma, we identify an element a ∈A(I) with the corresponding mapS /I →A
of discrete fibrations over S . We also recall the following criterion for representability.

Proposition 3.5. Let S be a category and A a discrete fibration over S . Then A is representable
if and only if it has a terminal object. More precisely, for any object a ∈A, the corresponding map
S /pA(a)→A of discrete fibrations over S is an isomorphism if and only if a is the terminal object.

Discrete fibrations are stable under “base change”.

Proposition 3.6. Let pA :A→ S be a discrete fibration.

(1) If

A′ A

S ′ S

F

pA′ pA

F

is a pullback of categories, then pA′ :A′ → S ′ is a discrete fibration called the base change of
A along F and denoted by F∗A.

(2) If σ : F ⇒G : S ′ → S is a natural transformation and

A′
1 A

S ′ S

F

pA′
1

pA

F

A′
2 A

S ′ S

G

pA′
2

pA

G

are pullbacks, then there exists a unique pair (σ ∗
A , σA) consisting of a map σ ∗

A :A′
2 →A′

1 of
discrete fibrations over S ′ and a natural transformation σA : Fσ ∗

A ⇒G such that pAσA =
σpA′

2
.

A′
2

A′
1 A

S ′ S

G

σ ∗
A

pA′
2 F

σA

pA′
1

pA

F

=

A′
2

A

S ′ S

G

pA′
2

pA

F

G

σ

Proof. These are special cases of the base change of fibrations (e.g. Jacobs 1999, Lemma 1.5.1 and
Lemma 1.7.10).
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Corollary 3.7. The assignment S →DFibS determines a pseudo-functor from Cat to the 2-
category of large categories that is contravariant on both 1-cells and 2-cells. More precisely, a functor
F : S ′ → S is mapped to the base change functor F∗ :DFibS →DFibS ′ , and a natural transfor-
mation σ : F ⇒G : S ′ → S is mapped to the natural transformation σ ∗ :G∗ ⇒ F∗ determined by
Proposition 3.6.

Proof. Let DFib⊂ Cat→ denote the full sub-2-category spanned by the discrete fibrations.
Proposition 3.6 implies that the codomain functorDFib→ Cat is a so-called 2-fibration (Buckley
2014; Hermida 1999) fibred in categories. Then the claim is a special case of Buckley (2014,
Theorem 2.2.11).

3.2 Representable maps of discrete fibrations
Definition 3.8. Let f :A→ B be a map of discrete fibrations over a category S . We say f is
representable if it has a right adjoint as a functor A→ B.

Remark 3.9. Representable maps of presheaves are usually defined by the equivalent condition of
Corollary 3.13 below (The Stacks Project Authors 2019, Tag 0023). Definition 3.8 is a more natural
definition when working with discrete fibrations.

Remark 3.10. For a discrete fibration A over a category S , the following are not equivalent in
general.

(1) The discrete fibration A is representable.
(2) The unique map A→ S of discrete fibrations over S is representable.

It follows from Corollary 3.13 below that ifS has a terminal object then 2 is equivalent to that the
discrete fibration A over S is representable by, say, I and S has products with I. In particular, if
S has finite products then 1 and 2 are equivalent.

Proposition 3.11. For a category S , the identity maps of discrete fibrations over S are repre-
sentable and representable maps of discrete fibrations over S are closed under composition.

Proof. By definition.

Proposition 3.12. Let f :A→ B be a map of discrete fibrations over a categoryS . For objects b ∈ B
and a ∈A and an arrow m : fa→ b in B, the following are equivalent.

(1) m : fa→ b is the terminal object in the comma category (f ↓ b).
(2) The square

S /pA(a) A

S /pB(b) B

a

S /pB(m) f

b

is a pullback.

https://doi.org/10.1017/S0960129523000208 Published online by Cambridge University Press

https://stacks.math.columbia.edu/tag/0023
https://doi.org/10.1017/S0960129523000208


Mathematical Structures in Computer Science 141

Proof. By Item 3 of Proposition 3.2, Item 2 is equivalent to that the square

A/a A

B/b B

dom

f

dom

is a pullback, where the left functor sends (n : a′ → a) ∈A/a to (m ◦ fn : fa′ → b) ∈ B/b. This is
equivalent to that themapA/a � (n : a′ → a) → (m ◦ fn) : fa′ → b) ∈ f ∗(B/b) of discrete fibrations
over A is an isomorphism. By Proposition 3.5, this is equivalent to that m ◦ f (ida)=m is the
terminal object in f ∗(B/b)∼= (f ↓ b).

Corollary 3.13. Let f :A→ B be a map of discrete fibrations over a category S . Then f is rep-
resentable if and only if, for any object I ∈ S and element b : S /I → B, the pullback b∗A is a
representable discrete fibration over S . More precisely, the right adjoint δ : B→A and the counit ε
of f fit into the pullback square

S /pA(δ(b)) A

S /I B

δ(b)

S /pB(εb) f

b

for any element b : S /I → B.

Proof. Recall that the right adjoint and the counit of f assign the terminal object of (f ↓ b) to each
element b ∈ B. Then apply Proposition 3.12.

Definition 3.14. Let

A′ A

B′ B

g

f ′ f

h

be a square of categories that commutes up to isomorphism, and suppose that f and f ′ have right
adjoints δ and δ′, respectively. We say this square satisfies the Beck–Chevalley condition if the
canonical natural transformation gδ′ ⇒ δh defined by the following diagram is an isomorphism.

Here ε′ is the counit of the adjunction f ′ � δ′ and η is the unit of f � δ.

Corollary 3.15. Let

A′ A

B′ B

g

f ′ f

h

be a commutative square of discrete fibrations over a category S where f is representable. If this
square is a pullback, then f ′ is representable and this square satisfies the Beck–Chevalley condition.
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Proof. Let δ : B→A denote the right adjoint of f . Let b : S /I → B′ be an arbitrary element. Since
A′ ∼= h∗A, we have b∗A′ ∼= (hb)∗A. Thus, by Corollary 3.13, b∗A′ is representable by pA(δ(hb)). Let
δ′(b) denote the composite S /pA(δ(hb))∼= b∗A′ →A′. Then, again by Corollary 3.13, δ′ deter-
mines a right adjoint of f ′. By construction, we have gδ′ ∼= δh, and thus the Beck–Chevalley
condition is satisfied.

Remark 3.16. The converse of Corollary 3.15 also holds: if f and f ′ are representable and if the
square satisfies the Beck–Chevalley condition, then the square is a pullback. See Uemura (2021,
Proposition 3.1.15) for a proof.

3.3 Modeling type theory
A representable map f :A→ B of discrete fibrations over S is considered to be a model of
dependent type theory. We think of objects I ∈ S as contexts, elements b ∈ B(I) as types over
I and elements a ∈A(I) as terms over I. For a term a ∈A(I), the type of a is f (a) ∈ B(I). The
representability of f is used for modeling context extensions.

Definition 3.17. Let f :A→ B be a representable map of discrete fibrations over S . We denote by
δf : B→A the right adjoint to f and by εf the counit of the adjunction f � δf . For an object I ∈ S

and an element b ∈ B(I), we write {b}f for the object pA(δfb) ∈ S . Let π
f
b = pB(ε

f
b) : {b}f → I. We

call {b}f the context extension of b with respect to f . By Corollary 3.13, these fit into the pullback

S /{b}f A

S /I B.

δ
f
b

π
f
b

f

b

Syntactically, the context extension B(I) � b → {b}f ∈ S models the rule for extending a
context by a type

I � b Type
I, x : b� ctx (x is a fresh variable)

and π
f
b corresponds to the context morphism (I, x : b)→ I and δ

f
b corresponds to the term I, x :

b� x : b.
We demonstrate how to model type constructors using representable maps of discrete fibra-

tions. First, we recall the notions of a pushforward and a polynomial functor.

Definition 3.18. Let C be a cartesian category. We say an arrow f :A→ B in C is exponentiable if
the pullback functor f ∗ : C /B→ C /A has a right adjoint. When f is exponentiable, the right adjoint
of f ∗ is called the pushforward or dependent product along f and denoted by f∗.
Definition 3.19. For an exponentiable arrow f :A→ B in a cartesian category C , we define a
functor Pf : C → C called the polynomial functor associated with f to be the composite

C C /A C /B C ,A∗ f∗ B!

where A∗ is the pullback functor along A→ 1 and B! is the forgetful functor.
Since the category of discrete fibrations over a category S is equivalent to the category of

presheaves over S , the pushforward along an arbitrary map exists. But the pushforward along a
representable map has a simple description.
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Lemma 3.20. Let

B A

S

f

q p

be a commutative triangle of categories and suppose that p is a discrete fibration. Then f is a discrete
fibration if and only if q is. Consequently, the isomorphism (Cat/S )/A∼= Cat/A restricts to an
isomorphism (DFibS )/A∼=DFibA.

Proof. By Item 2 of Proposition 3.2, this follows from the cancellation property of pullback
squares.

Proposition 3.21. Let f :A→ B be a representable map of discrete fibrations over a category S .
The pushforward along f is given by the base change along the right adjoint δf : B→A to f .

Proof. By Corollary 3.7, the adjunction f � δf is mapped to the adjunction

DFibA

� DFibB.

(δf )∗

f ∗

By Lemma 3.20, f ∗ is isomorphic to the pullback functor (DFibS )/B→ (DFibS )/A, and thus
(δf )∗ is the pushforward along f .

Let f :A→ B be a representable map of discrete fibrations over a category S . Consider the
discrete fibration Pf B over S . It is the pullback

Pf B A×S B

B A
δf

by the construction of f∗ given in Proposition 3.21. Hence, an element of Pf B over I ∈ S is a pair
(b1, b2) of elements b1 ∈ B(I) and b2 ∈ B({b1}f ). One can think of b2 as a type family over b1. Then
a map g : Pf B→ B is thought of as a type constructor that takes types b1 ∈ B(I) and b2 ∈ B({b1}f )
and returns a type g(b1, b2) ∈ B(I). Syntactically, g is a type constructor of the form

I � b1 Type I, x : b1 � b2 Type
I � g(b1, x.b2) Type

where the expression x.b2 means that the variable x is bound. Similarly, a map h : Pf A→A is a
term constructor that takes a type b1 ∈ B(I) and a term a2 ∈A({b1}f ) and returns a term h(b1, a2) ∈
A(I). For example, dependent products are modeled by maps � : Pf B→ B and abs : Pf A→A of
discrete fibrations over S such that the square

Pf A A

Pf B B

abs

Pf (f ) f

�
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commutes and is a pullback (Awodey 2018, Section 2.1). The commutativity means that abs has
a typing rule

I � b1 Type I, x : b1 � b2 Type I, x : b1 � a2 : b2
I � abs(b1, x.a2) : �(b1, x.b2)

and being a pullback means that abs induces a bijection between the set of terms I, x : b1 � a2 : b2
and the set of terms I � a : �(b1, x.b2). We refer the reader to Awodey (2018), Newstead (2018)
for further examples.

4. Type Theories and Their Models
In this section, we introduce notions of a type theory and amodel of a type theory.

We have seen in Section 3 that the vocabulary for describing models of type theories is:

• representable maps;
• finite limits;
• pushforwards along representable maps

in categories of discrete fibrations. The idea is to identify a type theory with a category equipped
with structures of representable arrows, finite limits, and pushforwards along representable arrows
so that a model of a type theory is just a structure-preserving functor into a category of discrete
fibrations.

Definition 4.1. Let C be a cartesian category. A stable class of exponentiable arrows in C is a class
R of arrows in C satisfying the following conditions:

• identity arrows are in R and R are closed under composition;
• arrows in R are stable under pullbacks: if

A′ A

B′ B

f ′ f

is a pullback square and f is in R, then f ′ is in R;
• arrows in R are exponentiable.

Definition 4.2. A representable map category consists of the following data:

• a cartesian category C ;
• a stable class of exponentiable arrows of C . Arrows in this class are called representable arrows
or representable maps.

A representable map functor C → D between representable map categories is a functor F : C →
D preserving finite limits, representable arrows and pushforwards along representable arrows. For
representable map categories C and D , we write Rep(C ,D) for the category of representable map
functors C → D and natural transformations. We will refer to the 2-category of small representable
map categories, representable map functors, and natural transformations asRep.

Example 4.3. For a small categoryS , the categoryDFibS is a representable map category where
the representable maps are defined in Definition 3.8.
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Definition 4.4. A type theory is a small representable map category.

Definition 4.5. Let T be a type theory. Amodel of T consists of the following data:

• a small category S called the base category with a terminal object 1;
• a representable map functor T→DFibS denoted by A →AS .

Definition 4.6. Let S be a model of a type theory T. For a representable arrow f :A→ B in T

and an object b ∈ BS , we simply write {b}f for the context extension {b}fS of b with respect to
fS :AS → BS and use similar notations for π

fS
b and δ

fS
b .

Remark 4.7. Since a model S of a type theory T sends the terminal object 1 ∈T to the terminal
discrete fibration which is the identity functor idS : S → S , the base category S is a redundant
piece of data. We may define a model of T as a 2-functor S :T→ Cat satisfying, among other
things, that S (A)→ S (1) is a discrete fibration for any A ∈T. Thus, the 2-category of models
of T (Definition 4.14) will simply be a sub-2-category of the 2-category of Cat-valued 2-functors.
This clear description of the 2-category of models is the reason why we prefer discrete fibrations
to presheaves.

We will give interesting examples of representable map categories in Sections 4.1 and 5. Here
we introduce a couple of constructions of representable map categories.

Example 4.8. Let C be a representable map category. For an object A ∈ C , the slice category
C /A carries a structure of a representable map category: an arrow in C /A is representable if it
is a representable arrow in C . For an arrow f :A→ B, the pullback functor f ∗ : C /B→ C /A is a
representable map functor. Thus, A → C /A is part of a pseudo-functor C op →Rep when C is
small.

Example 4.9. It is known that exponentiable arrows in a cartesian category C are stable under
pullbacks (Niefield 1982, Corollary 1.4). By definition, all the identity arrows are exponentiable
and exponentiable arrows are closed under composition. Hence, for any class E of exponentiable
arrows in C , we can take the smallest stable class of exponentiable arrows containing E, that is,
the class of composites of pullbacks of arrows from E.

We introduce some notations and terminology for future use.

Definition 4.10. Let C be a representable map category. We denote by (C →)r the full subcategory
of C → consisting of the representable arrows. For an object A ∈ C , we denote by (C /A)r the full
subcategory of C /A consisting of the representable arrows B→A.

Definition 4.11. Let C0 be a representable map category. A representable map category under
C0 is a representable map category C equipped with a representable map functor IC : C0 → C .
A representable map functor C → D under C0 between representable map categories under C0
is a pair (F, σ ) consisting of a representable map functor F : C → D and a natural isomorphism
σ : FIC ∼= ID . A natural transformation (F, σ )⇒ (G, τ ) under C0 between representable map func-
tors under C0 is a natural transformation ϕ : F ⇒G such that τ ◦ ϕIC = σ . For representable map
categoriesC andD underC0, we denote by (C0/Rep)(C ,D) the category of representable map func-
tors under C0 and natural transformations under C0. For a representable map category C under C0
and a representable map functor F : C0 → D , we say F extends to a representable map functor
G : C → D when G is part of a representable map functor C → D under C0.
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4.1 Example: Basic dependent type theory
Most examples of type theories in the sense of Definition 4.4 are constructed using a logical frame-
work introduced in Section 5. Here we only give a simple example which naturally arises from the
syntax of dependent type theory.

LetG denote the opposite of the category of finite generalized algebraic theories (Cartmell 1978)
and interpretations between them.We do not need the precise definition of a generalized algebraic
theory, but remember that a generalized algebraic theory consists of sets of type constants, term
constants, type equations and term equations. G has finite limits, or equivalently G

op has finite
colimits: coproducts of generalized algebraic theories are given by disjoint union; coequalizers of
generalized algebraic theories are obtained by adjoining equations.

Let Un be the generalized algebraic theory consisting of type constants (�A0), (x0 :A0 �
A1), . . . , (x0 :A0, . . . , xn−1 :An−1(x0, . . . , xn−2)�An) and let En be the extension of Un by a
term constant (x0 :A0, . . . , xn−1 :An−1(x0, . . . , xn−2)� an :An(x0, . . . , xn−1)). We denote by ∂n :
Un → En and ftn :Un−1 →Un the obvious inclusions (in G

op), where we define U−1 to be the
empty theory.We also regard ∂n and ftn as arrows ∂n : En →Un and ftn :Un →Un−1, respectively,
inG. The categoryG is “freely generated by an exponentiable arrow” in the following sense.

Theorem 4.12. (Uemura 2022). (1) The arrow ∂0 : E0 →U0 inG is exponentiable.
(2) For any cartesian category C and exponentiable arrow f :A→ B in C , there exists a unique,

up to unique isomorphism, cartesian functor F :G→ C that sends ∂0 to f and pushforwards
along ∂0 to those along f .

(3) P∂0Un ∼=Un+1 and P∂0En ∼= En+1.

By Item 1 of Theorem 4.12, we regard G as a representable map category with the smallest
stable class of exponentiable arrows containing ∂0 : E0 →U0 and call it the basic dependent type
theory. Item 2 of Theorem 4.12 can be rephrased as follows.

Corollary 4.13. For any representable map category C and representable arrow f :A→ B in C ,
there exists a unique, up to unique isomorphism, representable map functor F :G→ C that sends
∂0 to f .

By this universal property, a model S of the type theoryG consists of the following data:

• a category S with a terminal object;
• a representable map ∂S

0 : ES
0 →US

0 of discrete fibrations over S .

This is precisely a natural model (category with families).

4.2 The 2-category of models of a type theory
The models of a type theory are part of a 2-category.

Definition 4.14. Let S and T be models of a type theory T. A morphism S → T of models of
T consists of the following data:

• a functor F : S → T between the base categories;
• for each object A ∈T, a map FA :AS →AT of discrete fibrations over F : S → T

satisfying the following conditions:

• the functor F : S → T preserves terminal objects;
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• A → FA is natural: for any arrow f :A→ B in T, the diagram

AS AT

BS BT

FA

fS fT

FB

(1)

commutes;
• for any representable arrow f :A→ B in T, the naturality square (1) satisfies the Beck-
Chevalley condition.

A 2-morphism σ : F ⇒G : S → T of morphisms of models of T is a natural transformation σ :
F ⇒G between the underlying functors such that, for any object A ∈T, there exists a (necessarily
unique) natural transformation σA : FA ⇒GA such that p(AT )σA = σp(AS ).

AS AT

S T

FA

GA

σA

p(AS ) p(AT )

G

=
AS AT

S T

FA

p(AS ) p(AT )F

G

σ

We denote byModT the 2-category of models of T and their morphisms and 2-morphisms.

Remark 4.15. The Beck–Chevalley condition for a morphism F : S → T of models of a type
theory T forces F to preserve context extensions up to isomorphism: for a representable arrow
f :A→ B in T and an element b ∈ BS (I), the canonical arrow F{b}f → {FBb}f is an isomorphism.
As a special case, it will turn out in Example 5.20 that morphisms of models of G correspond
to pseudo cwf-morphisms of cwfs (Clairambault and Dybjer 2014) and, equivalently, to weak
morphisms of natural models (Newstead 2018).

4.3 Another definition of morphisms of models
Results in this subsection are required only in proofs of some propositions, so the reader may skip
this subsection until needed.

Amodel of a type theory is defined to be a representable map functor into a category of discrete
fibrations. In this subsection, we see that morphisms and 2-morphisms of models of a type theory
are also regarded as representable map functors into suitable representable map categories.

Definition 4.16. Let I be a small 2-category and S : I→ Cat a 2-functor. We define a category
(DFibI)S as follows:

• the objects are the 2-functors A : I→ Cat equipped with a 2-natural transformation pA :A⇒
S such that each component (pA)i :Ai→ S i is a discrete fibration;

• the maps A→ B are the 2-natural transformations f :A⇒ B such that pBf = pA.

We say a map f :A→ B in (DFibI)S is representable if every component fi :Ai→ Bi is a
representable map of discrete fibrations over S i and, for any 1-cell u : i→ i′ in I, the square

Ai Ai′

Bi Bi′

Au

fi fi′

Bu

satisfies the Beck–Chevalley condition.
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Proposition 4.17. Representable maps in (DFibI)S are stable under pullbacks.

Proof. Let

A′ A

B′ B

g

f ′ f

h

be a pullback in (DFibI)S and suppose that f is representable. One can check that pullbacks in
(DFibI)S are componentwise, which means that

A′i Ai

B′i Bi

gi

f ′i fi

hi

is a pullback inDFibS i for every i ∈ I. By Corollary 3.15 each f ′i is representable. To see the Beck–
Chevalley condition, let u : i→ i′ be a 1-cell in I. Consider the following commutative diagram.

The front square satisfies the Beck–Chevalley condition by assumption. The left and right
squares satisfy the Beck-Chevalley condition by Corollary 3.15. The functor gi′ :A′i′ →Ai′ is a
discrete fibration by Lemma 3.20 and thus reflects isomorphisms by Proposition 3.3. Hence, it
follows that the back square satisfies the Beck–Chevalley condition.

Let f :A→ B be a representable map in (DFibI)S . Although the right adjoint δf : B→A to f
is only a pseudo-natural transformation, we can define the base change (δf )∗C → B of C along δf

for a map C →A in (DFibI)S as follows:

• for an object i ∈ I, we define ((δf )∗C)i= (δfi )∗(Ci);
• for a 1-cell u : i→ i′ in I, we have a natural isomorphism

Bi Ai

Bi′ Ai′.

δ
f
i

Bu Au

δ
f
i′

∼=
δ
f
u
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Using Proposition 3.6, we have a unique pair ((δfu)∗(Cu), δ
f
u) consisting of a map (δfu)∗(Cu) :

(δfi )∗(Ci)→ (δfi′)
∗(Ci′) of discrete fibrations over Bu and a natural isomorphism

(δfi )∗(Ci) Ci

(δfi′)
∗(Ci′) Ci′

(δfu)∗(Cu) Cu
∼=
δ
f
u

over δ
f
u. We define ((δf )∗C)u= (δfu)∗(Cu);

• the 2-cell part is defined in a natural way.

Then we can prove the following in the same way as Proposition 3.21.

Proposition 4.18. Let f :A→ B be a representable map in (DFibI)S . Then the pushforward along
f exists and is given by the base change along the right adjoint δf : B→A to f .

Corollary 4.19. (1) For a 2-functor S : I→ Cat, the category (DFibI)S is a representable
map category where the representable maps are defined in Definition 4.16.

(2) For 2-functors S : I→ Cat and F : I′ → I, the precomposition with F induces a repre-
sentable map functor F∗ : (DFibI)S → (DFibI′)S F.

We consider the case that I is the category {0→ 1}. In this case, we write (DFib→)F for
(DFibI)F . Let F : S → T be a functor between small categories. By definition, an object of
(DFib→)F is a commutative square

A B

S T

G

pA pB

F

of categories such that pA and pB are small discrete fibrations, and a map (A, B,G)→ (A′, B′,G′)
is a square

A B

A′ B′

G

f g

G′

of categories such that f and g are maps of discrete fibrations over S and T , respectively. Such
a square is representable if f and g are representable maps of discrete fibrations and the square
satisfies the Beck–Chevalley condition. There are representable map functors dom : (DFib→)F →
DFibS and cod : (DFib→)F →DFibT induced by the inclusions {0} → {0→ 1} and {1} → {0→
1} respectively.
Proposition 4.20. Let T be a type theory, S and T models of T, and F : S → T be a functor
between the base categories preserving terminal objects. There is a bijection between the following
sets:

(1) the set of morphisms of models S → T whose underlying functor is F;
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(2) the set of representable map functors F(−) :T→ (DFib→)F such that domF(−) = (−)S and
codF(−) = (−)T .

(DFib→)F

T DFibS ×DFibT

(dom,cod)F(−)

((−)S ,(−)T )

Proof. By the definition of representable maps in (DFib→)F , Item 2 is just another way of describ-
ing a morphism of models of T. Note that, because (dom, cod) reflects isomorphisms, F(−)
automatically preserves finite limits and pushforwards along representable maps whenever it
preserves representable maps.

Remark 4.21. Note that the functor (dom, cod) : (DFib→)F →DFibS ×DFibT is a discrete
isofibration: for any object G ∈ (DFib→)F and isomorphisms f : domG∼=A in DFibS and g :
codG∼= B inDFibT , there exists a unique isomorphism h :G∼=H inDFibS such that domh= f
and codh= g. Thus, to extend the functor F to a morphism S → T of models of T, it suffices
to give a representable map functor F′

(−) :T→ (DFib→)F and natural isomorphisms domF′
(−)

∼=
(−)S and codF′

(−)
∼= (−)T .

Consider the 2-category � consisting of two 0-cells 0 and 1, two 1-cells a, b : 0→ 1, and one
2-cell a⇒ b.

0 1.
a

b

For a natural transformation σ : F ⇒G : S → T , we have the representable map functors dom :
(DFib�)σ → (DFib→)F and cod : (DFib�)σ → (DFib→)G induced by the inclusions {0 a→ 1} →
� and {0 b→ 1} → �, respectively.

Proposition 4.22. Let T be a type theory, S and T models of T, F,G : S → T morphism of
models of T, and σ : F ⇒G a natural transformation between the underlying functors. Then σ

(necessarily uniquely) extends to a 2-morphism F ⇒G of models of T if and only if there exists
a (necessarily unique) representable map functor σ̃ :T→ (DFib�)σ such that domσ̃ = F(−) and
codσ̃ =G(−).

(DFib�)σ

T (DFib→)F ×(DFibS ×DFibT ) (DFib→)G

(dom,cod)σ̃

(F(−),G(−))

Proof. This is a rephrasing of the definition of a 2-morphism of models of T.

5. Logical Framework
This section is devoted to giving examples of representable map categories using a logical frame-
work. We will not use the results of this section in the rest of the paper other than for giving
examples.
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Our logical framework is classified as a semantic logical framework and close to Martin-Löf ’s
logical framework (Nordström et al. 1990). Another kind of logical framework is a syntactic log-
ical framework whose typical example is the Edinburgh Logical Framework (Harper et al. 1993).
A syntactic logical framework does not have equality types so that terms exactly correspond to
derivations in the object language. A semantic logical framework has equality types and terms
correspond to semantic derivations, that is, derivations modulo equality in the object language.
Since the subject of this paper is the semantics of type theory, a semantic logical framework is our
choice.

We design our logical framework to give syntactic counterparts of representable map cate-
gories. Since representable map categories have finite limits, the logical framework is a dependent
type theory with equality types a= b. Corresponding to representable arrows, the logical frame-
work has a notion of a representable type. We write A :� when A is a type and A : ∗ when A is a
representable type. ∗ is considered to be a subsort of� in the sense that the rule

 �A : ∗
 �A :�

is derivable. Pushforwards along representable arrows correspond to dependent product types of
the form

 �A : ∗ , x :A� B :�
 � (x :A)→ B :� .

The way to encode a type theory in our framework is to declare symbols. Each symbol α must
have its context  and sort s. When α is a symbol of a sort s over a context , we write α :  ⇒ s.
So an encoding of a type theory is a well-ordered set of symbols like

α0 : 0 ⇒ s0
α1 : 1 ⇒ s1
α2 : 2 ⇒ s2

...

which we call a signature. i must be a context defined only using symbols (αj)j<i. The sort si can
be �, ∗ or a type A over i defined only using (αj)j<i. An equation is encoded to a symbol of the
form α :  ⇒ a= b, but we just write _ :  ⇒ a= bwhen the name α of the equation is irrelevant.

We give a formal definition of our logical framework in Section 5.1. In Section 5.2, we give sev-
eral examples of encodings of type theories in our logical framework. In Section 5.3, the syntactic
representable map category of a signature is constructed and shown to satisfy an appropriate uni-
versal property. We further describe the 2-category of models of the syntactic representable map
category in Section 5.4.

5.1 Formal definition
We assume that we are given an infinite set of variables x, y, . . . and sufficiently many symbols
α, β , . . ..

Definition 5.1. Preterms are defined by the following grammar:

A, B, a, b ::= ∗ |� | α(a1, . . . , an) | x |
�(A, x.B) | abs(A, x.b) | app(A, x.B, b, a) |
Eq(A, a, b) | refla
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The expression x.B means that the variable x is considered to be bound. We always identify α-
equivalent preterms. We use the following notations:

• ((x :A)→ B) :≡ �(A, x.B)
• (λ(x :A).b) :≡ abs(A, x.b)
• (a=A b) :≡ Eq(A, a, b)

We write ba for app(A, x.B, b, a) when the terms A and x.B are clear from the context. The
type annotations in λ(x :A).b and a=A b are often omitted, and we simply write λx.b and a= b
respectively. For preterms a, b and a variable x, the substitution a[b/x] is defined in the ordinary
way.

Definition 5.2. A pre-context is a finite sequence of the form

(x1 :A1, . . . , xn :An)

with pre-terms A1, . . . ,An and distinct variables x1, . . . , xn. We denote precontexts by ,�, . . ..
We write x ∈  when  = (x1 :A1, . . . , xn :An) and x= xi for some i.

Definition 5.3. A presignature � consists of a well-ordered set |�| of symbols and a function �

that assigns to each symbol in |�| a pair consisting of a precontext and a preterm. We write

� = (α0 : 0 ⇒A0, α1 : 1 ⇒A1, α2 : 2 ⇒A2, . . . )

to mean that |�| = {α0 < α1 < α2 < . . . } and the value �(αi) is (i,Ai) for each αi ∈ |�|. We
write (α :  ⇒A) ∈ � when α ∈ |�| and �(α)= (,A). For a symbol α ∈ |�|, we write �|α for
the restriction of � to {β ∈ |�| | β < α}.
Definition 5.4. A judgment is one of the following forms.

� � sig � |  � ctx � |  � a :A � |  � a≡ b :A

For precontexts  and � = (y1 : B1, . . . , ym : Bm) and a finite sequence of preterms f = (f1, . . . , fm),
we write � | f :  → � for the finite sequence of judgments

((� |  � f1 : B1), . . . , (� |  � fm : Bm[f1/y1, . . . , fm−1/ym−1])).

For such � | f :  → �, we write [f ] for the substitution operator [f1/y1, . . . , fm/ym]. We define the
set of legal judgments to be the smallest set of judgments closed under the rules listed in Fig. 1. Here
we omit the obvious rules for ≡ to be a congruence relation.

Definition 5.5. A signature is a presignature � such that � � sig is a legal judgment. A con-
text over � is a precontext  such that � |  � ctx is a legal judgment. For contexts  and �

over �, a context morphism  → � is a finite sequence of preterms f such that � | f :  → �

is a finite sequence of legal judgments. Assume � = (y1 : B1, . . . , ym : Bm). We say context mor-
phisms f , g :  → � are equivalent, written f ≡ g, if (� |  � f1 ≡ g1 : B1), . . . , (� |  � fm ≡ gm :
Bm[f1/y1, . . . , fm−1/ym−1]) are legal judgments. A type over a context  over a signature� is a pre-
termA such that� |  �A :� is a legal judgment.We say a type A is representable if� |  �A : ∗ is
a legal judgment. For a type A, a term of A is a preterm a such that � |  � a :A is a legal judgment.

Our logical framework has the usual weakening and substitution properties. The following
weakening on signatures might be nonstandard since signatures can be infinite.
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Figure 1. Legal judgments.

Proposition 5.6. Weakening on signatures. Let �,�′,�′′ be presignatures with pairwise disjoint
domains. If �,�′ � sig and �,�′′ � J are legal judgments, then so is �,�′,�′′ � J , where � �
J denotes a judgment of the form � � sig, � |  � ctx, � |  � a :A or � |  � a≡ b :A.
Proof. By induction on the derivation of �,�′′ � J .
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5.2 Coding type theories
We give several examples of encodings of type theories in our logical framework.

Example 5.7. We define �DTT to be the following signature.

Type : ()⇒�
el : (A : Type)⇒ ∗

(el stands for element.) We call �DTT the signature for basic dependent type theory. We will see
that �DTT represents the basic dependent type theoryG (Example 5.18).

We consider extending �DTT by adjoining type constructors.

Example 5.8. �-types in Type are encoded as follows.

� : (A : Type, B : el(A)→ Type)⇒ Type

abs : (A : Type, B : el(A)→ Type, b : (x : el(A))→ el(Bx))⇒ el(�(A, B))
app : (A : Type, B : el(A)→ Type, b : el(�(A, B)), a : el(A))⇒ el(Ba)
_ : (A : Type, B : el(A)→ Type, b : (x : el(A))→ el(Bx), a : el(A))

⇒ app(A, B, abs(A, B, b), a)= ba
_ : (A : Type, B : el(A)→ Type, b : el(�(A, B)), b′ : el(�(A, B)),

p : (x : el(A))→ app(A, B, b, x)= app(A, B, b′, x))⇒ b= b′

Example 5.9. Identity types in Type are encoded as follows.

Id : (A : Type, a : el(A), b : el(A))⇒ Type

refl : (A : Type, a : el(A))⇒ el(Id(A, a, a))
indId : (A : Type, a : el(A), b : el(A), p : el(Id(A, a, b)), C : (x : el(A), y : el(Id(A, a, x)))→ Type,

c : el(C(a, refl(A, a))))⇒ el(C(b, p))
_ : (A : Type, a : el(A), C : (x : el(A), y : el(Id(A, a, x)))→ Type, c : el(C(a, refl(A, a))))

⇒ indId(A, a, a, refl(A, a), C, c)= c

Equality types are encoded as identity types with the following equations called equality reflection.

_ : (A : Type, a : el(A), b : el(A), p : el(Id(A, a, b)))⇒ a= b
_ : (A : Type, a : el(A), p : el(Id(A, a, a)))⇒ p= refl(A, a)

Example 5.10. A universe (à la Tarski) is encoded by the following symbols.

U : ()⇒ Type

elU : (A : el(U))⇒ Type

For nested universes U0 : U1, we add two pairs of such symbols (U0, elU0 ) and (U1, elU1 ) and a
“name” of U0 in U1:

u0 : ()⇒ el(U1)
_ : ()⇒ elU1 (u0)= U0.

https://doi.org/10.1017/S0960129523000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000208


Mathematical Structures in Computer Science 155

Since our logical framework can have an infinitely long signature, one can encode infinitely many
universes

U0 : U1 : U2 : . . . .
One can add dependent products on U in two ways. In both ways, we add a type constructor

�U : (A : el(U), B : el(elU(A))→ el(U))⇒ el(U).
One way is to add an equation

_ : (A : el(U), B : el(elU(A))→ el(U))⇒ elU(�U(A, B))= �(elU(A), λx.elU(Bx))
assuming Type has dependent products. The other way is to add symbols and equations in a
similar manner to dependent products in Type. In the latter way, the equation

A : el(U), B : el(elU(A))→ el(U)� elU(�U(A, B))≡ �(elU(A), λx.elU(Bx)) : Type
need not hold, but one can show that elU(�U(A, B)) and �(elU(A), λx.elU(Bx)) are isomorphic in
an appropriate sense.

Example 5.11. Various two-level type theories (Altenkirch et al. 2016; Annenkov et al. 2023;
Voevodsky 2013) have a sort of fibrant types as well as a sort of types. We extend �DTT by the
symbols

Fib : ()⇒�
ι : (A : Fib)⇒ Type

and several type constructors. For readability, we think of Fib as a subtype of Type and often omit ι.
Amajor difference between Type and Fib is that identity types IdType(A, a, b) in Type satisfy axiom
K or equality reflection but identity types IdFib(A, a, b) in Fib do not. The induction principle for
identity types in Fib only works for families of Fib:

indIdFib : (A : Fib, a : el(A), b : el(A), p : el(IdFib(A, a, b)),
C : (x : el(A), y : el(IdFib(A, a, x)))→ Fib, c : el(C(a, refl(A, a))))⇒ el(C(b, p)).

Example 5.12. To encode propositional logic, we begin with the following signature.

Prop : ()⇒�
true : (P : Prop)⇒ ∗
mono : (P : Prop, x : true(P), y : true(P))⇒ x= y

The equationmono implies that true(P) has at most one element. One may extend this signature
by adding logical connectives like�,⊥,∧,∨ and⊃. For example,∧ and∨ are encoded as follows.

∧ : (P : Prop,Q : Prop)⇒ Prop

in∧ : (P : Prop,Q : Prop, p : true(P), q : true(Q))⇒ true(∧(P,Q))
out∧,1 : (P : Prop,Q : Prop, r : true(∧(P,Q)))⇒ true(P)
out∧,2 : (P : Prop,Q : Prop, r : true(∧(P,Q)))⇒ true(Q)
∨ : (P : Prop,Q : Prop)⇒ Prop

in∨,1 : (P : Prop,Q : Prop, p : true(P))⇒ true(∨(P,Q))
in∨,2 : (P : Prop,Q : Prop, q : true(Q))⇒ true(∨(P,Q))
out∨ : (P : Prop,Q : Prop, r : true(∨(P,Q)), R : Prop, p : true(P)→ true(R),

q : true(Q)→ true(R))⇒ true(R)
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Example 5.13. To encode predicate logic, we extend the union of the signatures for basic depen-
dent type theory and propositional logic by adding equality and quantifiers. For example, equality
and ∀ are encoded as follows.

eq : (A : Type, a : el(A), b : el(B))⇒ Prop

ineq : (A : Type, a : el(A))⇒ true(eq(A, a, a))
outeq : (A : Type, a : el(A), b : el(B), p : eq(A, a, b),Q : (x : el(A))→ Prop, q : true(Qa))⇒ true(Qb)
∀ : (A : Type, P : el(A)→ Prop)⇒ Prop

in∀ : (A : Type, P : el(A)→ Prop, p : (x : el(A))→ true(Px))⇒ true(∀(A, P))
out∀ : (A : Type, P : el(A)→ Prop, p : true(∀(A, P)), a : el(A))⇒ true(Pa)

In this encoding, a term can depend on the validity of a proposition, allowing us to write a partial
function. For example, a term of type (x : el(A))→ true(Px)→ el(B) is a partial function from A
to B defined on those a : el(A) satisfying P, where A : Type, B : Type and P : el(A)→ Prop. One
may add the following symbols so that ⊥ becomes the initial object and P ∨Q the pushout of P
and Q under P ∧Q.

elimType
⊥ : (p : true(⊥),A : Type)⇒ el(A)

_ : (p : true(⊥),A : Type, a : el(A), b : el(A))⇒ a= b
elimType

∨ : (P : Prop,Q : Prop, r : true(∨(P,Q)),A : Type, a : true(P)→ el(A),
b : true(Q)→ el(A), s : (p : true(P), q : true(Q))→ ap= bq)⇒ el(A)

_ : (P : Prop,Q : Prop, p : true(P),A : Type, a : el(A), b : true(Q)→ el(A),
s : (q : true(Q))→ a= bq)⇒ elimType

∨ (P,Q, in∨,1(P,Q, p),A, λx.a, b, λxy.sy)= a
_ : (P : Prop,Q : Prop, q : true(Q),A : Type, a : true(P)→ el(A), b : el(A),

s : (p : true(P))→ ap= b)⇒ elimType
∨ (P,Q, in∨,2(P,Q, q),A, a, λy.b, λxy.sx)= b

_ : (P : Prop,Q : Prop, r : true(∨(P,Q)),A : Type, a : el(A), b : el(A), s : true(P)→ a= b,
t : true(Q)→ a= b)⇒ a= b

Example 5.14. Cubical type theory (Cohen et al. 2018) is an extension of dependent type theory
with a formal interval and cofibrant predicates. So we extend the signature for basic dependent
type theory with

I : ()⇒ ∗
Cof : ()⇒�
true : (P : Cof)⇒ ∗
_ : (P : Cof, x : true(P), y : true(P))⇒ x= y.

I carries a de Morgan algebra structure (0, 1, �, �, (− )′), and Cof has logical connectives
�,∧,⊥,∨ and equalities and quantifiers of the form

eq0 : (i : I)⇒ Cof

eq1 : (i : I)⇒ Cof

∀I : (P : I→ Cof)⇒ Cof.
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Moreover, eq0 and eq1 satisfy equality reflection, elimination operators elimType
⊥ and elimType

∨ are
added as in Example 5.13, and Cof satisfies propositional extensionality:

_ : (P : Cof,Q : Cof, f : true(P)→ true(Q), g : true(Q)→ true(P))⇒ P =Q.

The composition operation is encoded as follows.

comp : (A : I→ Type, P : Cof, a : true(P)→ (i : I)→ el(Ai), a0 : el(A0),
q : (x : true(P))→ ax0= a0)⇒ el(A1)

_ : (A : I→ Type, P : Cof, p : true(P), a : (i : I)→ el(Ai))⇒ comp(A, P, λxi.ai, a0, λx.refla0)= a1

Note that the type of comp is essentially the same as the type of composition structures in the
axiomatic approach to the semantics of cubical type theory given by Orton and Pitts (2018). The
gluing operation is encoded as follows, assuming that Type has enough type constructors to define
the type Equiv(A, B) : Type of equivalences between types A : Type and B : Type.
Glue : (P : Cof,A : true(P)→ Type, B : Type, f : (x : true(P))→ el(Equiv(Ax, B)))⇒ Type

_ : (A : Type, B : Type, f : el(Equiv(A, B)))⇒ Glue(�, λ_.A, B, λ_.f )=A
unglue : (P : Cof,A : true(P)→ Type, B : Type, f : (x : true(P))→ el(Equiv(Ax, B)),

a : el(Glue(P,A, B, f )))⇒ el(B)
_ : (A : Type, B : Type, f : el(Equiv(A, B)), a :A)⇒ unglue(�, λ_.A, B, λ_.f , a)= fa
glue : (P : Cof,A : true(P)→ Type, B : Type, f : (x : true(P))→ el(Equiv(Ax, B)),

a : (x : true(P))→ el(Ax), b : el(B), p : (x : true(P))→ fxa= b)⇒ el(Glue(P,A, B, f ))
_ : (A : Type, B : Type, f : el(Equiv(A, B)), a :A)⇒ glue(�, λ_.A, B, λ_.f , λ_.a, a, λ_.refl_)= a
_ : (P : Cof,A : true(P)→ Type, B : Type, f : (x : true(P))→ el(Equiv(Ax, B)),

a : el(Glue(P,A, B, f )))⇒ glue(P,A, B, f , λ_.a, unglue(P,A, B, f , a), λ_.refl_)= a
_ : (P : Cof,A : true(P)→ Type, B : Type, f : (x : true(P))→ el(Equiv(Ax, B)),

a : (x : true(P))→ el(Ax), b : el(B), p : (x : true(P))→ fxa= b)
⇒ unglue(P,A, B, f , glue(P,A, B, f , a, b, p))= b

5.3 Syntactic representable map categories
Definition 5.15. For a signature �, we define a small category R(�) as follows.

• The objects are the contexts over �.
• The morphisms  → � are the equivalence classes of context morphisms  → �.
• The identity on  = (x1 :A1, . . . , xn :An) is represented by the context morphism (x1, . . . , xn).
• For morphisms f : 1 → 2 and g : 2 → 3, the composition g ◦ f is represented by the
substitution g[f ].

A generating representable morphism in R(�) is a morphism isomorphic to the projection

(, x :A)→ 

with � |  �A : ∗. A representable morphism in R(�) is a composite of generating representable
morphisms.
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It is well-known that the syntactic category of a type theory with dependent product types and
equality types is locally cartesian closed (Seely 1984). The same argument shows that R(�) is a
representable map category.

Proposition 5.16. Let � be a signature.

(1) R(�) is a representable map category where the representable maps are defined in
Definition 5.15.

(2) For any α ∈ |�|, the functor R(�|α)→R(�) induced by the weakening on signatures is a
representable map functor.

We callR(�) the syntactic representable map category of�. It is the representable map category
“freely generated by �” formulated by the following universal property.

Theorem 5.17. Let C be a representable map category and � a signature.

(1) If |�| is unbounded, then the functor |Rep(R(�),C )| → limα∈|�| |Rep(R(�|α ,C ))|
induced by the weakening functors R(�|α)→R(�) is an equivalence.

(2) If � = (�′, α :  ⇒�), then for any representable map functor F :R(�′)→ C , the functor
|(R(�′)/Rep)(R(�),C )| �G →Gα ∈ |C /F| is an equivalence.

(3) If � = (�′, α :  ⇒ ∗), then for any representable map functor F :R(�′)→ C , the functor
|(R(�′)/Rep)(R(�),C )| �G →Gα ∈ |(C /F)r| is an equivalence.

(4) If � = (�′, α :  ⇒A) with �′ |  �A :�, then for any representable map functor F :
R(�′)→ C , the functor |(R(�′)/Rep)(R(�),C )| �G →Gα ∈ C /F(1, FA) is an equiv-
alence.

Example 5.18. Consider the signature �DTT = (Type : ()⇒�, el : (A : Type)⇒ ∗) from
Example 5.7. By Theorem 5.17, for a representable map category C , the groupoid
|Rep(R(�DTT),C )| is equivalent to the following:

• the objects are the representable arrows f :A→ B in C ;
• the arrows are isomorphisms in C →.

Hence, R(�DTT) has the same universal property as G (Corollary 4.13), and thus we have an
equivalence R(�DTT)�G in the 2-categoryRep.

The idea of the proof of Theorem 5.17 is the same as in the interpretation of extensional
Marin-Löf type theory in locally cartesian closed categories (Seely 1984). The main difficulty is
the coherence problem: categorical structures often satisfy equations up to isomorphism, but equa-
tions in type theory are strict. A solution to the coherence problem is the splitting technique of
Hofmann (1995) which replaces a categorical structure by another structure satisfying equations
strictly. We adapt the splitting technique for representable map categories.

Sketch of the proof of Theorem 5.17. 1. If � = (), then R(�) contains only the empty context,
which is the terminal object, and thus Rep(R(�),C ) is contractible. If � is nonempty and
unbounded, then the set of objects of R(�) is the union of the sets of objects of R(�|α) indexed
over α ∈ |�| and, for objects ,� ∈R(�|α), the hom-set R(�)(,�) is the filtered colimit
colimβ∈|�|

α<β

R(�|β)(,�). From this description one can see that the functor |Rep(R(�),C )| →
limα∈|�| |Rep(R(�|α),C )| is in fact an isomorphism.
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The others are proved using standard techniques of the semantics of dependent type theory.
Consider Item 2 which claims that, given a representable map functor F :R(�′)→ C and an
object A ∈ C /F, one can extend F to a representable map functorG :R(�)→ C such thatGα ∼=
A and such an extension is unique up to unique isomorphism. To avoid coherence problems, we
use Hofmann’s splitting technique (Hofmann 1995). Since C has pullbacks, we have the pseudo-
functor C /− : C op → Cat. Hofmann’s splitting gives a 2-functor U : C op → Cat and a pseudo-
natural equivalence U → (C /−). We define a 2-functor R : C op → Cat by the pullback

R (C /−)r

U (C /−).

�

�
We interpret a context � |  � ctx as an object G ∈ C , a type � |  � B :� as an object GB ∈

U(G), a representable type � |  � B : ∗ as an object GB ∈ R(G) and a term � |  � b : B as a
section of GB→G. Hofmann (1995) constructs sufficient structures on U to interpret equality
types and dependent product types, when C is locally cartesian closed. The same construction
works for a representable map categoryC to interpret dependent product types over representable
types in U and R. To interpret a symbol from �′, apply F and choose a corresponding element
of U via the pseudo-natural equivalence U � (C /−). To interpret α, choose an element of U(F)
corresponding to A ∈ C /F. This completes the interpretation of the logical framework in U.
Applying the pseudo-natural equivalence U � (C /−), we have a representable map functor G :
R(�)→ C . All the choices made in this construction are unique up to unique isomorphism, so G
is unique up to unique isomorphism.

5.4 Models of syntactic representable map categories
Given a signature �, we concretely describe the 2-categoryModR(�) (Theorem 5.19).

Suppose � is a signature of the form � = (�′, α :  ⇒�). We define a 2-category (DFib ↓
(−)) as follows:

• the objects are the pairs (S , αS ) consisting of S ∈ModR(�′) and αS ∈DFibS /S ;
• the morphisms (S , αS )→ (T , αT ) are the pairs (F, Fα) consisting of a morphism F : S →

T of models ofR(�′) and a map Fα : αS → αT of discrete fibrations over F : S → T such
that the diagram

αS αT

S T

Fα

F

(2)

commutes;
• the 2-morphisms (F, Fα)⇒ (G,Gα) : (S , αS )→ (T , αT ) are the 2-morphisms σ : F ⇒G
in ModR(�′) such that there exists a (necessarily unique) natural transformation σα : Fα ⇒
Gα over σ .

There is the obvious 2-functorModR(�) → (DFib ↓ (−)).
When � = (�′, α :  ⇒ ∗), the 2-functor ModR(�) → (DFib ↓ (−)) factors through the

locally full sub-2-category (DFib ↓ (−))r ⊂ (DFib ↓ (−)) consisting of those objects (S , αS )
such that αS → S is a representable map of discrete fibrations over S and those morphisms
(F, Fα) : (S , αS )→ (T , αT ) such that Diagram 2 satisfies the Beck–Chevalley condition.
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Suppose� = (�′, α :  ⇒A) with�′ |  �A :�. We define a 2-category Sect(A(−)) as follows:

• the objects are the pairs (S , αS ) consisting of a model S of R(�′) and a section αS of the
map AS → S of discrete fibrations over S ;

• the morphisms (S , αS )→ (T , αT ) are the morphisms F : S → T of models of R(�′)
such that the diagram

S T

AS AT

F

αS αT

FA

commutes;
• the 2-morphisms F ⇒G are the 2-morphisms of models of R(�′).

There is the obvious 2-functorModR(�′) → Sect(A(−)).

Theorem 5.19. Let � be a signature.

(1) If � = (), then the 2-functor ModR(�) → Cat1 is a bi-equivalence, where Cat1 denotes the
2-category of small categories with terminal objects.

(2) If |�| is nonempty and unbounded, then the induced 2-functor ModR(�) →
limα∈|�| ModR(�|α) is a bi-equivalence.

(3) If � = (�′, α :  ⇒�), then the 2-functorModR(�) → (DFib ↓ (−)) is a bi-equivalence.
(4) If � = (�′, α :  ⇒ ∗), then the 2-functorModR(�) → (DFib ↓ (−))r is a bi-equivalence.
(5) If � = (�′, α :  ⇒A) with �′ |  �A :�, then the 2-functor ModR(�) → Sect(A(−)) is a

bi-equivalence.

Sketch of the proof. We use the fact that (2-)morphisms of models of a type theory are also rep-
resentable map functors (Section 4.3). Then we can apply Theorem 5.17 for building not only
models of R(�) but also (2-)morphisms of models of R(�).

Note that the 2-functors in the statement are locally faithful. It remains to show that those 2-
functors are bi-essentially surjective on objects, locally essentially surjective on objects and locally
full. We only demonstrate the statement 3. The others can be proved using the same idea.

To show that the 2-functor ModR(�) → (DFib ↓ (−)) is bi-essentially surjective on objects,
let S be a model of R(�′) and p :A→ S a map of small discrete fibrations over S . By
Theorem 5.17, the representablemap functor (− )S :R(�′)→DFibS extends to a representable
map functor (− )S̃ :R(�)→DFibS such that αS̃ ∼=A. This defines a model S̃ of R(�) such
that the restriction of S̃ to R(�′) is isomorphic to S and αS̃ ∼=A.

To show that the 2-functor ModR(�) → (DFib ↓ (−)) is locally essentially surjective on
objects, letS ,T be models ofR(�), F : S → T a morphism of models ofR(�′), andG : αS →
αT a map of discrete fibrations such that the diagram

αS αT

S T

G

F

commutes. Then F(−) is a representable map functorR(�′)→ (DFib→)F by Proposition 4.20 and
G is an object of (DFib→)F/F . By Theorem 5.17, the representable map functor F(−) :R(�′)→
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(DFib→)F extends to a representable map functor F̃(−) :R(�)→ (DFib→)F such that F̃α
∼=G.

From domF̃α
∼= αS and cod̃Fα

∼= αT , we have domF̃(−) ∼= (−)S and cod̃F(−) ∼= (−)T again by
Theorem 5.17. By Proposition 4.20 and Remark 4.21, F̃(−) defines a morphismS → T of models
of R(�) such that the restriction of F̃(−) to R(�′) is F and F̃α

∼=G.
The local fullness is similarly proved using the representable map category (DFib�)σ instead

of (DFib→)F and Proposition 4.22.

Example 5.20. Consider the signature �DTT = (Type : ()⇒�, el : (A : Type)⇒ ∗) from
Example 5.7. By Theorem 5.19, the 2-category ModR(�DTT ) is bi-equivalent to the 2-category
defined as follows:

• the objects are the triples (S , TypeS , elS ) consisting of a small category S with a terminal
object, a small discrete fibration TypeS over S and a representable map elS → TypeS of
small discrete fibrations over S , that is, the categories with families or the natural models;

• the morphismsS → T are the triples (F, FType, Fel) consisting of a functor F : S → T pre-
serving terminal objects and maps FType : TypeS → TypeT and Fel : elS → elT of discrete
fibrations over F such that the diagram

elS elT

TypeS TypeT

Fel

FType

commutes and satisfies the Beck–Chevalley condition, that is, the pseudo cwf-morphisms;
• the 2-morphisms F ⇒G : S → T are the natural transformations σ : F ⇒G between the
underlying functors such that there exist (necessarily unique) natural transformations σType :
FType ⇒GType and σel : Fel ⇒Gel over σ .

Our choice of 2-morphisms of categories with families is quite natural, but there is another choice:
the indexed natural transformations between the associated indexed categories (Clairambault and
Dybjer 2014). A difference is that a collection of types is regarded as a set in our definition while
it is regarded as a category in the other definition.

Example 5.21. Wedescribe core components of amodelS of cubical type theory (Example 5.14).
In addition to the natural model structure (S , TypeS , elS ), it is equipped with a discrete fibra-
tion I

S over S such that the map I
S → S is representable and a representable map trueS →

CofS of discrete fibrations over S that is also a monomorphism.

trueS elS

CofS I
S TypeS

S

By Remark 3.10, IS is regarded as an object of the category S with which S has products. The
cubical set model of cubical type theory (Cohen et al. 2018, Section 8) is turned into this structure.
S is the category of cubical sets: TypeS is the discrete fibration of fibrant families of cubical sets;
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elS is the discrete fibration of sections of fibrant families of cubical sets; IS is the formal interval;
in this example, CofS is also representable and constructed from what is called the face lattice;
there is a map CofS → � to the subobject classifier � in S , and the map trueS → CofS is the
monomorphism classified by it.

6. Bi-initial Models
In this section and the next section, we develop the semantics of type theory with the definitions
of a type theory and a model of a type theory introduced in Section 4. The first step is to construct
a bi-initial model of a type theory.

6.1 Democratic models
Usually a bi-initial model of a type theory is a syntactic one and has a special property: every object
is represented by a finite sequence of types. We introduce a class of models of a type theory satis-
fying this property, generalizing the notion of a democratic category with families (Clairambault
and Dybjer 2014).

Definition 6.1. Let S be a model of a type theory T. We inductively define contextual objects in
S as follows:

(1) the terminal object 1 ∈ S is a contextual object;
(2) if I ∈ S is a contextual object, f :A→ B is a representable arrow in T and b ∈ BS (I) is an

element over I, then the context extension {b}f ∈ S is a contextual object.

Note that the terminal object 1 and the context extension {b}f are determined only up to unique
isomorphism. We include all the terminal objects and all the context extensions in the class of con-
textual objects so that the class of contextual objects is closed under isomorphisms. We say S is
democratic if every object of S is contextual and denote by Moddem

T
the full sub-2-category of

ModT consisting of the democratic models.

Proposition 6.2. Anymorphism F : S → T of models of a type theoryT carries contextual objects
in S to contextual objects in T .

Proof. Immediate from the definition.

Democratic models have the following interesting property.

Proposition 6.3. Let T be a type theory, S a democratic model of T and T an arbitrary model of
T. Let F,G : S → T be morphisms of models of T.

(1) There is at most one 2-morphism F ⇒G.
(2) Every 2-morphism F ⇒G is invertible.

Consequently,ModT(S ,T ) is equivalent to a discrete category.

Proof. Let σ : F ⇒G be a 2-morphism. Each component σI : FI →GI is uniquely determined and
invertible by induction on the contextual object I.

• σ1 : F1→G1 must be the unique arrow into the terminal object G1. Since F1 is also the
terminal object, σ1 is invertible.
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• Let I ∈ S be an object, f :A→ B a representable arrow in T and b ∈ BS (I) an element. Since
G({b}f )∼= {GBb}f , the component σ{b}f : F({b}f )→G({b}f ) is uniquely determined by σI and
by the property that the diagram

F({b}f ) G({b}f )

FI GI

σ{b}f

F(π f
b ) G(π f

b )

σI

commutes and GA(δ
f
b) · σ{b}f = FA(δ

f
b). If σI is invertible, then so is σ{b}f : the inverse σ−1

{b}f :
G({b}f )→ F({b}f ) is the unique arrow such that F(π f

b ) ◦ σ−1
{b}f = σ−1

I ◦G(π f
b ) and FA(δ

f
b) ·

σ−1
{b}f =GA(δ

f
b).

An easy way to construct a democratic model is to throw away non-contextual objects from an
arbitrary model.

Definition 6.4. Let S be a model of a type theory T. We define a model S ♥ of T as follows.

• The base category S ♥ is the full subcategory of S consisting of the contextual objects.
• For an object A ∈T, we define AS ♥ to be the pullback

AS ♥ AS

S ♥ S .

S ♥ is indeed a model of T because S ♥ is closed under context extensions. We call S ♥ the heart of
S .

Let S be a model of a type theory T. By definition S ♥ is a democratic model of T and the
obvious inclusionS ♥ → S is amorphism ofmodels ofT. The heartS ♥ is the largest democratic
model contained in S in the following sense.

Proposition 6.5. Let S be a model of a type theory T. The inclusion S ♥ → S induces an
isomorphism of categories

ModT(T ,S ♥)∼=ModT(T ,S )

for any democratic model T of T.

Proof. By Proposition 6.2, every morphismT → S from a democratic modelT factors through
S ♥.

6.2 The bi-initial model of a type theory
The bi-initial model of a type theory T is obtained from the Yoneda embedding T→DFibT.

Lemma 6.6. Let S be a small cartesian category.

(1) The Yoneda embedding S →DFibS preserves finite limits.
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(2) For any arrow u : I → J in S , the map of discrete fibrations u : S /I → S /J is representable
with right adjoint u∗ : S /J → S /I.

(3) The Yoneda embedding preserves existing pushforwards.

Proof. The first two claims are obvious. To prove the third, let u : I → J and v : J →K be arrows
in S and suppose that the pushforward v∗I ∈ S /K exists. By definition, for any arrow w : L→K
in S , we have a bijection S /K(L, v∗I)∼= S /J(v∗L, I). This means that we have a pullback

S /v∗I S /I

S /K S /J

u

v∗

and thus S /v∗I is the pushforward of u : S /I → S /J along v : S /J → S /K by
Proposition 3.21.

Definition 6.7. Let T be a type theory. The Yoneda embedding T/(−) :T→DFibT is a repre-
sentable map functor by Lemma 6.6, so we have a model (T,T/(−)) of T. We denote by I (T) the
heart of (T,T/(−)) and call it the bi-initial model of T due to Theorem 6.10 below.

We describe the modelI (T) in more detail. For an object I ∈T, a representable arrow f :A→
B in T and an object (b : I → B) ∈T/B, the context extension {b}f in the model (T,T/(−)) is the
pullback in T

{b}f A

I B.

δ
f
b

π
f
b

f

b

Thus, the base category I (T) is the full subcategory of T consisting of those objects A ∈T such
that the unique arrow A→ 1 is representable. For an object A ∈T, the discrete fibration AI (T) is
the comma category I (T)/A defined by the pullback

I (T)/A T/A

I (T) T.

dom

Example 6.8. Suppose that T contains a representable arrow ∂ : E→U and that every repre-
sentable arrow in T is a composite of pullbacks of ∂ . For example, the basic dependent type theory
G and its slices G/A satisfy this assumption. Then the base category of I (T) is equivalent to the
following:

• the objects are the finite sequences (A1, . . . ,An) of arrows Ai : |Ai−1| →U where |A0| = 1
and |Ai| =A∗

i E for i≥ 1;
• the arrows (A1, . . . ,An)→ (B1, . . . , Bm) are the arrows |An| → |Bm| in T.

When we think of U as the object of types and E as the object of elements, an object in I (T) is
a finite sequence of types, that is, a context. For an object I ∈ I (T), elements of UI (T)(I) and
EI (T)(I) are types and elements, respectively, indexed over the context I. Hence, the bi-initial
model I (T) generalizes the usual syntactic models of dependent type theories.
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Example 6.9. Let� be a signature of the logical framework (Section 5) and take the syntactic rep-
resentable map categoryR(�) (Section 5.3). The base category ofI (R(�)) is the full subcategory
ofR(�) spanned by those contexts (x1 :A1, . . . , xn :An) such thatA1, . . . ,An are all representable
types. When � is �DTT (Example 5.7) or its extension by type constructors, all of Ai’s are of the
form el(B) for B : Type. When � is the signature for cubical type theory (Example 5.14), Ai’s are
either el(B) for B : Type, I or true(P) for P : Cof.

Theorem 6.10. For any type theory T, the model I (T) is a bi-initial object of ModT. That is, the
categoryModT(I (T),S ) is contractible for any model S of T.

Proof. We show that there exists a morphism I (T)→ S and that morphisms I (T)→ S are
unique up to unique isomorphism.

We first show the existence of a morphism I (T)→ S . For every object I ∈ I (T), the unique
map IS → S of discrete fibrations over S is representable. In particular, the discrete fibration
IS ∈DFibS is representable because the categoryS has a terminal object. Hence, the restriction
of (−)S :T→DFibS to I (T) factors, up to natural isomorphism, as a functor F : I (T)→ S
followed by the Yoneda embedding S →DFibS . For objects A ∈T and I ∈ I (T) and an arrow

a : I →A, we define FA(a) ∈AS (FI) to be S /FI ∼= IS aS−→AS , yielding a map FA : I (T)/A→
AS of discrete fibrations over F : I (T)→ S .

Clearly, F : I (T)→ S preserves terminal objects and A → FA is natural. To see the Beck–
Chevalley condition, let f :A→ B be a representable arrow inT.We have to show that the diagram

I (T)/A AS

I (T)/B BS

FA

f fS

FB

satisfies the Beck–Chevalley condition. It suffices to show that the composite of squares

I (T)/b∗A I (T)/A AS

I (T)/I I (T)/B BS

f ∗b

b∗f

FA

f fS

b FB

(3)

satisfies the Beck–Chevalley condition for all objects (b : I → B) ∈ I (T)/B. By the definition of
F(−), Diagram 3 is equal to the following composite of squares.

I (T)/b∗A S /F(b∗A) (b∗A)S AS

I (T)/I S /FI IS BS

F

b∗f

∼=

F(b∗f )

(f ∗b)S

(b∗f )S fS

F ∼= bS

(4)

To show that Diagram 4 satisfies the Beck–Chevalley condition for all (b : I → B) ∈ I (T)/B,
it suffices to check that the canonical natural transformation (f ∗b)S F(b∗f )∗ ⇒ δf bS F induced
by Diagram 4 is invertible at idI ∈ I (T)/I for all (b : I → B) ∈ I (T)/B. This is straightfor-
ward because the right-most square of Diagram 4 is a pullback in DFibS and thus satisfies the
Beck–Chevalley condition by Corollary 3.15.

To show the uniqueness of morphisms I (T)→ S , let G : I (T)→ S be another morphism
of models of T. By Proposition 6.3, it suffices to show that there exists a 2-morphism F ⇒G. Let
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I ∈ I (T) be an object and let u : I → 1 denote the unique arrow to the terminal object. By the
Beck–Chevalley condition for the square

I (T)/I IS

I (T) S ,

GI

u! uS

G

we have the natural isomorphism GIu∗ ∼= δuG : I (T)→ IS . Since δuG preserves terminal
objects, GI(idI)∼=GI(u∗1) is the terminal object. Thus, by Proposition 3.5, we have S /GI ∼= IS .
For an arrow a : I →A in T with I ∈ I (T), the diagram

I (T)/I S /GI

IS

I (T)/A AS

G

GI
a

∼=

aS

GA

commutes. This means that GA(a) ∈AS (GI) is given by the composite S /GI ∼= IS aS−→AS .
Hence, G has the same definition as F, and thus F ∼=G.

7. Internal Languages
In this section, we establish a correspondence between theories and models for every type theory
T. We begin with a definition of a theory over T or T-theory.

Definition 7.1. Let T be a type theory. A theory over T or T-theory is a cartesian functor K :T→
Set. We denote by ThT the category of T-theories and their maps, that is, natural transformations.

For a T-theory K, we think of K(A) for an object A ∈T as a set of closed derivations of judg-
ment form A. While K respects finite limits, representable maps, and pushforward along them
are disregarded. Indeed, for a representable map A→ 1 and an arbitrary object B in T, not all
set-theoretic functions K(A)→K(B) should be closed derivations of the exponential A⇒ B.

Example 7.2. Consider the basic dependent type theory G (Section 4.1). The theory of locally
presentable categories (Adámek and Rosický 1994) shows thatThG is equivalent to the category of
generalized algebraic theories and interpretations between them; see also (Uemura 2022, Remark
3.26). Concretely, for aG-theory K :G→ Set, the corresponding generalized algebraic theory�K
can be described as follows:

• a closed type (�A) in �K corresponds to an element of K(U0). Thus, K(U0) is the set of
closed types;

• a closed term (� a :A) in �K corresponds to an element of K(E0) such that ∂0 · a=A. Thus,
K(E0) is the set of closed terms;

• a type (x0 :A0, . . . , xn−1 :An−1 �An) in �K corresponds to an element of K(Un) such that
fti ·Ai =Ai−1 for i= n, . . . , 1. Thus, K(Un) is the set of types over a context of length n;

• a term (x0 :A0, . . . , xn−1 :An−1 � an :An) in �K corresponds to an element of K(En) such
that ∂n · an =An and fti ·Ai =Ai−1 for i= n, . . . , 1. Thus, K(En) is the set of terms over a
context of length n.
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From Theorem 4.12, one can see that every object A ∈G is a finite limit of Un and En, and thus
the other sets K(A) are finite limits of K(Un) and K(En).

Example 7.3. Let � be a signature of the logical framework (Section 5) and take the syntactic
representable map category R(�) (Section 5.3). Every context � |  � ctx induces the R(�)-
theoryR(�)(,−) :R(�)→ Set. When  = (x1 :A1, . . . , xn :An), we think ofR(�)(,−) as the
theory consisting of constants c1 :A1, c2 :A2[c1/x1], . . . , cn :An[c1/x1, . . . , cn−1/xn−1]. Indeed,
R(�)(,�) is the set of derivations from  to �, but they are equivalent to closed derivations
of � where x1, . . . , xn are regarded as constants. A R(�)-theory of the form R(�)(,−) is thus
a finite R(�)-theory. The theory of locally presentable categories (Adámek and Rosický 1994)
shows that any R(�)-theory is written as a filtered colimit of finite R(�)-theories.

The internal language of a model of T is then easily defined.

Definition 7.4. Let T be a type theory and S a model of T. We define a T-theory LTS to be
DFibS (S , (−)S ), where we regard S as a discrete fibration over S with the identity functor
S → S . Note that LTS (A)∼=AS (1) because S has the terminal object 1. We call LTS the
internal language of S .

Example 7.5. Let S be a model of the type theory G, that is, a category with families. We
think of US

0 as a discrete fibration of types and ES
0 as a discrete fibration of terms. Consider

the set LGS (Un)∼=US
n (1). By Item 3 of Theorem 4.12, it is isomorphic to (Pn∂0U0)S (1).

By Proposition 3.21 an element of (Pn∂0U0)S (1) is a sequence (a0, . . . , an) of elements a0 ∈
US
0 (1), a1 ∈US

0 ({a0}∂0 ), . . . , an ∈US
0 ({an−1}∂0 ). In other words, LGS (Un) is the set of types

in S over a context of length n. Similarly, LGS (En) is the set of terms in S over a context of
length n.

Proposition 7.6. For a type theory T, the map S → LTS is part of a 2-functor LT :ModT →
ThT, where we regard ThT as a locally discrete 2-category.

Proof. For a morphism F : S → T of models of T, an object A ∈T and a map c : S →AS , we
regard c as an element c ∈AS (1) and define LTF(c) : T →AT to be the map corresponding to
the element FAc ∈AT (F1)∼=AT (1). In other words, LTF(c) : T →AT is the unique map such
that the diagram

S T

AS AT

F

c LTF(c)

FA

commutes. For a 2-morphism σ : F ⇒G : S → T of models of T, we have LTF = LTG because
FAc=GAc · σ1 for any element c ∈AS (1).

The goal of this section is to show that the internal language 2-functor LT :ModT → ThT has a
left bi-adjoint MT : ThT →ModT (Theorem 7.20) and induces a bi-equivalence Moddem

T
� ThT

(Theorem 7.31).
The idea of the construction of the left bi-adjointMT of LT is as follows. We consider the case

ofT=G. From Example 7.2, aT-theoryK consists of setsK(Un) of types, setsK(En) of terms, and
so on. We adjoin to T types of K as type constructors and terms of K as term constructors, yield-
ing a new type theory T[K] together with an inclusion T→T[K]. We take the bi-initial model
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I (T[K]) and then obtain a model MTK of T by restricting (−)I (T[K]) :T[K]→DFibI (T[K])
along T→T[K].

In Section 7.1, we review filtered pseudo-colimits of categories and show that representable
map categories are closed under filtered pseudo-colimits. The type theory T[K] is defined as a
filtered pseudo-colimit in Section 7.2. In Section 7.3, we show that MT is left bi-adjoint to LT. In
Section 7.4, we show that LT induces a bi-equivalenceModdem

T
� ThT.

7.1 Filtered pseudo-colimits of representable map categories
In this preliminary subsection, we show that the 2-category of representable map categories has
filtered pseudo-colimits.

Definition 7.7. Let C : I → Cat be a pseudo-functor from a small category I . We define a small
category plimi∈I Ci called the pseudo-limit of C as follows.

• An object of plimi∈I Ci consists of the following data:
– for each object i ∈ I , an object Ai ∈ Ci;
– for each arrow u : i→ i′ in I , an isomorphism Au : u ·Ai ∼=Ai′
satisfying the following conditions:
– for any object i ∈ I , the diagram

Ai idi ·Ai

Ai

∼=

Aidi

commutes;
– for any arrows u : i→ i′ and v : i′ → i′′ in I , the diagram

v · (u ·Ai) (vu) ·Ai

v ·Ai′ Ai′′

∼=

v·Au Avu

Av

commutes.
• An arrow A→ B in plimi∈I Ci consists of an arrow fi :Ai → Bi for each object i ∈ I such that,
for any arrow u : i→ i′ in I , the diagram

u ·Ai u · Bi

Ai′ Bi′

u·fi

Au Bu

fi′

commutes.

Definition 7.8. Let I be a category. We say I is filtered if every finite diagram in I has a cocone.
I is cofiltered if I op is filtered.

Definition 7.9. Let C : I → Cat be a pseudo-functor from a filtered small category I . We define
a small category pcolimi∈I Ci as follows.

• The objects of pcolimi∈I Ci are the pairs (i,A) of objects i ∈ I and A ∈ Ci.
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• For objects (i1,A1), (i2,A2) ∈ pcolimi∈I Ci we define
pcolim
i∈I

Ci((i1,A1), (i2,A2))= colim
i∈I

u1:i1→i
u2:i2→i

Ci(u1 ·A1, u2 ·A2).

There are the obvious functors ιi : Ci → pcolimi∈I Ci for objects i ∈ I and natural isomorphisms
ιu : ιi ∼= ιi′ ◦ Cu for arrows u : i→ i′ in I , yielding an object ι ∈ plimi∈I Cat(Ci, pcolimi∈I Ci). For
a category D , the canonical functor

ι∗ : Cat( pcolim
i∈I

Ci,D)→ plim
i∈I

Cat(Ci,D)

is an isomorphism of categories. We call pcolimi∈I Ci the filtered pseudo-colimit of C .

An important property of filtered pseudo-colimits is that filtered pseudo-colimits in Cat com-
mute with finite bi-limits (Descotte et al. 2018, Theorem 3.2). We only use the following special
cases.

Lemma 7.10. Filtered pseudo-colimits commute with finite cotensors. More precisely, for a pseudo-
functor C : I → Cat from a filtered small category I and a finite category J , the canonical
functor

pcolim
i∈I

C
J
i →

(
pcolim
i∈I

Ci

)J

is an equivalence of categories.

Lemma 7.11. Filtered pseudo-colimits commute with slicing. More precisely, for a pseudo-functor
C : I → Cat from a filtered small categoryI and objects i0 ∈ I and A ∈ Ci0 , the canonical functor

pcolim
(u:i0→i)∈i0/I

(Ci/u ·A) →
(
pcolim
i∈I

Ci

)
/(i0,A)

is an equivalence of categories.

Proof. By the bicategorical Yoneda lemma, the pair (i0,A) corresponds to a pseudo-natural trans-
formation A : I (i0,−)→ C . Let (C ↓A) be the oplax bi-limit of the 1-cell A : I (i0,−)→ C in
the 2-category of pseudo-functors I → Cat, pseudo-natural transformations and modifications.
(C ↓A) is calculated pointwise, so (C ↓A)i is the category of pairs (u, B) consisting of an arrow
u : i0 → i in I and an object B ∈ C /u ·A. One can check that the filtered pseudo-colimit of (C ↓
A) : I → Cat is equivalent to pcolim(u:i0→i)∈i0/I (Ci/u ·A) and that the filtered pseudo-colimit
of I (i0,−) : I → Cat is equivalent to the terminal category. Thus, it follows from the commuta-
tion of filtered pseudo-colimits and oplax bi-limits of a 1-cell that pcolim(u:i0→i)∈i0/I (Ci/u ·A) is
canonically equivalent to the oplax limit of the 1-cell (i0,A) : 1→ pcolimi∈I Ci in Cat, that is, the
slice category

(
pcolimi∈I Ci

)
/(i0,A).

Proposition 7.12. Let C : I → Cat be a pseudo-functor from a filtered small category I .

(1) If all Ci are cartesian categories and all Cu : Ci → Ci′ are cartesian functors, then
pcolimi∈I Ci is a cartesian category and the functors ιi : Ci → pcolimi∈I Ci are cartesian
functors.

(2) Suppose the hypotheses of 1 hold. Let i0 be an object of I and f :A→ B an arrow in
Ci0 . Suppose that, for any arrow u : i0 → i, the pushforwards along u · f exist and that, for
any arrows u : i0 → i and v : i→ i′, the functor Cv : Ci → Ci′ carries pushforwards along
u · f to those along vu · f . Then pushforwards along ιi0 (f ) exist and the functor ιi0 : Ci0 →
pcolimi∈I Ci carries pushforwards along f to those along ιi0 (f ).
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Proof. Since limits in a categoryC are given by the right adjoint to the diagonal functorC → C J ,
the statement 1 is an immediate consequence of Lemma 7.10. For 2 consider the diagram

pcolim(u:i0→i)∈i0/I (Ci/u · B)
(
pcolimi∈I Ci

)
/B

pcolim(u:i0→i)∈i0/I (Ci/u ·A)
(
pcolimi∈I Ci

)
/A.

pcolimu(u·f )∗ ιi0 (f )
∗

This diagram commutes up to canonical isomorphism by 1. The horizontal functors are equiva-
lences by Lemma 7.11. Thus, ιi0 (f )∗ has a right adjoint because pcolimu(u · f )∗ has a right adjoint
by assumption.

Let C : I →Rep be a pseudo-functor from a filtered small category I . We define an arrow in
pcolimi∈I Ci to be representable if it is isomorphic to the image of a representable arrow inCi by ιi
for some i ∈ I . Then, by Proposition 7.12, pcolimi∈I Ci forms a representable map category and
the functors ιi : Ci → pcolimi∈I Ci are representable map functors. The following is immediate
from the construction.

Proposition 7.13. Let C : I →Rep be a pseudo-functor from a filtered small category I and D
a representable map category. Then the canonical functor

ι∗ :Rep( pcolim
i∈I

Ci,D)→ plim
i∈I

Rep(Ci,D)

is an isomorphism of categories.

7.2 Type theory generated by a theory
Given a theory K over a type theory T, we obtain another type theory T[K] by adjoining to T

the constants of K as inference rules with no premises. To make it precise, we will show that, for
an object A ∈T, the slice category T/A is the type theory obtained from T by freely adjoining a
global section ofA (Proposition 7.19). Then the type theoryT[K] is defined to be a suitable filtered
pseudo-colimit of slices T/A.

Lemma 7.14. Let C be a small cartesian category and K : C → Set a functor. Then K is cartesian
if and only if its category of elements

∫
C K is cofiltered.

Proof. The proof can be found, for instance, in Mac Lane andMoerdijk (1992, Section VII.6).

Definition 7.15. Let K be a theory over a type theory T. We define a type theory T[K] to be the
filtered pseudo-colimit of the composite pseudo-functor(∫

T
K
)op

T
op Rep.T/(−)

By definition, an object of T[K] is a triple (A, c, f ) consisting of an object A ∈T, an element
c ∈K(A) and an object f ∈T/A. We think of an object A ∈T as an object of T[K] via the inclusion
A → (1, ∗,A), where ∗ is the unique element of K(1).

Lemma 7.16. Let K be a theory over a type theory T. For an object A ∈T, we have a natural
bijection K(A)∼=T[K](1,A).

Proof.

K(A)∼= colim
(A′,c′)∈∫

T
K
T(A′,A) (Yoneda)

∼= colim
(A′,c′)∈∫

T
K
T/A′(A′,A′ ×A)
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∼=T[K](1,A)

By Lemma 7.16 we identify an element c ∈K(A) with the corresponding arrow c : 1→A in
T[K].

Proposition 7.17. Let K be a theory over a type theory T and C a locally small representable map
category. For a representable map functor F :T→ C , we have an equivalence of categories

(T/Rep)(T[K], C )� ThT(K,C (1, F−))
that sends a representable map functor G :T[K]→ C equipped with a natural isomorphism σA :
GA∼= FA for A ∈T to the natural transformation K(A) � c → σA ◦Gc ∈ C (1, FA).

To prove Proposition 7.17, we show that the slice category T/A over an object A ∈T is the
representable map category obtained fromT by freely adjoining an arrow 1→A. LetC be a repre-
sentable map category and A ∈ C an object. We have a representable map functor A∗ : C → C /A
defined by A∗B=A× B and an arrow �A : 1→A∗A in C /A represented by the diagonal arrow
A→A×A.

Lemma 7.18. Let C be a cartesian category and A ∈ C an object. For every object f : B→A of
C /A, we have the following pullback in C /A.

f A∗B

1 A∗A

A∗f

�A

Proof. The square

B A× B

A A×A

(f ,B)

f A×f

is a pullback in C .

Proposition 7.19. Let C be a representable map category and A ∈ C an object. For any repre-
sentable map category D and representable map functor F : C → D , the functor

(C /Rep)(C /A,D) � (G, σ ) → σA ◦G�A ∈ D(1, FA)
is an equivalence of categories.

Proof. Since D(1, FA) is a discrete category, it suffices to show that every fiber of the functor is
contractible. Let a : 1→ FA be an arrow. By Lemma 7.18, a representable map functorG : C /A→
D equipped with a natural isomorphism σ :GA∗ ∼= F such that σA ◦G�A = amust send an object
f : B→A of C /A to the pullback

Gf FB

1 FA.

Ff

a

Hence such a pair (G, σ ) is unique up to unique isomorphism. Such a (G, σ ) exists because the
composite C /A D/FA D

F/A a∗
is a representable map functor such that a∗(F/A)A∗ ∼=

F.
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Proof of Proposition 7.17. We have equivalences of categories (T/Rep)(T[K], C )�
plim(A,c)∈∫

T
K(T/Rep)(T/A,C ) and ThT(K,C (1, F−))� lim(A,c)∈∫

T
K C (1, FA). Then use

Proposition 7.19.

7.3 The bi-adjunction of theories andmodels
In this subsection, we show the following theorem.

Theorem 7.20. For a type theory T, the 2-functor LT :ModT → ThT has a left bi-adjoint.

Definition 7.21. Let K be a theory over a type theory T. We define a 2-category (K ↓ LT) as follows:

• the objects are the pairs (S ,m) consisting of a model S of T and a map m :K → LTS of
T-theories;

• the morphisms (S ,m)→ (T , n) are the morphisms F : S → T of models of T such that
LTF ◦m= n;

• the 2-morphisms are those ofModT.

Lemma 7.22. For a type theory T, the 2-functor LT has a left bi-adjoint if and only if the 2-category
(K ↓ LT) has a bi-initial object for every T-theory K.

Proof. Let K be a T-theory, S a model of T andm :K → LTS a map of T-theories. For a model
T of T, consider the functor

ModT(S ,T ) ThT(LTS , LTT ) ThT(K, LTT ).LT m∗

Since ThT(K, LTT ) is a discrete category, this functor is an equivalence if and only if every fiber
is contractible. But the fiber over a map n :K → LTT is just (K ↓ LT)((S ,m), (T , n)). Thus,
(S ,m) is a bi-universal map from K to LT if and only if it is a bi-initial object of (K ↓ LT).

We have a 2-functor ModT[K] � S → (S |T,mS ) ∈ (K ↓ LT) where S |T is the model of T
obtained from S by restricting (−)S :T[K]→DFibS to T and mS :K → LT(S |T) sends an
element c ∈K(A) to the map cS : S →AS of discrete fibrations over S .

Lemma 7.23. For a theory K over a type theory T, the 2-functor ModT[K] → (K ↓ LT) is a bi-
equivalence.

Proof. It is clear that the 2-functor is locally faithful. It remains to show that the 2-functor is
bi-essentially surjective on objects, locally essentially surjective on objects and locally full.

To show that the 2-functor is bi-essentially surjective on objects, let S be a model of T andm :
K → LTS a map of T-theories. By Proposition 7.17, the representable map functor (−)S :T→
DFibS extends to a representable map functor (−)S̃ :T[K]→DFibS that sends c : 1→A to
m(c) : S →AS ∼=AS̃ for c ∈K(A). Thus, S̃ is a model of T[K] such that (S̃ |T,mS̃ )� (S ,m).

To show that the 2-functor is locally essentially surjective on objects, letS andT be models of
T[K] and F : S |T → T |T a morphism of models of T such that LTF ◦mS =mT . This equation
means that, for any element c ∈K(A), the diagram

S T

AS AT

F

cS cT

FA

(5)

commutes. Recall from Section 4.3 that F(−) can be regarded as a representable map functor
F(−) :T→ (DFib→)F (Proposition 4.20). Then K(A) � c → (cS , cT ) ∈ (DFib→)(F, FA) defines
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a map K → (DFib→)F(F, F(−)) of T-theories. By Proposition 7.17, the representable map functor
F(−) :T→ (DFib→)F extends to a representable map functor F̃(−) :T[K]→ (DFib→)F , giving a
morphism F̃ : S → T of models of T[K] whose restriction to T is F.

The local fullness is similarly proved using Proposition 4.22 and (DFib�)σ instead of
(DFib→)F .

Proof of Theorem 7.20. Let K be a T-theory. We have a bi-equivalence ModT[K] � (K ↓ LT) by
Lemma 7.23. Hence, (K ↓ LT) has a bi-initial object by Theorem 6.10. By Lemma 7.22, the
2-functor LT has a left bi-adjoint.

We can extract an explicit construction of the left bi-adjoint of LT from the proof of
Theorem 7.20. Let K be a theory over a type theory T. We will denote by (MTK, ηK) the bi-
initial object of (K ↓ LT). The modelMTK of T is obtained from the bi-initial model I (T[K]) of
T[K] by restricting (−)I (T[K]) :T[K]→DFibI (T[K]) to T. We callMTK the syntactic model of T
generated by K. The map ηK :K → LT(MTK) sends an element c ∈K(A) over A ∈T to the arrow
c : 1→A in T[K], which is an element of AMTK(1).

Example 7.24. Let K be a theory over the basic dependent type theory G, that is, a generalized
algebraic theory.G[K] satisfies the assumption of Example 6.8, because every representable arrow
inG[K] is isomorphic to a representable arrow from some sliceG/A. Hence, the objects ofMGK
are the finite sequences (A1, . . . ,An) of arrows Ai : |Ai−1| →U, which corresponds to an arrow
A : 1→ Pn∂1 via the adjunction ∂∗ � ∂∗. By Lemma 7.16, the arrows 1→ Pn∂01 inG[K] correspond
to the elements of K(Pn∂01). Since K(P

n
∂0
1)∼=K(Un−1) by Item 3 of Theorem 4.12 and elements

of K(Un−1) are contexts of length n, the base category of MGK is the category of contexts in the
generalized algebraic theory K.

7.4 The bi-equivalence of theories andmodels
In this section, we study the unit and counit of the bi-adjunction MT � LT in more detail. For a
model S of a type theory T, we denote by εS :MT(LTS )→ S the counit of the bi-adjunction
MT � LT, that is, one of those morphisms of models of T such that LTεS ◦ ηLTS = idLTS . We
first show that the unit η : id⇒ LTMT is an isomorphism (Proposition 7.25). This implies that
MT : ThT →ModT is locally an equivalence and thus induces a bi-equivalence between ThT and
the bi-essential image of MT. We then determine the bi-essential image of MT by characterizing
those models S such that the counit εS :MTLTS → S is an equivalence. We show that the
counit εS is an equivalence precisely when S is democratic (Corollary 7.30). Hence, the bi-
adjunction MT � LT induces a bi-equivalence between T-theories and democratic models of T
(Theorem 7.31).

Proposition 7.25. Let T be a type theory and K a T-theory. Then the map ηK :K → LT(MTK) is
an isomorphism.

Proof. For an object A ∈T, the map ηK(A) :K(A)→ LT(MTK)(A) is the composite of isomor-
phisms

K(A)∼=T[K](1,A) (Lemma 7.16)
∼=AMTK(1)
∼= LT(MTK)(A).
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Thus, the unit of the bi-adjunction MT � LT is always an isomorphism. On the other hand,
the counit is not an equivalence in general, but we can say that it is always an embedding in the
following sense.

Proposition 7.26. Let S be a model of a type theory T.

(1) The functor εS :MT(LTS )→ S is fully faithful.
(2) For any object A ∈T, the square

AMT(LTS ) AS

MT(LTS ) S

(εS )A

εS

is a pullback.

To prove Proposition 7.26, we need a little more work. Let K be a theory over a type
theory T and I ∈MTK and A ∈T[K] objects. Recall that T[K] is the filtered pseudo-colimit
pcolim(B,c)∈∫

T
KT/B. Then, by Lemma 7.18, the objects I,A ∈T[K] can be written as pullbacks

I C

1 B

πC

f

c

A D

1 B

πD

g

c

for some objects B, C,D ∈T, arrows f : C → B and g :D→ B and element c ∈K(B). By the def-
inition of representable arrows in T[K], we may choose f to be representable. Let h : E→ B be
the local exponent C ⇒B D in T/B, that is, E= f∗f ∗D. Let S be a model of T and F :MTK → S
a morphism of models of T. We denote by m :K → LTS the corresponding map of T-theories
defined bym(c′)= FA′(c′) for c′ ∈K(A′).
Lemma 7.27. Under the assumptions above, the following properties hold.

(1) Suppose A ∈MTK. We may choose g :D→ B to be representable. Then we have isomor-
phisms σ : c∗K(E)∼=MTK(I,A) and τ :m(c)∗(LTS (E))∼= S /FA such that the diagram

c∗K(E) m(c)∗(LTS (E))

MTK(I,A) S (FI, FA)

m

σ ∼= τ∼=

F

commutes.
(2) Suppose A ∈T. We may choose D= B×A. Then we have isomorphisms σ : c∗K(E)∼=

AMTK(I) and τ :m(c)∗(LTS (E))∼=AS such that the diagram

c∗K(E) m(c)∗(LTS (E))

AMTK(I) AS (FI)

m

σ ∼= τ∼=

FA

commutes.
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Proof. We have an isomorphism σ : c∗K(E)∼=T[K](I,A) by

Concretely σ sends d ∈ c∗K(E) to the dotted arrow below,

I E×B C

A D

1 B

(d,πC)

σ (d)
ev

πD

�
g

c

where ev : E×B C ∼= (C ⇒B D)×B C →D is the evaluation. Similarly, we have an isomorphism
τ :m(c)∗(LTS (E))∼=DFibS (S /FI,m(c)∗DS ) which sends d′ ∈m(c)∗(LTS (E)) to the dotted
arrow below.

S /FI ES ×BS CS

m(c)∗DS DS

S BS

(d′,FC(πC))

τ (d′)
evS

�
gS

m(c)=FB(c)

Suppose that A ∈MTK. By definition T[K](I,A)∼=MTK(I,A), and thus we regard σ as an
isomorphism c∗K(E)∼=MTK(I,A). Choose g :D→ B to be representable. Then A is the con-
text extension of c ∈ BMTK(1) along g :D→ B, and thus m(c)∗DS ∼= S /FA because F preserves
context extensions. Hence, DFibS (S /FI,m(c)∗DS )∼=DFibS (S /FI,S /FA)∼= S (FI, FA) by
Yoneda, and we regard τ as an isomorphism m(c)∗(LTS (E))∼= S (FI, FA). For any element
d ∈ c∗K(E), both F(σ (d)) and τ (m(d)) make the diagram

S /FI ES ×BS CS

S /FA DS

S BS

(FE(d),FC(πC))

evS

FD(πD)

�
gS

FB(c)

commute, and thus Fσ = τm.
Suppose that A ∈T. By definition T[K](I,A)∼=AMTK(I), and thus we regard σ as an isomor-

phism c∗K(E)∼=AMTK(I). Choose D to be B×A. Then m(c)∗DS ∼=AS , and we regard τ as an
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isomorphismm(c)∗(LTS (E))∼=AS (FI) by Yoneda. This time σ (d) and τ (d′) are just composites

I E×B C D∼= B×A A(d,πC) ev

S /I ES ×BS CS DS ∼= BS ×AS AS ,(d′,FC(πC)) evS

respectively, for d ∈ c∗K(E) and d′ ∈m(c)∗(LTS (E)). Therefore, FAσ = τm.

Proof of Proposition 7.26. Use Lemma 7.27 for F = εS . In this case,m is the identity.

By Proposition 7.26, εS is an equivalence in the 2-categoryModT if and only if the underlying
functor εS :MT(LTS )→ S is essentially surjective on objects, because the base change of a
discrete fibration along an equivalence induces a fibred equivalence. The next goal is to determine
the essential image of the functor εS .

Proposition 7.28. For any theory K over a type theory T, the modelMTK of T is democratic.

Proof. We have already seen that every object I ∈MTK is written as a pullback

I B

1 A

f

c

for some representable arrow f : B→A inT and element c ∈K(A). Thismeans that I is the context
extension of c ∈AMTK(1) with respect to f .

Proposition 7.29. Let S be a model of a type theory T. Then the essential image of the functor
εS :MT(LTS )→ S is the class of contextual objects.

Proof. By Proposition 7.28, the essential image of the functor εS :MT(LTS )→ S consists of
contextual objects. Proposition 7.26 implies that the essential image of εS is closed under context
extensions. Hence, the essential image of εS is precisely the class of contextual objects.

Corollary 7.30. Let S be a model of a type theory T.

(1) εS :MT(LTS )→ S induces an equivalenceMT(LTS )� S ♥ inModT.
(2) εS is an equivalence inModT if and only if S is democratic.

In summary, we get a biequivalence of theories and democratic models.

Theorem 7.31. For a type theory T, the 2-functor LT :ModT → ThT induces a biequivalence

Moddem
T

� ThT.

8. Conclusion and Future Directions
We proposed an abstract notion of a type theory and established a correspondence between the-
ories and models for each type theory. This is the first step in a new development of categorical
type theory.

We should first mention the development of the theory of ∞-type theories (Nguyen and
Uemura 2022). Since our definition of a type theory is purely categorical, it is straightforward
to generalize it to a higher dimensional one, and we obtain analogous results of Sections 6 and 7.
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An advantage of this higher dimensional generalization is that one can handle (higher) categorical
models of type theories in the style of (non-split) comprehension category (Jacobs 1993) within
the same framework. Our notion of a model of a type theory (Definition 4.5) is never a categorical
model in the sense that the notion of identification of types is equality rather than isomorphism.
Categorical models of a type theory should instead be understood as models of a suitable ∞-type
theory. ∞-type theories are thus a more convenient framework for the semantics of type theory.

The main tools for studying type theories are the 2-category Rep, the categories ThT, and the
2-categories ModT. The 2-category Rep allows us to compare different kinds of type theory
directly in the sense that a morphism F :T→ S in Rep is thought of as an interpretation of the
type theory T in S. In particular, an equivalence in the 2-category Rep is a natural notion of an
equivalence of type theories. The universal properties of syntactic representable map categories
(Theorem 5.17) help us to build various interpretations of type theories.

Sometimes we need weaker notions of equivalences of type theories. For example, one can ask
if the interpretation of the Book HoTT (The Univalent Foundations Program 2013) in cubical
type theory (Cohen et al. 2018) is an equivalence in any sense. This interpretation will never be
an equivalence in the 2-categoryRep, but one would expect it to be conservative in a weak sense:
every type in cubical type theory is homotopy equivalent to some type from the Book HoTT; every
term in cubical type theory is path connected to some term from the BookHoTT. One approach to
formulate this conjecture is to equip ThT with a (semi-)model structure, following Kapulkin and
Lumsdaine (2018), Isaev (2017), and discuss if a functor between such (semi-)model categories
is a Quillen equivalence (Isaev 2020). Another possibility is to work in the framework of ∞-type
theories. Suppose that type theories T1 and T2 are equipped with classes of arrows called weak
equivalences. An interpretation T1 →T2 is conservative with respect to these weak equivalences
if it induces an equivalences between the ∞-type theories obtained from T1 and T2 by freely
inverting weak equivalences.

Comparing ThT �Moddem
T

and ModT, the former is easier to understand and more con-
venient to work with since it is a full subcategory of SetT. However, ThT throws away all the
information about representable arrows in T, so we can never reconstruct the type theory T from
the category ThT. The 2-category ModT, on the other hand, seems to keep information about
T, and we expect that the type theory T can be reconstructed from ModT. A precise formula-
tion is as follows. First, we regard ModT as a 2-category over Cat1 with the forgetful 2-functor
ModT → Cat1 that maps a model of T to its base category. Then a representable map func-
tor F : S→T between type theories induces a 2-functor F∗ :ModT →ModS over Cat1 defined
by F∗(S , (−)S )= (S , (F−)S ). Thus, T →ModT is part of a 2-functor Mod(−) :Repop →
2CAT/Cat1 to the (huge) 2-category of (large) 2-categories over Cat1.

Question 8.1. IsMod(−) :Repop → 2CAT/Cat1 monic (in a suitable higher categorical sense) and
can we characterize its image?

In unpublished work of John Bourke and the author, it is shown that the 2-category ModT
is locally presentable in a bicategorical sense (the same idea is used in the ∞-categorical set-
ting Nguyen and Uemura 2022 to show the presentability of ModT, but there only invertible
2-morphisms of models are considered). Analogously to the Gabriel–Ulmer duality (Gabriel and
Ulmer 1971), the type theoryT is expected to be reconstructed using finitely bi-presentable objects
inModT.
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Note
1 This fact is also observed independently by Fiore (2012).
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