
16

Orthogonal invariance of the CAR on Fock spaces

In this chapter we continue our study of the orthogonal invariance of the CAR.
This invariance was already investigated in Chap. 14. However, whereas in
Chap. 14 we used the representation-independent framework of CAR algebras,
in this chapter we will consider Fock CAR representations in any dimensions.
Therefore, to some extent, this chapter can be viewed as a continuation of
Chap. 13 about Fock CAR representations.

Note also that this chapter is parallel to Chap. 11 about the symplectic invari-
ance of the CCR on a Fock space.

16.1 Orthogonal group on a Kähler space

The framework of this section, as well as of most other sections of this chapter,
is the same as that of Chap. 13 about the Fock representation of the CAR.

In particular, we assume that (Y, ν) is a real Hilbert space with a Kähler
anti-involution j. If r is a densely defined operator on L(Y), then r# denotes its
adjoint for the scalar product ν. We also use the holomorphic space Z := 1l−ij

2 CY
and the identification CY = Z ⊕ Z.

In this section we study the orthogonal group and Lie algebra on a real Hilbert
space equipped with a Kähler structure.

This section is parallel to Sect. 11.1 about the symplectic group on a Kähler
space.

16.1.1 Basic properties

Recall that O(Y) denotes the group of orthogonal transformations on Y. Ele-
ments of O(Y) are automatically bounded with a bounded inverse. Clearly,
r ∈ O(Y) iff

(a) r# r = 1l, (b) rr# = 1l.

In the context of real Hilbert spaces we adopt the following definition for the
corresponding Lie algebra:

Definition 16.1 o(Y) denotes the Lie algebra of a ∈ B(Y) satisfying a# + a = 0,
that is, o(Y) = Ba(Y).
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16.1 Orthogonal group on a Kähler space 387

Recall that every r ∈ B(Y) extended to CY = Z ⊕ Z can be written as

rC =
[

p q

q p

]
. (16.1)

Proposition 16.2 r ∈ O(Y) iff p ∈ B(Z), q ∈ B(Z,Z) and the following con-
ditions hold:

Conditions implied by (a): p∗p + q# q = 1l, p∗q + q# p = 0;

Conditions implied by (b): pp∗ + qq∗ = 1l, pq# + qp# = 0.

Proposition 16.3 a ∈ o(Y) iff its extension to CY equals

aC = i
[

h g

−g −h

]
, (16.2)

with h ∈ Bh(Z), and g ∈ Ba(Z,Z) (h is self-adjoint and g is anti-symmetric).

16.1.2 j-non-degenerate orthogonal maps

The theory of orthogonal operators on a Kähler space is more complicated than
that of symplectic operators on a Kähler space. For a symplectic transforma-
tion r, the operator p was automatically invertible, which greatly simplified the
analysis. The analogous statement is not always true for a general orthogonal
operator. Nevertheless, a large class of orthogonal transformations can be ana-
lyzed in a way parallel to symplectic transformations. These transformations,
which we will call j-non-degenerate, will be studied in this subsection.

Proposition 16.4 Let r ∈ O(Y). Then the following conditions are equivalent:

(1) Ker(rj + jr) = {0}.
(2) Ker(r# j + jr# ) = {0}.
(3) Ker p = {0}.
(4) Ker p∗ = {0}.
Proof (1)⇔(2), because

r# j + jr# = r# (jr + rj)r# .

(1)⇔(3), because

rCjC + jCrC =
[

p q

q p

] [
i 0
0 −i

]
+
[

i 0
0 −i

] [
p q

q p

]
= 2i
[

p 0
0 −p

]
.

Similarly we see that (2)⇔(4). �

Definition 16.5 r ∈ O(Y) is said to be j-non-degenerate if the equivalent con-
ditions of Prop. 16.4 are satisfied.
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388 Orthogonal invariance of the CAR on Fock spaces

Recall that if h is a possibly unbounded operator with Kerh = {0}, then we
can define h−1 with domain Domh−1 := Ran h. The operator h−1 is closed iff h

is.
Recall also that Cla(Z,Z) denotes the set of closed densely defined operators

c from Z to Z satisfying c# = −c.
Let us now describe a convenient factorization of a j-non-degenerate orthog-

onal map. Note that if r is j-non-degenerate, then (Ran p)cl = (Ker p∗)⊥ = Z.
Therefore, the following operators are densely defined:

d := qp−1 , Dom d := Ran p; (16.3)

c := −q# (p# )−1 , Dom c := Ran p# . (16.4)

Proposition 16.6 (1) c and d are closable. Let us denote their closures by the
same symbols. Then c, d ∈ Cla(Z,Z).

(2) We have the following equivalent characterizations of c, d:

d = −p∗−1q# , Dom d = {z ∈ Z : q# z ∈ Ran p∗}; (16.5)

c = p−1q, Dom c = {z ∈ Z : qz ∈ Ran p}. (16.6)

(3) We have the following factorization, which holds as an operator identity:

rC =
[

1l d

0 1l

] [
(p∗)−1 0

0 p

] [
1l 0
c 1l

]
. (16.7)

(4) The following operator identities are true:

(rCjCr∗
C
− jC)(rCjCr∗

C
+ jC)−1 =

[
0 d

d 0

]
,

(jC − r∗
C
jCrC)(r∗

C
jCrC + jC)−1 =

[
0 c

c 0

]
.

(16.8)

(Note that if r is j-non-degenerate, then rjr∗ + j and r∗jr + j are injective
with a dense range. Hence, in the identities (16.8) the meaning of the l.h.s.
is described in (2.2) and (2.3).)

(5) The following quadratic form identities are true:

1l + c# c = p∗−1p−1 , 1l + d∗d = p∗−1p−1 .

Proof Consider d = qp−1 . We have the identity

q# p = −p∗q. (16.9)

Therefore, Ran p is contained in

{z ∈ Z : q# z ∈ Dom p∗−1 = Ran p∗}. (16.10)

But Ran p is dense. Thus (16.10) is dense. By Prop. 2.35 applied to the bounded
operator q and the closed operator p−1 ,

(qp−1)# = p∗−1q# . (16.11)
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16.1 Orthogonal group on a Kähler space 389

But the identity (16.9) implies

p∗−1q# p = −q,

and hence, on Ran p,

p∗−1q# = −qp−1 = (qp−1)# ,

by (16.11). Therefore, d ⊂ −d#, and hence d are closable. This easily implies (1)
and (2).

We have

rCjC − jCrC = 2i
[

0 −q

−q 0

]
, rCjC + jCrC = 2i

[
p 0
0 −p

]
.

Hence,[
0 d

d 0

]
= (rCjC − jCrC)(rCjC + jCrC)−1 = (rCjCr∗C − jC)(rCjCr∗C + jC)−1 .

This proves the first identity of (4). �

Next we give a criterion for the j-non-degeneracy.

Lemma 16.7 Assume that ‖r − 1l‖ < 1. Then r is j-non-degenerate.

Proof Let y ∈ Y such that y �= 0 and (rj + jr)y = 0. Then,

2jy = (1l− r)jy + j(1l− r)y.

Hence,

2‖y‖ ≤ 2‖1l− r‖‖y‖.
Therefore, 1 ≤ ‖1l− r‖. �

16.1.3 j-self-adjoint maps

To some extent, this subsection can be viewed as parallel to Subsect. 11.1.4 about
positive symplectic transformations.

Definition 16.8 An operator r ∈ Cl(Y) satisfying jr = r# j is called j-self-
adjoint. We say that it is j-positive if, in addition, jrj−1 + r# ≥ 0.

If the extension of r to CY is given by (16.1), then r ∈ B(Y) is j-self-adjoint
iff q# = −q, p = p∗. It is j-positive iff in addition p ≥ 0.

Let r ∈ B(Y) be j-self-adjoint. It belongs to O(Y) iff

p2 − qq = 1l, pq − qp = 0.

We now examine the form of the decomposition (16.7). Let r ∈ O(Y) be
j-non-degenerate. It is j-self-adjoint iff c = d, where c, d ∈ Cla(Z,Z) were defined
in (16.3) and (16.4). j-non-degenerate j-positive elements of O(Y) can be fully
characterized by c:
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390 Orthogonal invariance of the CAR on Fock spaces

Proposition 16.9 Let r ∈ O(Y) be j-non-degenerate and j-positive. Let c ∈
Cla(Z,Z) be defined as in (16.4). Then one has

rC =

[
(1l + cc∗)−

1
2 (1l + cc∗)−

1
2 c

−c∗(1l + cc∗)−
1
2 (1l + c∗c)−

1
2

]
(16.12)

=
[

1l c

0 1l

] [
(1l + cc∗)

1
2 0

0 (1l + c∗c)−
1
2

] [
1l 0
−c∗ 1l

]
,

(r2
C − 1lC)(r2

C + 1lC)−1 =
[

0 c

c 0

]
. (16.13)

Conversely let c ∈ Cla(Z,Z). Then r, defined by (16.12), belongs to O(Y), is
j-non-degenerate and is j-positive.

Proof Let r ∈ O(Y) be j-non-degenerate and j-self-adjoint. We have d = c =
qp−1 and 1l + c# c = p−2 . Using the positivity of p we obtain

p = (1l + c# c)−
1
2 .

Now

q = cp = c(1l + c∗c)−
1
2 = (1l + cc∗)−

1
2 c.

We then apply the decomposition (16.7) and formula (16.1) to get the first
statement of the proposition. �

Proposition 16.10 Let a ∈ Cl(Y) be anti-self-adjoint and j-self-adjoint. Then
there exists g ∈ Cla(Z,Z) such that

aC = i
[

0 g

g∗ 0

]
.

Moreover, ea belongs to O(Y), is j-self-adjoint and

eaC =

[
cos
√

gg∗ i sin
√

gg∗√
gg∗ g

ig∗ sin
√

gg∗√
gg∗ cos

√
g∗g

]
, (16.14)

c = i
tan

√
gg∗√

gg∗
g.

We have a complete description of j-non-degenerate j-self-adjoint elements of
O(Y):

Theorem 16.11 Let r ∈ O(Y) be j-non-degenerate and j-self-adjoint. Then r =
mr0m

∗, where

mC :=
1√
2

[
1l i(1l− p2)−

1
2 q

−i(1l− p2)−
1
2 q 1l

]
,

r0C :=

[
p + i(1l− p2)

1
2 0

0 p− i(1l− p2)
1
2

]
.
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16.1 Orthogonal group on a Kähler space 391

The transformation mC is unitary, hence rC is unitarily equivalent to the diagonal
operator r0C. Consequently

spec r = spec (p + i(1l− p2)
1
2 ) ∪ spec (p + i(1l− p2)

1
2 ).

In particular, r is j-positive iff

spec r ⊂ {eiφ : φ ∈ [−π/2, π/2]
}
. (16.15)

Proposition 16.12 Let k ∈ O(Y) be j-self-adjoint and such that Ker(k + 1l) =
{0}. Let kt ∈ O(Y) be defined as in Subsect. 2.3.2 for t ∈ R. Then kt is also
j-self-adjoint and (kt)# = k−t . Moreover, if |t| ≤ 1

2 , then kt is j-non-degenerate
and j-positive.

Proof We work on CY equipped with its unitary structure and consider kC.
Clearly, kCjC = jCk∗

C
, so the identity

F (kC)jC = jCF (k∗
C) (16.16)

holds for polynomials and extends by the usual argument to bounded Borel
functions on spec kC. Taking F (z) = zt , we obtain by restriction to Y that kt j =
j(kt)∗, so that kt is j-self-adjoint.

Clearly, kt is j-non-degenerate, and also j-positive for |t| ≤ 1
2 , by criterion

(16.15). �

16.1.4 j-polar decomposition

The following theorem gives a canonical decomposition of every j-non-degenerate
orthogonal operator into a product of a unitary operator and a j-positive j-non-
degenerate operator. This can be treated as a fermionic analog of the polar
decomposition of symplectic transformations discussed in Subsect. 11.1.5.

Theorem 16.13 Let r ∈ O(Y) be j-non-degenerate. Set k := −jr# jr. Then

(1) k ∈ O(Y) is j-self-adjoint;
(2) Ker(k + 1l) = {0};
(3) k

1
2 is j-positive and j-non-degenerate;

(4) For w := rk− 1
2 ∈ U(YC) we have

r = wk
1
2 ; (16.17)

(5) If in addition r is j-self-adjoint, then w = w∗, w2 = 1l and r = k
1
2 w = wk

1
2 .

Proof (1) follows from

jk = r# jr = k# j.

(2) is a consequence of

Ker(k + 1l) = −jr# Ker(rj + jr) = {0}.
(3) follows from Prop. 16.12.

https://doi.org/10.1017/9781009290876.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290876.017


392 Orthogonal invariance of the CAR on Fock spaces

Let us prove (4). Clearly, w ∈ O(Y). Moreover,

jw = jrk− 1
2 = jrk−1k

1
2

= rjk
1
2 = rk− 1

2 j = wj.

So w ∈ U(YC). �

Definition 16.14 We call (16.17) the j-polar decomposition of r.

16.1.5 Conjugations on Kähler spaces

Conjugations on a unitary space were defined in Subsect. 1.2.10. We recall that
they are anti-unitary involutions.

Conjugations on a Kähler space were defined in Subsect. 1.3.10. We recall that
κ is a conjugation of the Kähler space Y if κ ∈ O(Y), κ2 = 1l and κj = −jκ. Note
that κ is self-adjoint, as well as anti-symplectic and infinitesimally symplectic.

Clearly, κ is a conjugation on a Kähler space Y iff it is a conjugation on the
corresponding unitary space YC. It can be written as

κC =
[

0 t

t 0

]
,

where t ∈ L(Z,Z), tt = 1lZ and t# = t. If we set uz := tz, then u is a conjugation
of the Hilbert space Z, which means an anti-unitary operator satisfying u2 = 1l.

Conversely, any conjugation on Z determines a conjugation on Y.
Note also that if j is a Kähler anti-involution, then so is −j. If κ ∈ O(Y) is a

conjugation, then we have κjκ# = −j.

16.1.6 Partial conjugations on Kähler spaces

Definition 16.15 If W is a unitary space, we will say that κ ∈ L(WR) is a par-
tial conjugation if there exists a decomposition of W into an orthogonal direct
sum of (complex) subspaces W =Wreg ⊕Wsg such that κ preserves this decom-
position, is the identity on Wreg and is a conjugation on Wsg .

Definition 16.16 If (Y, ν, j) is a Kähler space, we say that κ ∈ L(Y) is a partial
conjugation if there exists an orthogonal decomposition Y = Yreg ⊕ Ysg such that
κ and j preserve this decomposition, κ is the identity on Yreg and a conjugation
on Ysg .

Clearly, κ is a partial conjugation on a Kähler space Y iff it is a partial con-
jugation of the unitary space YC.

Let κ be a partial conjugation of Y. If 1lreg and 1lsg are the orthogonal projec-
tions onto Yreg and Ysg , then

κjκ# = j1lreg − j1lsg .
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16.1 Orthogonal group on a Kähler space 393

Writing Z = Zreg ⊕Zsg , we have

κC =

⎡⎢⎢⎣
1l 0 0 0
0 1l 0 0
0 0 0 t

0 0 t 0

⎤⎥⎥⎦ (16.18)

for t ∈ L(Zsg ,Zsg ), tt = 1lZs g
, t# = t.

16.1.7 Decomposition of orthogonal operators

Definition 16.17 Let r ∈ O(Y). We define the regular and singular initial and
final subspaces for r by

Y−sg := Ker(rj + jr), Y−reg := Y⊥
−sg ,

Y+sg := Ker(r# j + jr# ), Y+reg := Y⊥
+sg .

We also introduce the corresponding holomorphic subspaces

Z±sg := CY±sg ∩ Z, Z±reg := CY±reg ∩ Z.

We easily check that r maps Y−sg onto Y+sg and Y−reg onto Y+reg . j preserves
Y±sg and Y±reg , and hence we have the decompositions

CY = Z−reg ⊕Z−reg ⊕Z−sg ⊕Z−sg , (16.19)

CY = Z+reg ⊕Z+reg ⊕Z+sg ⊕Z+sg . (16.20)

Note that Ker p = Z−sg and Ker p∗ = Z+sg . We can write rC as a matrix from
(16.19) to (16.20) as follows:

rC =

⎡⎢⎢⎣
preg qreg 0 0
qreg preg 0 0
0 0 0 qsg

0 0 qsg 0

⎤⎥⎥⎦ .

Clearly,

Ker p∗reg = Ker preg = {0}, q∗sgqsg = 1lZ−s g
. (16.21)

Proposition 16.18 Let r ∈ O(Y). Then there exists a decomposition r = κr0

such that r0 ∈ O(Y) is j-non-degenerate and κ is a partial conjugation.

Proof Let κ be any partial conjugation such that κjκ# = j1l−reg − j1l−sg , so that
in the matrix notation using (16.20)

κC =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 t

0 0 t 0

⎤⎥⎥⎦ .
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394 Orthogonal invariance of the CAR on Fock spaces

We can set r0 = κr, which as a matrix from (16.19) to (16.20) has the form

r0C =

⎡⎢⎢⎣
preg qreg 0 0
qreg preg 0 0
0 0 tqsg 0
0 0 0 tqsg

⎤⎥⎥⎦ . (16.22)

Clearly, r0 ∈ O(Y), since r, κ ∈ O(Y). (16.21) implies that r0 is j-non-
degenerate. �

Proposition 16.19 Let r ∈ O(Y) be j-self-adjoint. Then Y+reg = Y−reg =: Yreg

and Y+sg = Y−sg =: Ysg . We have the orthogonal decomposition Y = Yreg ⊕ Ysg

preserved by j and r. Let j = jreg ⊕ jsg and r = rreg ⊕ rsg . Then rreg is jreg -non-
degenerate, and jreg -self-adjoint on Yreg and rsg jsg is a conjugation on Ysg .

16.1.8 Restricted orthogonal group

The following subsection is parallel to Subsect. 11.1.6 about the restricted sym-
plectic group. Recall that B2(Y) denotes the set of Hilbert–Schmidt operators
on Y.

Proposition 16.20 Let r ∈ O(Y). Let p, q, Z±sg ,Z±reg be defined as above. The
following conditions are equivalent:

(1) j− r−1 jr ∈ B2(Y), (2) rj− jr ∈ B2(Y).
(3) Tr(q∗q) < ∞, (4) Tr(p∗p− 1l) < ∞, (5) Tr(pp∗ − 1l) <∞.

(6) dimZ+sg <∞ and d ∈ B2(Z+reg ,Z+reg).
(7) dimZ−sg <∞ and c ∈ B2(Z−reg ,Z−reg ).

If the above conditions are true, then dimY−sg = dimY+sg <∞.

Proof The proof of the equivalence of the first five conditions is identical to
the proof in Prop. 11.12. Assume now that condition (3) (and hence (4), (5))
holds. Since Z−sg = Ker p, Z+sg = Ker p∗, these spaces are finite-dimensional,
and p : Z−reg → Z+reg , p∗ : Z+reg → Z−reg are invertible with bounded inverses.
It follows then from (3) that d = qp−1 ∈ B2(Z+reg ,Z+reg) and c = q# (p# )−1 ∈
B2(Z−reg ,Z−reg ), so (3) ⇒ (6), (7). To prove that (6), (7) ⇒ (3), we argue
similarly, using the identities 1l + c# c = (pp∗)−1 , 1l + d∗d = (pp∗)−1 . �

Definition 16.21 Let Oj(Y) be the set of r ∈ O(Y) satisfying the conditions of
Prop. 16.20. Oj(Y) is called the restricted orthogonal group and is equipped with
the metric

dj(r1 , r2) := ‖p1 − p2‖+ ‖q1 − q2‖2 .

Equivalent metrics are ‖[j, r1 − r2 ]+‖+ ‖[j, r1 − r2 ]‖2 and ‖r1 − r2‖+
‖[j, r1 − r2 ]‖2 .
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16.1 Orthogonal group on a Kähler space 395

Noting that since Y−sg is j-invariant its dimension as a real vector space is
even, we define

SOj(Y) :=
{

r ∈ Oj(Y) :
1
2

dimY−sg is even
}

.

We set det r = 1 if r ∈ SOj(Y) and det r = −1 if r ∈ Oj(Y)\SOj(Y).
We say that a ∈ oj(Y) if a ∈ o(Y) and [a, j] ∈ B2(Y), or equivalently if g ∈

B2(Z,Z), where we use the decomposition (16.2).

Recall that the groups O2(Y) and SO2(Y) and the Lie algebra o2(Y) were
defined in Subsect. 14.1.2.

Proposition 16.22 (1) Oj(Y) and SOj(Y) are topological groups containing
O2(Y) and SO2(Y), and we have an exact sequence

1 → SOj(Y) → Oj(Y) → Z2 → 1.

(2) oj(Y) is a Lie algebra containing o2(Y).
(3) If a ∈ oj(Y), then ea ∈ SOj(Y).

In the following lemma, which we will prove before we prove the above propo-
sition, we use the concept of the regularized determinant, defined for b ∈ B2(Y)
as det2(1l + b) := det

(
(1l + b)e−b

)
; see (2.4).

Lemma 16.23 Let r ∈ Oj(Y). Then r is j-non-degenerate iff det2
(
1l + b(r)

) �= 0
for b(r) := 1

2 jr# [j, r].

Proof We have

rj + jr = 2rj
(
1l + b(r)

)
.

This implies that Ker(rj + jr) = Ker
(
1l + b(r)

)
Then we use Prop. 2.49. �

Proof of Prop. 16.22. The fact that Oj(Y) is a topological group, and oj(Y)
is a Lie algebra, follows by the same arguments as in Prop. 11.14. To show the
remaining facts, we will use Thm. 16.43, to be proven later on.

Since SOj(Y) is also the set of r ∈ Oj(Y) implementable by even unitaries, we
see that SOj(Y) is a subgroup of Oj(Y), using Thm. 16.43 (2)(ii) and (2)(iv).

Let us now prove that SOj(Y) is closed. Let rn ∈ SOj(Y) converge to r, and
let Urn

be the corresponding Bogoliubov implementers. By Thm. 16.43 (2)(v),
there exist μn , |μn | = 1 such that μnUrn

→ Ur . Urn
are even, and so is Ur . Hence

r ∈ SOj(Y).
Let us now prove (3). Set f(t) = det2

(
1l + b(eta)

)
, where b(eta) is given by

Lemma 16.23. The map t �→ f(t) is real analytic, and f(0) �= 0, hence f(t) is
not identically zero. So we can find a sequence tn →

n→∞ 1 such that f(tn ) �= 0.

By Lemma 16.23, etn a are j-non-degenerate, hence they belong to SOj(Y).
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396 Orthogonal invariance of the CAR on Fock spaces

But oj(Y) � a �→ ea ∈ Oj(Y) is continuous and SOj(Y) is closed. Hence, ea =
lim

n→∞ etn a belongs to SOj(Y). �

16.1.9 Anomaly-free orthogonal group

This subsection is parallel to Subsect. 11.1.7 about the anomaly-free symplectic
group. Recall that the groups O1(Y) and SO1(Y) and the Lie algebra o1(Y) were
defined in Subsect. 14.1.2. Recall also that B1(Y) denotes the set of trace-class
operators on Y.

Definition 16.24 Let Oj,af (Y) be the set of r ∈ Oj(Y) such that 2j− (jr + rj) ∈
B1(Y), or equivalently p− 1lZ ∈ B1(Z). Oj,af (Y) will be called the anomaly-free
orthogonal group and will be equipped with the metric

dj,af (r1 , r2) := ‖p1 − p2‖1 + ‖q1 − q2‖2 .

An equivalent metric is ‖[j, r1 − r2 ]+‖1 + ‖[j, r1 − r2 ]‖2 .
We set SOj,af (Y) := Oj,af (Y) ∩ SOj(Y).
We say that a ∈ oj,af (Y) if a ∈ oj(Y) and aj + ja ∈ B1(Y), or equivalently h ∈

B1(Y), where we use the decomposition (16.2).

Proposition 16.25 (1) Oj,af (Y) and SOj,af (Y) are topological groups contain-
ing O1(Y) and SO1(Y) respectively, and we have an exact sequence

1 → SOj,af (Y) → Oj,af (Y) → Z2 → 1.

(2) oj,af (Y) is a Lie algebra containing o1(Y).
(3) If a ∈ oj,af (Y), then ea ∈ SOj,af (Y).

Proof The proof is completely analogous to that of Prop. 16.22. �

Proposition 16.26 (1) Let r ∈ O(Y) be j-positive. Then r ∈ Oj(Y) iff r ∈
Oj,af (Y).

(2) Let a ∈ o(Y) be j-self-adjoint. Then a ∈ oj(Y) iff a ∈ oj,af (Y).

Proof (1) We know that r ∈ Oj(Y) iff c ∈ B2(Zreg ,Zreg ) and dimYsg < ∞. But
then (16.12) implies r ∈ Oj,af (Y).

(2) By the decomposition (16.2), a ∈ oj(Y) iff h = 0 and g ∈ B2
a (Z,Z). �

We will also need the following lemma:

Lemma 16.27 Let r ∈ Oj,af (Y), ε > 0. There exists a decomposition r = ts such
that 1l− s is finite rank and t ∈ Oj,af (Y), ‖1l− t‖ ≤ ε.

Proof 1l− r is compact. Hence, there exists an o.n. basis (e1 , e2 , . . . ) in CY such
that

rC =
∑

j

λj |ej )(ej |
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with |λj | = 1 and λj → 1. Then we set

tC :=
∑

|λj −1|≤ε

λj |ej )(ej |+
∑

|λj −1|>ε

|ej )(ej |, (16.23)

sC :=
∑

|λj −1|≤ε

|ej )(ej |+
∑

|λj −1|>ε

λj |ej )(ej |. (16.24)

(We easily see that the r.h.s. of (16.23) and (16.24) restrict to operators
on Y.) �

16.1.10 Pairs of Kähler structures on real Hilbert spaces

This subsection is parallel to Subsect. 11.1.8 about pairs of Kähler structures in
a symplectic space.

Recall that, as usual in this chapter, (Y, ν) is a real Hilbert space. Let us first
describe the action of the orthogonal group on Kähler anti-involutions.

Proposition 16.28 Let r ∈ O(Y) and let j be a Kähler anti-involution. Then

(1) j1 = r−1 jr is a Kähler anti-involution;
(2) r ∈ U(YC) iff j1 = j;
(3) r is j-non-degenerate iff Ker(j + j1) = {0}.

In the following theorem, for two Kähler anti-involutions j and j1 we try to
construct r ∈ O(Y) such that

r−1jr = j1 . (16.25)

Note that this problem is more complicated for O(Y) than for Sp(Y) (see Subsect.
11.1.8).

Theorem 16.29 (1) Let j, j1 be Kähler anti-involutions on a real Hilbert space
Y. Then k := −jj1 is a j-self-adjoint orthogonal transformation.

(2) Let k ∈ O(Y) be j-self-adjoint for a Kähler anti-involution j. Then j1 := jk
is a Kähler anti-involution.

(3) In what follows we assume that j, j1 , k are as above. Then Ker(j + j1) =
Ker(k + 1l) is invariant under j and j1 , and so is its orthogonal complement.

(4) There exists r ∈ O(Y) satisfying (16.25) iff Ker(j + j1) is even- or infinite-
dimensional.

(5) If there exists a j-positive r ∈ O(Y) satisfying (16.25), then Ker(j + j1) =
{0}.

(6) Assume that Ker(j + j1) = {0}. Then r := k
1
2 defined in Thm. 16.13 is the

unique j-positive element of O(Y) satisfying (16.25).
(7) There exists c ∈ Ba(Z,Z) such that(

k − 1l
k + 1l

)
C

=
[

0 c

c 0

]
. (16.26)
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(8) We have

rC =

[
(1l + cc∗)−

1
2 (1l + cc∗)−

1
2 c

−c∗(1l + cc∗)−
1
2 (1l + c∗c)−

1
2

]
, (16.27)

kC = =
[

(1l− cc∗)(1l + cc∗)−1 2(1l + cc∗)−1c

−2c∗(1l + cc∗)−1 (1l− c∗c)(1l + c∗c)−1

]
, (16.28)

j1C = i
[

(1l− cc∗)(1l + cc∗)−1 2(1l + cc∗)−1c

2c∗(1l + cc∗)−1 (c∗c− 1l)(1l + c∗c)−1

]
. (16.29)

Proof (1)–(3) are straightforward.
Set b = k−1l

k+1l . We check that jb = −bj. This implies (16.26). Then using (16.13),
we see that rC equals (16.12), which is repeated as (16.27).

By the properties of the Cayley transform we have k = 1l+b
1l−b , which yields

(16.28). Alternatively, we can use k = r2 . (16.29) follows from j1 = jk. �

Theorem 16.30 Let Z and Z1 be the holomorphic subspaces of CY for the
Kähler anti-involutions j and j1 . Suppose that Ker(j + j1) = {0}. Then{

(z,−cz) : z ∈ Dom c
}

is dense in Z1 ,{
(−cz, z) : z ∈ Dom c

}
is dense in Z1 .

Proof Every vector of Z1 is of the form (1l− ij1)y1 for y1 ∈ Y. Since
Ker(j + j1) = {0}, Ran (k + 1l) is dense in Y, hence the vectors of the form
(1l− ij1)(1l + k)−1y, for y ∈ Ran (k + 1l) are dense in Z1 . As in the proof of Prop.
11.21, we get that

(1l− ij1)(1l + k)−1y = z − cz,

for z = 1lZy ∈ Dom c. �

Proposition 16.31 Let j, j1 , k be as in Thm. 16.29. Set Ysg := Ker(j + j1) and
Yreg := Y⊥

sg . Note that Yreg and Ysg are preserved by j and j1 . Let Zreg and Zsg

be the corresponding holomorphic spaces. Recall also that one can define

c := (kC − 1l)(1l + kC)−1
∣∣
Zr e g

∈ Cla(Zreg ,Zreg ). (16.30)

Then the following conditions are equivalent:

(1) j− j1 ∈ B2(Y).
(2) 1l− k ∈ B2(Y).
(3) c ∈ B2(Zreg ,Zreg ) and dimZsg is finite.
(4) There exists a j-positive r ∈ Oj,af (Y) such that j1 = rjr# .
(5) There exists r ∈ Oj(Y) such that j1 = rjr# .

Proof The identity −j(j− j1) = 1l− k and j ∈ O(Y) imply the equivalence of
(1) and (2).
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(2)⇒(3). Since Ysg = Ker(1l + k) and 1l− k is compact, Ysg and hence Zsg

are finite-dimensional. Moreover k preserves Yreg and (1l + k)−1
∣∣
Yr e g

is bounded.

Using (16.26), we obtain that c ∈ B2(Zreg ,Zreg ).
(3)⇒(2). By (16.26), we see that (1l− k)

∣∣
Yr e g

∈ B2(Yreg ). Ysg = Ker(1l + k) is
finite-dimensional, hence we get that 1l− k ∈ B2(Y).

(4)⇒(5)⇒(1) is obvious. (3)⇒(4) follows by setting r := rreg ⊕ rsg , where
rreg ∈ O(Yreg ) is defined as in Thm. 16.29 (5), and rsg is any conjugation on
Ysg . �

16.2 Fermionic quadratic Hamiltonians on Fock spaces

As elsewhere in this chapter, Z is a Hilbert space and Y = Re(Z ⊕ Z) is the
corresponding Kähler space with the dual Y# = Re(Z ⊕Z). We consider the
Fock representation over Y in Γa(Z).

We study quadratic Hamiltonians on a fermionic Fock space. This section is
parallel to Sect. 11.2 about quadratic Hamiltonians on a bosonic Fock space. It
is also a continuation of Sect. 14.2, where quadratic fermionic Hamiltonians were
studied in an algebraic setting.

16.2.1 Quadratic anti-commuting polynomials and

their quantization

Let h ∈ Bfd(Z) (h is finite rank). It corresponds to the anti-symmetric polyno-
mial

Y# × Y# � ((z1 , z1), (z2 , z2)
) �→ 1

2
(
z1 ·hz2 − z1 ·h# z2

)
. (16.31)

Its Wick, anti-symmetric and anti-Wick quantizations are

dΓ(h), dΓ(h)− Tr h

2
1l, dΓ(h)− (Tr h)1l.

Note that the anti-Wick and anti-symmetric quantizations can be extended to
the case h ∈ B1(Z) (h is trace-class). The Wick quantization of (16.31) is well
defined for much more general h.

Suppose that g ∈ a l
Γ

2

a(Z) � Bfd
a (Z,Z) (g is anti-symmetric finite rank). Con-

sider the polynomial

Y# × Y# � ((z1 , z1), (z2 , z2)
) �→ (z1 ⊗a z2 |g) = z1 ·gz2 . (16.32)

The Wick, anti-symmetric and anti-Wick quantizations of (16.32) are the “two-
particle creation operator” a∗(g) defined in Subsect. 3.4.4. According to the
notation of Def. 13.27, this can be written as Opa∗,a(|g)

)
. It can be defined as a

bounded operator also if g ∈ Γ2
a(Z) � B2

a (Z,Z). It will act on Ψn ∈ Γn
a (Z) as

a∗(g)Ψn :=
√

(n + 2)(n + 1)g ⊗a Ψn . (16.33)

(On the right of (16.33) we interpret g as an element of Γ2
a(Z).)
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The polynomial complex conjugate to (16.32) times −1 is

Y# × Y# � ((z1 , z1), (z2 , z2)
) �→ (g|z2 ⊗a z1) = z1 ·g∗z2 . (16.34)

(−1 comes from the operator Λ; see (3.29).) The Wick, anti-symmetric and
anti-Wick quantizations of (16.34) are the “two particle annihilation operator”
a∗(g)∗ = a(g) defined in Subsect. 3.4.4. According to the notation of Def. 13.27,
this can be written as Opa∗,a(|g)

)
.

A general element of CPol2a(Y# ) is(
(z1 , z1), (z2 , z2)

) �→ z1 · hz2 − z1 · h# z2 + z1 · g1z2 − z1 · g2z2 , (16.35)

where h ∈ Bfd(Z), g1 , g2 ∈ Bfd
a (Z,Z). We can write (16.35) as

(z1 , z1)·ζ(z2 , z2), ζC =
[

g1 h

−h# −g2

]
.

(Recall that we use elements of La(Y# ,Y) for symbols of fermionic quadratic
Hamiltonians, as in Subsect. 14.2.3.)

The quantizations of ζ are

Opa∗,a(ζ) = 2dΓ(h) + a∗(g1) + a(g2), (16.36)

Op(ζ) = 2dΓ(h)− (Tr h)1l + a∗(g1) + a(g2), (16.37)

Opa,a∗
(ζ) = 2dΓ(h)− (2Tr h)1l + a∗(g1) + a(g2).

Note that

Op(ζ) =
1
2

(
Opa∗,a(ζ) + Opa,a∗

(ζ)
)

.

In particular, we can extend the definition of Op(ζ) and Opa,a∗
(ζ) to the

case when g1 , g2 ∈ B2(Z,Z) and h ∈ B1(Z). Opa∗,a(ζ) is defined under much
more general conditions. All these quantizations are self-adjoint iff h = h∗ and
g1 = g2 .

16.2.2 Fermionic Schwinger term

Recall from Thm. 14.13 that the anti-symmetric quantization restricted to
quadratic symbols yields an isomorphism of Lie algebra o1(Y) into quadratic
Hamiltonians in CARC ∗

(Y). This is no longer true in the case of the Wick quan-
tization, where the so-called Schwinger term appears. This is described in the
following proposition:

Proposition 16.32 Let ζ, ζi ∈ B(Y# ,Y), i = 1, 2. Then,

Op(ζ) = Opa∗,a(ζ) +
i
2
(Trζνj) 1l, (16.38)[

Opa∗,a(ζ1),Opa∗a(ζ2)
]

= 4Opa∗,a(ζ1νζ2 − ζ2νζ1) + i2(Tr[ζ1ν, ζ2ν]j) 1l.
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Proof We have νC =
1
2

[
0 1l
1l 0

]
∈ B(Z ⊕ Z,Z ⊕ Z). Therefore,

ζCνC =
1
2

[
h g

−g −h#

]
, ζCνCjC =

1
2

[
ih −ig
−ig ih#

]
. (16.39)

Hence, −Tr h = i
2 Trζνj, which implies (16.38).

Now, to compute the Schwinger term we note that by (14.9)[
Opa∗,a(ζ1),Opa∗a(ζ2)

]
= 4Op(ζ1νζ2 − ζ2νζ1).

Then we apply (16.38). �

16.2.3 Infimum of quadratic fermionic Hamiltonians

For simplicity, in this subsection we assume that Z is a finite-dimensional Hilbert
space.

Theorem 16.33 Let h ∈ Bh(Z), g ∈ B2
a (Z,Z). Let

ζC =
[

g h

−h# −g

]
. (16.40)

Then,

inf Opa∗,a(ζ) =
1
2
Tr

(
−
[

h2 + gg∗ hg − gh#

g∗h− h# g∗ h
2

+ g∗g

] 1
2

+
[

h 0
0 h#

])
.

Proof Clearly, ζν is self-adjoint and

(ζCνC)2 =
1
4

[
h2 + gg∗ hg − gh#

g∗h− h# g∗ h# 2 + g∗g

]
.

Thus, by Thm. 14.13,

inf Opa∗,a(ζ)− Tr h = inf Op(ζ)

= −Tr|ζν| = −1
2
Tr
[

h2 + gg∗ hg − gh#

g∗h− h# g∗ h# 2 + g∗g

] 1
2

. �

16.2.4 Two-particle creation and annihilation operators

In this subsection we allow the dimension of Z to be infinite. We study two-
particle creation and annihilation operators. Recall that they are defined for
c ∈ Γ2

a(Z) � B2
a (Z,Z).

Proposition 16.34 Let c ∈ Γ2
a(Z). Then a(c), a∗(c) are bounded operators with

‖a(c)‖ = ‖a∗(c)‖ = ‖c‖2 ; (16.41)

e−
1
2 a∗(c)a(z)e

1
2 a∗(c) = a(z)− a∗(cz), z ∈ Z; (16.42)

e
1
2 a(c)a∗(z)e−

1
2 a(c) = a∗(z)− a(cz), z ∈ Z. (16.43)
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Proof Since c is anti-symmetric Hilbert–Schmidt, by Corollary 2.88 there exists
an o.n. family

(w1,+ , w1,−, w2,+ , w2,− . . . ) (16.44)

and positive numbers (λ1 , λ2 , . . . ) such that

c =
∞∑

j=1

λj

2
(|wj,+ 〉〈wj,−| − |wj,−〉〈wj,+ |

)
.

Then,

a∗(c) =
∞∑

j=1

λja
∗(wj,+)a∗(wj,−).

Using the Jordan–Wigner representation compatible with the o.n. family (16.44),
we easily obtain

‖a∗(c)‖2 =
∞∑

j=1

λ2
j . �

16.2.5 Fermionic Gaussian vectors

Let c ∈ Γ2
a(Z) � B2

a (Z,Z). Then c∗c is trace-class, so det(1l + c∗c) is well
defined.

Definition 16.35 The fermionic Gaussian vector associated with c is defined
as

Ωc := det(1l + c∗c)−
1
4 e−

1
2 a∗(c)Ω.

Theorem 16.36 (1) If c ∈ B2
a (Z,Z), then Ωc is a normalized vector in Γa(Z)

satisfying (
a(z)− a∗(cz)

)
Ψ = 0, z ∈ Z, (Ωc |Ωc) > 0.

(2) Let c ∈ Cla(Z,Z). Assume that there exists a non-zero Ψ ∈ Γa(Z) satisfying(
a(z)− a∗(cz)

)
Ψ = 0, z ∈ Dom c.

Then c ∈ B2
a (Z,Z). Moreover Ψ is proportional to Ωc .

(3) Let c1 , c2 ∈ B2
a (Z,Z). Then

(Ωc1 |Ωc2 ) = det(1l + c∗1c1)−
1
4 det(1l + c∗2c2)−

1
4 Pf
[

c1 −1l
1l c2

]
.

To make the above theorem complete we need to define the Pfaffian of certain
infinite-dimensional operators, which is provided by the following proposition:
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Proposition 16.37 Let ci ∈ B2
a (Z,Z), i = 1, 2. Set ζ ∈ Ba(Z ⊕ Z,Z ⊕ Z)

equal to

ζ =
[

c1 −1lZ
1lZ c2

]
.

Let πn be an increasing family of finite rank projections on Z with s − lim
n→∞πn =

1l. Set Zn = πnZ, and ζn = (πn ⊕ πn )ζ(πn ⊕ πn ). Then

lim
n→∞Pfζn =: Pfζ

exists, where, for each n Pfζn , is computed w.r.t. the Liouville form on Zn ⊕Zn .
Moreover

(Pfζ)2 = det(1l− c1c2).

Proof of Thm. 16.36 and Prop. 16.37. Let Ψ be as in (2). Arguing as in the
proof of Thm. 11.28, we obtain, for zi ∈ Dom c and λ := (Ω|Ψ),(

a∗(z2m+1) · · · a∗(z1)Ω|Ψ
)

= 0,(
a∗(z2m ) · · · a∗(z1)Ω|Ψ

)
= λ

∑
σ∈Pair2 m

sgn(σ)
m

Π
j=1

(zσ (2j ) |czσ (2j+1)).

Therefore, λ = 0 implies Ψ = 0. Hence, λ �= 0. In particular, for z1 , z2 ∈ Dom c

this gives the following formula for the two-particle component of Ψ:
√

2(z2 ⊗a z1 |Ψ2) = λ(z1 |cz2). (16.45)

As in Thm. 11.28, this implies that c ∈ B2
a (Z,Z) and Ψ2 = − λ√

2
c.

We have

(z1 ⊗a · · · ⊗a z2m |c⊗a m ) =
m!2m

2m!

∑
σ∈Pairm

m−1
Π

i=0
sgn(σ) (zσ (2i+1) |czσ (2i+2)),

which implies that

Ψ2m = λ(−1)m

√
(2m)!

2m m!
c⊗a m = λ(−1)m 1

2m m!
(
a∗(c)

)m Ω,

Ψ2m+1 = 0,

i.e.

Ψ = λe−
1
2 a∗(c)Ω.

Let us now compute ‖Ψ‖2 . Without loss of generality we can assume λ = 1.
Since c is compact, we can by Corollary 2.88 find an o.n. basis {zi,+ , zi,−}i∈I

of (Ran c)⊥, such that czi,− = λizi,+, czi,+ = −λizi,+. Thus c∗czi,± = λ2
i zi,±.

Using the corresponding basis in Γa(Z), we obtain

‖Ψ‖2 = Π
i∈I

(1 + λ2
i ) = det(1l + c∗c)

1
2 . (16.46)

This shows that the vector Ωc is normalized.
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It remains to show (3). Let us first assume that Z is finite-dimensional. In the
fermionic complex-wave representation, e−

1
2 a∗(c)Ω equals e−

1
2 z ·cz .(

e−
1
2 a∗(c1 )Ω|e− 1

2 a∗(c2 )Ω
)

=
ˆ

ez ·z e−
1
2 z ·c1 z e−

1
2 z ·c2 zdzdz

=
ˆ

exp
1
2
[z, z]·

[−c1 −1l
1l −c2

] [
z

z

]
dzdz

= Pf
[−c1 −1l

1l −c2

]
= det(1l− c1c2)

1
2 ,

using the formulas in Subsect. 1.1.2.
Let us now consider the general case. We first claim that the map

B2
a (Z,Z) � c �→ Ωc ∈ Γa(Z) (16.47)

is continuous for the Hilbert–Schmidt norm. Recall from Prop. 16.34 that

‖a∗(c)‖ = ‖c‖2 . (16.48)

Note now that if a1 , a2 are two bounded operators then

‖ea1 − ea2 ‖ ≤ ‖a1 − a2‖e‖a1 ‖ − e‖a2 ‖

‖a1‖ − ‖a2‖ .

Using (16.48), for ai = a∗(ci) with ‖ci‖2 ≤ C this yields,

‖e− 1
2 a∗(c1 ) − e−

1
2 a∗(c2 )‖ ≤ C ′‖c1 − c2‖2 .

Since c �→ det(1l + c∗c)−
1
4 is continuous for the Hilbert–Schmidt norm, this

proves (16.47).
We can now complete the proof of (3) in the general case. Let us choose an

increasing sequence of finite rank projections πn and set ci,n = πnciπn , i = 1, 2.
We have ci,n → ci in the Hilbert–Schmidt norm. Hence, by (16.47), Ωci , n

→ Ωci
,

and thus

(Ωc1 |Ωc2 ) = lim
n→∞(Ωc1 , n

|Ωc2 , n
),

which proves (3) in the general case. �

16.3 Fermionic Bogoliubov transformations on Fock spaces

We keep the same framework and notation as in the rest of the chapter. That
is, Z is a Hilbert space, Y := Re(Z ⊕ Z) is the corresponding complete Kähler
space, equipped with ν, j. We also consider the Fock CAR representation

Y � y �→ φ(y) ∈ Bh
(
Γa(Z)

)
.

We are going to study the implementation of orthogonal transformations on a
fermionic Fock space. The central result of the section is the Shale–Stinespring

https://doi.org/10.1017/9781009290876.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290876.017


16.3 Fermionic Bogoliubov transformations on Fock spaces 405

theorem, which says that an orthogonal transformation is implementable iff it
belongs to the restricted orthogonal group. The unitary operators implementing
the corresponding Bogoliubov automorphisms form a group, denoted Pinc

j (Y),
which is one of the generalizations of the Pinc group from the finite-dimensional
case and contains the group Pinc

2(Y), which is a subgroup of the unitary part of
CARW ∗

(Y).
We will also describe the group Pinj,af (Y), which is one of the generalizations

of the Pin group from the finite-dimensional case. It contains the group Pin2(Y)
as a proper subgroup.

Clearly, both Pinc
j (Y) and Pinj,af (Y) depend on the Kähler structure of Y.

This section is parallel to Sect. 11.3, where Bogoliubov transformations on
bosonic Fock spaces were studied. It can be viewed as a continuation of Sect.
14.3, which described the implementability of Bogoliubov transformations in the
C∗- and W ∗-CAR algebras.

16.3.1 Extending parity and complex conjugation

Clearly, we can isometrically embed CARC ∗
(Y) in B

(
Γa(Y)

)
. The parity auto-

morphism α defined on CARC ∗
(Y) extends to a weakly continuous involution

on the whole B
(
Γa(Z)

)
by setting

α(A) := IAI. (16.49)

Thus we can speak about even and odd operators on B
(
Γa(Z)

)
.

Unfortunately, there seems to be no analog of (16.49) for the complex conju-
gation A �→ c(A) on the Fock space, as seen from the following proposition:

Proposition 16.38 Let Y be infinite-dimensional. Then CliffC ∗
(Y) is weakly

dense in B
(
Γa(Z)

)
. Hence, the anti-linear automorphism A→ c(A) cannot be

extended from CARC ∗
(Y) to a strongly continuous automorphism of B

(
Γa(Z)

)
.

Proof It is sufficient to assume that Z has an o.n. basis (e1 , e2 , . . . ). Let θ ∈ R.
Let un ∈ U(Z) be defined by

unej :=

{
e

i2
n θ ej , j = 1, . . . , n;

0, j = n + 1, . . . .

One finds that if e ∈ Z is a normalized vector, then

2ia∗(e)a(e) = φ(ie,−ie)φ(e, e) + i.

Hence,

Γ(un ) = exp
( n∑

j=1

θ

n
2ia∗(ej )a(ej )

)
= eiθ exp

( n∑
j=1

θ

n
φ(iej ,−iej )φ(ej , ej )

)
.
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406 Orthogonal invariance of the CAR on Fock spaces

Therefore, Un := Γ(un )e−iθ ∈ CliffC ∗
(Y). Clearly,

s − lim
n→∞Un = eiθ1l.

Consequently, eiθ1l belongs to the strong closure of CliffC ∗
(Y). Hence, the strong

closure of CliffC ∗
(Y) contains CARC ∗

(Y). But CARC ∗
(Y) is strongly dense in

B
(
Γa(Z)

)
. �

16.3.2 Group Pinc
j (Y)

Definition 16.39 We define Pinc
j (Y) to be the set of U ∈ U

(
Γa(Z)

)
such that{

Uφ(y)U∗ : y ∈ Y} =
{
φ(y) : y ∈ Y}.

We set

Spinc
j (Y) :=

{
U ∈ Pinc

j (Y) : α(U) = U
}
.

We equip Pinc
j (Y) with the strong operator topology.

It is obvious that Pinc
j (Y) is a topological group and Spinc

j (Y) is its closed
subgroup.

The following definitions are parallel to definitions of Sect. 14.3.

Definition 16.40 Let A ∈ B
(
Γa(Z)

)
and r ∈ O(Y).

(1) We say that A intertwines r if

Aφ(y) = φ(ry)A, y ∈ Y. (16.50)

(2) If in addition A is unitary then we also say that A implements r.
(3) If there exists U ∈ U

(
Γa(Z)

)
that implements r, then we say that r is imple-

mentable in the Fock representation.

It is clear that the map Pinc
j (Y) → O(Y) defined by (16.50) is a group homo-

morphism. However, one prefers to use a different homomorphism, arising from
the following definition:

Definition 16.41 Let r ∈ O(Y).

(1) We say that A ∈ B
(
Γa(Z)

)
α-intertwines r ∈ O(Y) if

α(A)φ(y) = φ(ry)A, y ∈ Y.

(2) If in addition A is unitary then we also say that A α-implements r.
(3) If there exists U ∈ U

(
Γa(Z)

)
that α-implements r, then we say that r is

α-implementable in the Fock representation.

We will see in Thm. 16.43 that if r is α-implementable in the Fock represen-
tation, then necessarily r ∈ Oj(Y). Therefore, det r is well defined by Def. 16.21
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and we can introduce the notion of det-implementation, essentially equivalent to
α-implementability.

Definition 16.42 Let r ∈ Oj(Y).

(1) We say that A ∈ B
(
Γa(Z)

)
det-intertwines r if

Aφ(y) = det r φ(ry)A, y ∈ Y. (16.51)

(2) If in addition A is unitary, then we also say that A det-implements r.
(3) If there exists U ∈ U

(
Γa(Z)

)
that det-implements r, then we say that r is

det-implementable in the Fock representation.

We will prove

Theorem 16.43 (The Shale–Stinespring theorem about Bogoliubov transfor-
mations)

(1) Let r ∈ O(Y). The following statements are equivalent:
(i) r is α-implementable in the Fock representation.
(ii) r is det-implementable.
(iii) r is implementable in the Fock representation.
(iv) r ∈ Oj(Y).

(2) Suppose now that r ∈ Oj(Y). Then the following is true:
(i) There exists Ur ∈ Pinc

j (Y) such that the set of elements of U
(
Γa(Z)

)
α-implementing r consists of operators of the form μUr with |μ| = 1.

(ii) Ur is even iff r ∈ SOj(Y). Otherwise, it is odd. Hence, Ur α-implements
r iff it det-implements r.

(iii) The set of elements of U
(
Γa(Z)

)
implementing r consists of operators of

the form μUr with |μ| = 1 if det r = 1 and μU−r with |μ| = 1 if det r =
−1.

(iv) If r1 , r2 ∈ Oj(Y), then Ur1 Ur2 = μUr1 r2 for some μ such that |μ| = 1.
(v) If rn → r in Oj(Y), then there exist μn , |μn | = 1, such that μnUrn

→ Ur

strongly.
(3) Most of the above statements can be summarized by the following commut-

ing diagram of Lie groups and their continuous homomorphisms, where all
vertical and horizontal sequences are exact:

1 1
↓ ↓

1 → U(1) → U(1) → 1
↓ ↓ ↓

1 → Spinc
j (Y) → Pinc

j (Y) → Z2 → 1
↓ ↓ ↓

1 → SOj(Y) → Oj(Y) → Z2 → 1
↓ ↓ ↓
1 1 1

(16.52)
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408 Orthogonal invariance of the CAR on Fock spaces

As a preparation for the proof of the above theorem we will first show the
following lemma:

Lemma 16.44 Let r ∈ O(Y). Then the set of elements of A ∈ B
(
Γa(Z)

)
α-intertwining r is either empty or of the form {μU : μ ∈ C}, where U is
unitary. Besides, U is even or odd.

Proof Let A = A0 + A1 with A0 even and A1 odd. Then

(A0 + A1)φ(y) = φ(ry)(A0 −A1), y ∈ Y. (16.53)

Comparing even and odd terms in (16.53), we obtain

A0φ(y) = φ(ry)A0 , A1φ(y) = −φ(ry)A1 , y ∈ Y. (16.54)

Hence, A∗
0A0 and A∗

1A1 commute with φ(y), y ∈ Y. Clearly, they are even. Hence,
by the irreducibility of the Fock CAR representation, they are proportional to
identity. Hence, the operators Ai are proportional to a unitary operator.

(16.54) implies also that A∗
1A0 anti-commutes with φ(y), y ∈ Y. By Prop. 13.3,

this implies that A∗
1A0 is even. But A∗

1A0 is odd. Hence, A∗
1A0 = 0. Thus one Ai

is zero. �

16.3.3 Implementation of partial conjugations

Let κ ∈ O(Y) be an involution with Ker(κ + 1l) finite. Clearly, κ ∈ O1(Y). Hence,
κ is det-implementable in Cliffalg (Y). In fact, if (e1 , . . . , en ) is an o.n. basis of
Ker(κ + 1l), then

Uκ = φ(e1) · · ·φ(en ) ∈ Cliffalg (Y)

det-implements κ.
Recall that Cliffalg (Y) can be treated as a sub-algebra of B

(
Γa(Z)

)
. Hence,

Uκ det-implements κ in the Fock representation.
In the case of the Fock CAR representation one can distinguish a class of

orthogonal involutions with special properties – the so-called partial conjuga-
tions; see Def. 16.16. Assume now that κ is not only an orthogonal involution,
but also a partial conjugation on the Kähler space Y. Let W := 1l−ij

2 Ker(κ + 1l)
be the holomorphic subspace associated with Ker(κ + 1l). It is easy to see that,
setting

wj :=
1
2
(ej − ijej ), j = 1, . . . , n,

we obtain an o.n. basis of W, and

κCwj = wj , κCwj = wj .
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Note that in this case Uκ transforms the vacuum into the Slater determinant
associated with the subspace W:

UκΩ = a∗(w1) · · · a∗(wn )Ω.

Moreover, we can easily put Uκ in the Wick-ordered form:

Uκ = (a∗(w1) + a(w1)) · · · (a∗(wn ) + a(wn ))

=
∑

sgn(i1 , . . . , ik ) a∗(wi1 ) · · · a∗(wik
)a(wj1 ) · · · a(wjn −k

),

where we sum over all 1 ≤ i1 < · · · < ik ≤ n, 1 ≤ j1 < · · · < jn−k ≤ n with
{i1 , . . . , ik} ∪ {j1 , . . . , jn−k} = {1, . . . , n}, and sgn(i1 , . . . , ik ) is the sign of the
permutation (i1 , . . . , ik , j1 , . . . , jn−k ).

16.3.4 Implementation of j-non-degenerate transformations

For j-non-degenerate orthogonal transformations we can write down a formula
for its Bogoliubov implementer that is parallel to that of the bosonic case
(11.42).

Theorem 16.45 Let r ∈ Oj(Y) be j-non-degenerate. Let p, c, d be defined as in
Subsect. 16.1.1. Set

U j
r = |det pp∗| 14 e

1
2 a∗(d)Γ

(
(p∗)−1)e 1

2 a(c) . (16.55)

Then U j
r is the unique unitary operator implementing r such that

(Ω|U j
rΩ) > 0. (16.56)

We have α(U j
r ) = U j

r . Thus U j
r ∈ Spinc

j (Y).

Proof Let z ∈ Z. Recall that

Γ(p)a∗(z)Γ(p−1) = a∗(pz), Γ(p)a(z)Γ(p−1) = a
(
p∗−1z

)
. (16.57)

Using (16.57), (16.42) and (16.43), we obtain

U j
r a

∗(z) =
(
a∗(p∗−1z − dpcz)− a(pcz)

)
U j

r

=
(
a∗(pz) + a(qz)

)
U j

r ,

U j
r a(z) =

(
a(pz)− a∗(dpz)

)
U j

r

=
(
a(pz) + a∗(qz)

)
U j

r .

Thus U j
r implements r.

By Lemma 16.44, U j
r is proportional to a unitary operator. By Thm. 16.36 (1),

U j
rΩ = Ω−d

is of norm 1. Hence, U j
r is unitary. Finally, (Ω|U j

rΩ) = |det pp∗| 14 > 0. �
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16.3.5 End of proof of the Shale–Stinespring theorem

In this subsection we finish the proof of the implementability of the restricted
orthogonal group.

Lemma 16.46 Let W be an infinite-dimensional subspace of Z, and Ψ ∈ Γa(Z)
such that

a∗(w)Ψ = 0, w ∈ W.

Then Ψ = 0.

Proof We have

a(w)a∗(w) = −a∗(w)a(w) + ‖w‖21l, w ∈ Z.

Hence, for any projection πn of dimension n with range contained in W, we have

eitdΓ(πn )Ψ = eitnΨ. (16.58)

Now suppose that dimW = ∞. Then we can find a sequence of projections πn ≤
1lW going strongly to an infinite-dimensional projection π. Then the l.h.s. of
(16.58) converges to eitdΓ(π )Ψ and the r.h.s. has no limit if Ψ �= 0, which is a
contradiction. �

Proof of Thm. 16.43. Let r ∈ Oj(Y). By Prop. 16.20, r has a finite-dimensional
singular space. By Prop. 16.18, it can be represented as a product of a j-non-
degenerate transformation and a partial conjugation with a finite dimensional
singular space. The former is implementable in B

(
Γa(Z)

)
by Thm. 16.45, and

the latter by Subsect. 16.3.3. This proves that r is implementable in B
(
Γa(Z)

)
.

Suppose that r ∈ O(Y) is implemented by U ∈ U
(
Γa(Z)

)
. Let Ψ := UΩ. Note

that, for any z ∈ Z, a(z)Ω = 0 and

Ua(z)U∗ = a(pz) + a∗(qz).

Therefore, (
a(pz) + a∗(qz)

)
Ψ = 0, z ∈ Z. (16.59)

Assume first that r is j-non-degenerate. Then (16.59) implies(
a(z) + a∗(dz)

)
Ψ = 0, z ∈ Ran p.

Using the fact that Ran p is dense and Thm. 16.36 (2), we obtain that d ∈
B2(Z,Z), and hence r ∈ Oj(Y).

Suppose now that r ∈ O(Y) is arbitrary. (16.59) yields

a∗(z)Ψ = 0, z ∈ q Ker p. (16.60)

By Lemma 16.46, this implies that q Ker p is finite-dimensional. But, for z ∈
Ker p, ‖qz‖ = ‖z‖. Hence, dim q Ker p = dim Ker p. So Ker p is finite-dimensional.
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By Prop. 16.18, we can find a partial conjugation κ such that rκ is j-non-
degenerate. The dimension of the singular space of κ is dim Ker p. By Subsect.
16.3.3, κ is implementable. Hence, rκ is implementable. By what we have just
proven, rκ ∈ Oj(Y). Clearly, κ ∈ Oj(Y). Hence, r ∈ Oj(Y).

We write r as κr0 , Ur = UκUr0 , where κ is a partial conjugation and r0 is
j-non-degenerate. Then the Gaussian vector Ur0 Ω is an even vector, as seen in
the proof of Thm. 16.36. From the form of Uκ given in Subsect. 16.3.3, we see
that UrΩ is even (resp. odd) if r is such. Hence, α(Ur ) = Ur if det r = 1, and
α(Ur ) = −Ur if det r = −1.

Finally, let us prove (2)(v). Let rn ∈ Oj(Y) such that rn → r. From Thm.
16.43, we know that Urn r−1 = ±Urn

U−1
r . For n large enough, rnr−1 is close to

1l in the topology of Oj(Y), hence is j-non-degenerate and belongs to SOj(Y).
From the explicit form of Ur for j-non-degenerate r given in Thm. 16.45, we see
that Urn r−1 → 1l strongly, hence Urn

→ ±Ur strongly. �

16.3.6 One-parameter groups of Bogoliubov transformations

Let h ∈ Bh(Z), g ∈ B2
a (Z,Z). Let ζ =

[
g h

−h# −g

]
. Recall that

Opa∗,a(ζ) := 2dΓ(h) + a∗(g) + a(g)

is a self-adjoint operator. If in addition h ∈ B1(Z), then we can use the anti-
symmetric quantization to quantize ζ obtaining

Op(ζ) := 2dΓ(h) + a∗(g) + a(g)− (Tr h)1l.

Let a ∈ o(Y) be given by

aC = iζCνC =
i
2

[
h g

−g −h#

]
;

see (16.39). Let rt = eta and

rtC =
[

pt qt

qt pt

]
.

For t ∈ R such that rt is non-degenerate, we set

dt := qtp
−1
t , ct := −q#

t (p#
t )−1 .

The following formula gives the unitary group generated by Opa∗,a(ζ):

Theorem 16.47 (1) Let t ∈ R be such that rt is non-degenerate. Then
pte−ith − 1l ∈ B1(Z), dt, ct ∈ B2(Z,Z), and

eitOpa ∗ , a (ζ ) = det
(
pte−ith) 1

2 e
1
2 a∗(dt )Γ(p∗−1

t )e
1
2 a(ct ) . (16.61)

Besides, (16.61) implements rt .
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(2) If in addition h ∈ B1(Z), then

eitOp(ζ ) = det p
1
2
t e

1
2 a∗(dt )Γ(p∗−1

t )e
1
2 a(ct ) . (16.62)

(In both (16.61) and (16.62) the branch of the square root is determined by
continuity.)

16.3.7 Implementation of j-non-degenerate

j-positive transformations

In this subsection we consider a j-non-degenerate j-positive orthogonal transfor-
mation r, considered in Subsect. 16.1.3. From formula (16.12) we see that there
exists c ∈ B2

a (Z,Z) and

rC =
[

1l c

0 1l

][
(1l + cc∗)

1
2 0

0 (1l + c∗c)−
1
2

] [
1l 0
−c∗ 1l

]
.

By Thm. 16.45, r is then implemented by

U j
r = det(1l + cc∗)−1/4e

1
2 a∗(c)Γ(1l + cc∗)

1
2 e

1
2 a(c) . (16.63)

We recall also that a ∈ o(Y) is j-self-adjoint iff

aC = i
[

0 g

g∗ 0

]
, (16.64)

for g ∈ Cla(Z,Z). Clearly, r = ea ∈ Oj(Y) iff a ∈ B2(Y), i.e. g ∈ B2
a (Z,Z). For

such a, we obtain an implementable one-parameter group of j-non-degenerate
j-positive orthogonal transformations R � t �→ eta = rt . On the quantum level
this corresponds to

U j
rt

= e
i
2

(
a∗(g)+a(g)

)
(16.65)

=
(
det cos(t

√
gg∗)
) 1

2 e
i t
2 a∗
(

t a n
√

g g ∗√
g g ∗ g

)
Γ
(
cos(t

√
gg∗)
)−1e

− i t
2 a
(

t a n
√

g g ∗√
g g ∗ g

)
.

Clearly, (16.65) is essentially a special case of (16.61).

16.3.8 Pin group in the Fock representation

Recall that in Subsect. 14.3.2 for an arbitrary Euclidean space Y we defined the
group Pin1(Y) satisfying the exact sequence

1 → Pin1(Y) → O1(Y) → Z2 → 1. (16.66)

We also defined the group Pinc
1(Y), which satisfied

1 → Pinc
1(Y) → O1(Y) → U(1) → 1. (16.67)

We had the property

1 → Pin1(Y) → Pinc
1(Y) → U(1) → 1. (16.68)
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Recall that both CARC ∗
(Y) and CliffC ∗

(Y) can be embedded in B
(
Γa(Z)

)
(where Y = Re(Z ⊕ Z)). Hence, we can embed Pinc

1(Y) and Pin1(Y) in
U
(
Γa(Z)

)
. It is natural to ask whether both these groups have natural extensions

in the Fock representation.
The group Pinc

j (Y) defined in Def. 16.39 is, in some sense, the maximal exten-
sion of Pinc

1(Y). In this subsection we will construct the group Pinj,af (Y), which
can be viewed as the maximal extension of Pin1(Y),

The analog of (16.68) will not however be true for Pinc
j (Y) and Pinj,af (Y) if Y

is infinite-dimensional. In fact, in this case the factor group Pinc
j (Y)/P inj,af (Y)

is much larger than U(1). In quantum field theory this is responsible for the
so-called anomalies – symmetries of the classical system that cannot be lifted to
the quantum level.

The definition of the group Pinj,af (Y) is somewhat complicated. We first define
its j-non-degenerate elements. Then we use the representation-independent con-
struction, which we discussed in the definition of Pin1(Y) in Subsect. 14.3.2, to
handle j-degenerate elements.

Definition 16.48 Let r ∈ Oj,af (Y) be j-non-degenerate and p, c, d be given by
Sect. 16.1. We define the pair of operators

Ur = ±(det p∗)
1
2 e

1
2 a∗(d)Γ(p∗−1)e

1
2 a(c) . (16.69)

Pinj,af (Y) is defined as the set of operators ±UtUs in U
(
Γa(Z)

)
, where t ∈

Oj,af (Y) is j-non-degenerate, s ∈ O1(Y), ±Ut is defined as in (16.69) and Us is
defined as in Subsect. 14.3.2. We set Spinj,af (Y) := Pinj,af (Y) ∩ Spinj(Y).

Theorem 16.49 Pinj,af (Y) is a subgroup of Pinc
j (Y). Spinj,af (Y) is a sub-

group of Spinc
j (Y). Pinc

j (Y) → Oj(Y) restricts to a surjective homomorphism
Pinj,af (Y) → Oj,af (Y). The pre-image of each r ∈ Oj,af (Y) consists of precisely
two elements of Pinj,af (Y) differing by the sign, which will be denoted by ±Ur .

The above statements can be summarized by the following commuting diagram
of groups and their continuous homomorphisms, where all vertical and horizontal
sequences are exact:

1 1
↓ ↓

1 → Z2 → Z2 → 1
↓ ↓ ↓

1 → Spinj,af (Y) → Pinj,af (Y) → Z2 → 1
↓ ↓ ↓

1 → SOj,af (Y) → Oj,af (Y) → Z2 → 1
↓ ↓ ↓
1 1 1

(16.70)

Furthermore, if r ∈ O1(Y), then ±Ur defined in Subsect. 14.3.2 coincides with
±Ur defined in Thm. 16.49.
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The proof of the above theorem is divided into a sequence of steps.

Lemma 16.50 Suppose that r ∈ Oj,af is j-non-degenerate. Then Ur defined in
Subsect. 14.3.2 coincides with ±Ur defined in (16.69). In particular, we have the
following cases:

(1) If w ∈ U1(YC), so that we can write wC =
[

u 0
0 u

]
for u ∈ U1(Z), then

Uw = ±(det u)
1
2 Γ(u). (16.71)

(2) If r is j-non-degenerate and j-positive, so that we can write

rC =
[

1l c

0 1l

] [
p−1 0
0 p

] [
1l 0
−c∗ 1l

]
for c ∈ B2

a (Z,Z), p = (1l + cc∗)−
1
2 , then

±Ur = ±(det p)
1
2 e

1
2 a∗(c)Γ(p−1)e

1
2 a(c) = ±U j

r .

Proof Consider first (1). We can find h ∈ B1
h(Z) such that u = eih . Then w = ea

with aC = i
[

h 0
0 −h#

]
. By Prop. 14.27, Uw = ±e

1
4 Op(aν−1 ) . But

1
4
(aν−1)C =

i
2

[
0 h

−h# 0

]
, Op(

1
4
aν−1) = idΓ(h)− i

2
Tr h.

Thus

±Uw = ±eidΓ(h)− i
2 Tr h = ±(det e−ih)

1
2 Γ(eih) = ±(det u∗)

1
2 Γ(u).

Let us prove (2). Let r ∈ O1(Y) be j-non-degenerate and j-positive. We can

find g ∈ B1
a (Z,Z) such that aC = i

[
0 g

g∗ 0

]
and r = ea . We have

1
4
(aν−1)C =

i
2

[
g 0
0 g∗

]
, Op(

1
4
aν−1) =

i
2
(a∗(g) + a(g)).

By Prop. 14.27, ±U j
r = ±eOp( 1

4 aν−1 ) , and by (16.65),

±eOp( 1
4 aν−1 ) = ±(det p)

1
2 e

1
2 a∗(c)Γ(p−1)e

1
2 a(c) = ±U j

r .

If r is an arbitrary j-non-degenerate element of O1(Y), by Thm. 16.13, we can
write r = wr0 with w unitary and r0 j-non-degenerate and j-positive. By the
proof of Thm. 16.13, r0 , w ∈ O1(Y). Then with

wC =
[

u 0
0 u

]
, (r0)C =

[
p0 q0

q0 p0

]
,

we have

rC = (wr0)C =
[

up0 uq0

uq0 up0

]
.
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Using (1) and (2), we obtain

± Ur = ±Uw Ur0 = ±(det u∗)
1
2 Γ(u)(det p0)

1
2 e

1
2 a∗(c0 )Γ(p−1

0 )e
1
2 a(c0 )

= ±(det(up0)∗
) 1

2 e
1
2 a∗(uc0 )Γ

(
(up0)∗−1)e 1

2 a(c0 ) . (16.72)

But up0 = p, uc0 = d and c0 = c, hence (16.72) coincides with (16.69). �

Lemma 16.51 Let r ∈ Oj,af (Y) be j-non-degenerate. Then (16.69) defines a
pair of even unitary operators differing by a sign implementing r. ±Ur depends
continuously on r ∈ Oj,af (Y), where Oj,af (Y) is equipped with its usual topology.

Proof To see that ±Ur implements r, it is enough to note that it is proportional
to U j

r defined in (16.55). �

Lemma 16.52 Let t, ts ∈ Oj,af (Y) be j-non-degenerate and s ∈ O1(Y). Then

±UtUs = ±Uts, (16.73)

where ±Ut , ±Uts are defined by (16.69) and ±Us was defined in Subsect. 14.3.2.

Proof Let tn ∈ Oj,af (Y) be a sequence convergent in the metric of Oj,af (Y) to
t. Then, for any s ∈ Oj,af (Y), tns → ts in the same metric.

The set of j-non-degenerate elements is open in Oj,af (Y). Therefore, for suffi-
ciently large indices, tn and tnsn are j-non-degenerate. Hence,

±Utn
→ ±Ut, ±Utn s → ±Uts.

Therefore, ±Utn
Us → ±UtUs .

Suppose in addition that s ∈ O1(Y). Since O1(Y) is dense in Oj,af (Y), we can
demand that tn ∈ O1(Y) Therefore, ±Utn

Us = ±Utn s . �

Lemma 16.53 Let t1s2 = t2s2 , where ti ∈ Oj,af (Y) are j-non-degenerate and
si ∈ O1(Y). Then

±Ut1 Us1 = ±Ut2 Us2 , (16.74)

where ±Uti
are defined by (16.69) and ±Usi

were defined in Subsect. 14.3.2.

Proof We have t1(s1s
#
2 ) = t2 , and hence, by Lemma 16.52,

±Ut1 Us1 s#
2

= ±Ut2 .

But ±Us1 s#
2

= ±Us1 U
∗
s2

, because s1 , s2 ∈ O1(Y). �

Proof of Thm. 16.49. We know by Lemmas 16.27 and 16.7 that every r ∈
Oj,af (Y) can be written as r = ts, where t ∈ Oj,af (Y) is j-non-degenerate and
s ∈ O1(Y). By Lemma 16.53,

±Ur := ±UtUs,

where Ut is defined as in (16.69) and ±Us were defined in Subsect. 14.3.3, does
not depend on the decomposition.
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416 Orthogonal invariance of the CAR on Fock spaces

For s ∈ Oj,af (Y), set

Us :=
{
r ∈ Oj,af (Y) : rs is j-non-degenerate

}
.

Clearly, Us are open in Oj,af (Y). Besides, by Lemma 16.51,

U1l � r �→ ±Ur ∈ Pinj,af (Y)/{1l,−1l} (16.75)

is continuous. Using Def. 16.48 and the continuity of multiplication in Oj,af (Y),
we see that, for s ∈ O1(Y),

Us � r �→ ±Ur ∈ Pinj,af (Y)/{1l,−1l} (16.76)

is also continuous. But Us with s ∈ O1(Y) cover Oj,af (Y). Hence,

Oj,af � r �→ ±Ur ∈ Pinj,af (Y)/{1l,−1l} (16.77)

is continuous.
We know that

±Ur1 Ur2 = ±Ur1 r2 (16.78)

is true for r1 , r2 ∈ O1(Y). But O1(Y) is dense in Oj,af (Y). Hence, (16.78) holds
for r1 , r2 ∈ Oj,af (Y). This proves that Pinj,af (Y) → Oj,af (Y) is a homomor-
phism. �

As an exercise, we give an alternative proof of the group property of Oj,af (Y)
restricted to j-non-degenerate elements.

Lemma 16.54 Let r = r1r2 with r1 , r2 ∈ Oj,af (Y). Assume that r, r1 , r2 are j-
non-degenerate. Then

Ur1 Ur2 = ±Ur1 r2 . (16.79)

Proof We know that

(Ω|Ur1 r2 Ω) = ±(det p∗)
1
2 = ±(det(p1p2 + q1q2)

∗) 1
2 . (16.80)

Moreover,

(Ω|Ur1 Ur2 Ω) = ±(e− 1
2 a∗(c1 )Ω|e 1

2 a∗(d2 )Ω
)
(det p∗1)

1
2 (det p∗2)

1
2

= ±det(1l + d2c
∗
1)

1
2 (det p∗1)

1
2 (det p∗2)

1
2

= ±(det(p1p2 + q1q2)∗
) 1

2 .

Hence,

(Ω|Ur1 Ur2 Ω) = ±(Ω|Ur1 r2 Ω).

We know that Ur1 Ur2 and Ur1 r2 implement r1r2 and the representation is irre-
ducible. Hence, (16.79) is true. �

https://doi.org/10.1017/9781009290876.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290876.017


16.4 Fock sector of a CAR representation 417

16.4 Fock sector of a CAR representation

The main result of this section is a necessary and sufficient criterion for two
Fock CAR representations to be unitarily equivalent. This result goes under the
name Shale–Stinespring theorem, and is closely related to Thm. 16.43 about the
implementability of fermionic Bogoliubov transformations, which can be viewed
as another version of the Shale–Stinespring theorem.

Another, closely related, subject of this chapter can be described as follows.
We consider a Euclidean space Y and a CAR representation in a Hilbert space
H. We suppose that we are given a Kähler anti-involution j. We will describe
how to find a subspace of H on which this representation is unitarily equivalent
to the Fock CAR representation associated with j.

Throughout the section, (Y, ν) is a real Hilbert space and j is a Kähler anti-
involution on Y.

We use the notation and results of Subsects. 1.3.6, 1.3.8 and 1.3.9. As usual,
Z, Z are the holomorphic and anti-holomorphic subspaces of CY. Recall that Y
is identified with Re(Z ⊕ Z) by

Y � y �→
(1

2
(y − ijy),

1
2
(y + ijy)

)
∈ Re(Z ⊕ Z).

We equip Z with the unitary structure associated with 2ν and j.

16.4.1 Vacua of CAR representations

Let

Y � y �→ φπ (y) ∈ B(H)

be a representation of CAR over (Y, ν). Recall that by complex linearity we
extend the definition of φπ (y) to arguments in CY = Z ⊕Z. As in Subsect.
12.1.6, we introduce the creation, resp. annihilation operators aπ∗(z), resp. aπ (z)
by

aπ∗(z) := φπ (z), aπ (z) := φπ (z), z ∈ Z. (16.81)

As in the bosonic case, sometimes we will call them j-creation, resp. j-annihilation
operators.

Definition 16.55 We define the space of j-vacua as

Kπ :=
{
Ψ ∈ H : aπ (z)Ψ = 0, z ∈ Z}.

Theorem 16.56 (1) Kπ is a closed subspace of H.
(2) If Φ,Ψ ∈ Kπ , then(

Φ|φπ (y1)φπ (y2)Ψ
)

= (Φ|Ψ)(y1 ·νy2 − iy1 ·νjy2), y1 , y2 ∈ Y.
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418 Orthogonal invariance of the CAR on Fock spaces

Proof We will suppress the superscript π to simplify notation.
K is closed as the intersection of kernels of bounded operators. To prove (2),

we set (zi, zi) = yi , so that φ(yi) = a∗(zi) + a(zi). Using the CAR, we obtain(
Φ|φ(y1)φ(y2)Ψ

)
= (z1 |z2)(Φ|Ψ).

Since (z1 |z2) = y1 ·νy2 − iy1 ·νjy2 , we obtain (2). �

16.4.2 Fock CAR representations

Recall that in Sect. 3.4, for z ∈ Z, we introduced creation, resp. annihilation
operators a∗(z), resp. a(z) acting on the fermionic Fock space Γa(Z). We have
a CAR representation

Y � y �→ φ(y) = a∗(z) + a(z) ∈ Bh
(
Γa(Z)

)
, y = (z, z). (16.82)

As in Def. 13.4, we call (16.82) the Fock CAR representation.
Note that j-creation, resp. j-annihilation operators defined for the CAR repre-

sentation (16.82) coincide with the usual creation, resp. annihilation operators
a∗(z), resp. a(z). Likewise, a vector Ψ ∈ Γa(Z) is a j-vacuum for (16.82) iff it is
proportional to Ω.

We can also consider another Kähler anti-involution j1 , not necessarily equal
to j. The following theorem describes the vacua in Γa(Z) corresponding to j1 .
It is essentially a restatement of parts of Thm. 16.36.

Theorem 16.57 (1) Let c ∈ B2
a (Z,Z). Let j1 be the Kähler anti-involution

determined by c, as in Subsect. 16.1.10. Then Ωc is the unique vector satis-
fying the following conditions:

(i) ‖Ωc‖ = 1,
(ii) (Ωc |Ω) > 0,
(iii) Ωc is a vacuum for j1 .

(2) The statement (1)(iii) is equivalent to(
a(z)− a∗(cz)

)
Ωc = 0, z ∈ Z. (16.83)

16.4.3 Unitary equivalence of Fock CAR representations

Suppose that we are given a real Hilbert space (Y, ν) endowed with two Kähler
structures, defined e.g. by two Kähler anti-involutions. Each Kähler structure
determines the corresponding Fock CAR representation. In this subsection we
will prove a necessary and sufficient condition for the equivalence of these two
representations.

Theorem 16.58 (The Shale–Stinespring theorem about Fock representations)
Let Z, Z1 be the holomorphic subspaces of CY corresponding to the Kähler
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anti-involutions j and j1 . Let

Y � y �→ φ(y) ∈ Bh
(
Γa(Z)

)
, (16.84)

Y � y �→ φ1(y) ∈ Bh
(
Γa(Z1)

)
(16.85)

be the corresponding Fock representations of CAR. Then the following statements
are equivalent:

(1) There exists a unitary operator W : Γa(Z) → Γa(Z1) such that

Wφ(y) = φ1(y)W, y ∈ Y. (16.86)

(2) j− j1 is Hilbert–Schmidt (or any of the equivalent conditions of Prop. 16.31
hold).

Proof Let a∗
1 , a1 ,Ω1 denote the creation and annihilation operators and the

vacuum for the representation (16.85).
(2)⇒(1). Assume that j− j1 ∈ B2(Y). We know, by Prop. 16.31 (4), that there

exists r ∈ Oj(Y) such that j1 = rjr# . Thus, by Thm. 16.43, there exists Ur ∈
U
(
Γa(Z)

)
such that Urφ(y)U∗

r = φ(ry).
Note that rC ∈ U(CY) and rCZ = Z1 . Set u := rC

∣∣
Z . Then u ∈ U(Z,Z1). Note

that Γ(u) ∈ U
(
Γa(Z),Γa(Z1)

)
, and

Γ(u)a∗(z)Γ(u)∗ = a∗
1(uz), Γ(u)a(z)Γ(u)∗ = a1(uz), z ∈ Z.

Hence, Γ(u)φ(y)Γ(u)∗ = φ1(ry). Therefore, W := Γ(u)U∗
r satisfies (16.86).

(1)⇒(2). Suppose that the representations (16.84) and (16.85) are equivalent
with the help of the operator W ∈ U

(
Γa(Z1),Γa(Z)

)
. Let Ysg := Ker(j + j1) and

Yreg := Y⊥
sg . Let Zsg := 1l−ijC

2 Ysg , Zreg := 1l−ijC

2 Yreg .
Clearly,

a1(w)Ω1 = 0, w ∈ Z1 ,

and

Wa1(w)W ∗ = Wφ1(w)W ∗ = φ(w), w ∈ Z1 .

Hence,

φ(w)WΩ1 = 0, w ∈ Z1 .

Hence, in particular,

a∗(z)WΩ1 = 0, z ∈ Zsg .

Lemma 16.46 implies that Zsg is finite-dimensional. Let (w1 , . . . , wn ) be an o.n.
basis of Zsg . Set Ψ := a∗(w1) · · · a∗(wn )WΩ1. Let c ∈ Cla(Z,Z) be defined as in
(16.30). Then (

a(z)− a∗(cz)
)
Ψ = 0, z ∈ Zreg ,

a(z)Ψ = 0, z ∈ Zsg .

By Thm. 16.36 (2), this implies that c ∈ B2(Z,Z). Hence, j− j1 ∈ B2(Y). �
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16.4.4 Fock sector of a CAR representation

Theorem 16.59 Set

Hπ := Spancl
{ n

Π
i=1

aπ∗(zi)Ψ : Ψ ∈ Kπ , z1 , . . . , zn ∈ Z, n ∈ N
}

. (16.87)

(1) Hπ is invariant under φπ (y), y ∈ Y.
(2) There exists a unique unitary operator

Uπ : Kπ ⊗ Γa(Z) → Hπ

satisfying

Uπ Ψ⊗ a∗(z1) · · · a∗(zn )Ω = aπ∗(z1) · · · aπ∗(zn )Ψ, Ψ ∈ Kπ , z1 , . . . , zn ∈ Z.

(3)

Uπ 1l⊗ φ(y) = φπ (y)Uπ , y ∈ Y.

(4) If there exists an isometry U : Γa(Z) → H such that Uφ(y) = φπ (y)U , y ∈ Y,
then Ran U ⊂ Hπ .

(5) Hπ depends on j only through its equivalence class w.r.t. the relation

j1 ∼ j2 ⇔ j1 − j2 ∈ B2(Y). (16.88)

Definition 16.60 Introduce the equivalence relation (16.88) in the set of Kähler
anti-involutions on Y. Let [j] denote the equivalence class w.r.t. this relation.
Then the space Hπ defined in (16.87) is called the [j]-Fock sector of the repre-
sentation φπ .

Proof of Thm. 16.59. Clearly, Hπ is invariant under φπ (y), y ∈ Y. We define
Uπ : Kπ ⊗ a l

Γa(Z) → H such that the identity in (2) holds. Clearly, Uπ is isometric
and extends to a unitary map from Kπ ⊗ Γa(Z) to Hπ satisfying (3). If U is as in
(4), then UCΩ ⊂ Kπ , which shows that Ran U ⊂ Hπ . The proof of (5) is identical
to the bosonic case. �

As in Subsect. 11.4.4, we have the following proposition:

Proposition 16.61 Let j be a Kähler anti-involution on Y. If the CAR repre-
sentation φπ is irreducible and Kπ �= {0}, then φπ is unitarily equivalent to the
[j]-Fock CAR representation.

16.4.5 Number operator of a CAR representation

As in Subsect. 11.4.5, we discuss the notion of the number operator associated
with a CAR representation and a Kähler anti-involution.

Definition 16.62 We define the number operator Nπ associated with the CAR
representation φπ and the Kähler anti-involution j by

Nπ := Uπ (1l⊗N)Uπ∗, Dom N := UπKπ ⊗Dom N.
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As in Subsect. 11.4.5, it is convenient to give an alternative definition of Nπ

using the number quadratic form.

Definition 16.63 We define the number quadratic form nπ by

nπ (Φ) := sup
V

nπ
V(Φ), Φ ∈ H,

where V runs over finite-dimensional subspaces of Z,

nπ
V(Φ) :=

dim V∑
i=1

‖aπ (vi)Φ‖2 ,

(v1 , . . . , vdim V) being an o.n. basis of V.

Theorem 16.64 Let nπ be the number quadratic form associated with Wπ , j.
Then Dom nπ = Dom (Nπ )

1
2 and

nπ (Φ) = (Φ|Nπ Φ), Φ ∈ Dom Nπ .

In particular, Hπ = (Dom nπ )cl.

The proof of Thm. 16.64 is completely analogous to Thm. 11.52. Lemmas 11.54
and 11.55 extend to the fermionic case if we replace Lemma 11.53 by the simpler
Lemma 16.65 below.

We denote by Ñπ the self-adjoint operator (with a possibly non-dense domain)
associated with the quadratic form nπ .

Lemma 16.65 The operators aπ (z) preserve (Dom Ñπ )cl, and if F is a bounded
Borel function, one has

aπ (z)F (Ñπ − 1l) = F (Ñπ )aπ (z), z ∈ Z.

Proof Let us suppress the superscript π to simplify notation. Considering first
the quadratic forms nV for V finite-dimensional, we easily obtain

n(a(z)Φ) + n(a∗(z)Φ) = ‖z‖2n(Φ)− 2‖a(z)Φ‖2 + ‖z‖2‖Φ‖2 , Φ ∈ Dom n,

which implies that a(z), a∗(z) preserve Dom(Ñ
1
2 ). Similarly, we obtain(

Φ | Ña(z)Ψ
)

=
(
Φ | a(z)ÑΨ

)− (Φ | a(z)Ψ
)
, Φ,Ψ ∈ Dom Ñ

1
2 .

This implies that a(z) : Dom Ñ → Dom Ñ and

a(z)(Ñ − 1l) = Ña(z). (16.89)

From (16.89), we get that a(z)(Ñ − λ1l)−1 = (Ñ + 1l− λ1l)−1a(z), which com-
pletes the proof of the lemma. �

16.5 Notes

The Shale–Stinespring theorem comes from Shale–Stinespring (1964).
Infinite-dimensional analogs of the Pin representation seem to have been first

noted by Lundberg (1976).
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Among early works describing implementations of orthogonal transformations
on Fock spaces let us mention the books by Berezin (1966) and by Friedrichs
(1953). They give concrete formulas for the implementation of Bogoliubov trans-
formations in fermionic Fock spaces. Related problems were discussed, often
independently, by other researchers, such as Ruijsenaars (1976, 1978).

A comprehensive monograph about the CAR is the book by Plymen–Robinson
(1994).

The book by Neretin (1996) and a review article by Varilly–Gracia-Bondia
(1994) describe the infinite-dimensional Pin group.
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