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Summary

Many phenotypes respond physiologically or developmentally to continuously distributed

environmental variables such as temperature and nutritional quality. Information about phenotypic

plasticity can be used to improve the efficiency of artificial selection. Here we show that the

quantitative genetic theory for ‘ infinite-dimensional ’ traits such as reaction norms provides a

natural framework to accomplish this goal. It is expected to improve selection responses by

making more efficient use of information about environmental effects than do conventional

methods. The approach is illustrated by deriving an index for mass selection of a phenotypically

plastic trait. We suggest that the same approach could be extended directly to more general and

efficient breeding schemes, such as those based on general best linear unbiased prediction. Methods

for estimating genetic covariance functions are reviewed.

1. Introduction

Artificial selection programmes are predicated on

statistical models in which the phenotypic expression

of a trait is statistically decomposed into genetic and

environmental components. The environmental com-

ponent is typically viewed as uncontrolled noise that

results from various developmental and physiological

accidents. In some cases, however, a substantial

fraction of this variation is caused by environmental

variables that can be identified, such as food quality

(for animals) or soil nitrogen (for crops). The response

of a character to environmental factors is known as

phenotypic plasticity.

Phenotypic plasticity raises several issues of prac-

tical importance in animal and plant breeding. How

can we improve the efficiency of artificial selection

using information about the species’ response to

environmental variation? How can we best select on a

trait when individuals develop in different environ-

ments, and so vary phenotypically because of plasticity

as well as genetic differences?

A key to this problem was proposed by Falconer

(1952). His insight was to view the expression of a
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trait in two different environments as two different

traits. One can then measure the genetic and pheno-

typic variation in each environment, and the corre-

lations between them. Cast in this way, the question is

translated into a standard problem involving selection

on two correlated traits. This idea became the basis

for discussions of artificial selection on traits expressed

in two environments (Falconer, 1960), and was

extended to allow for three or more discrete types of

environments (Robertson, 1959; Via, 1987).

Many kinds of environmental variables, however,

do not fall into discrete states ; temperature and soil

moisture content are two obvious examples. Here a

genotype’s response to the environmental variable is

described by a function known as the reaction norm.

Using Falconer’s approach, the phenotype expressed

in each environment can be viewed as a separate trait.

When there is a continuum of environments, each

genotype is capable in principle of expressing an

infinite number of phenotypes. For this reason,

reaction norms can be thought of as ‘ infinite-

dimensional ’ traits (Kirkpatrick & Heckman, 1989;

Gomulkiewicz & Kirkpatrick, 1992; Kirkpatrick &

Lofsvold, 1992).

The question of how a continuous reaction norm

evolves under natural selection has been studied by
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numerous evolutionary biologists (reviewed in Via et

al., 1995). The topic was studied using the infinite-

dimensional approach by Gomulkiewicz &

Kirkpatrick (1992) and Gilchrist (1996). The in-

formation inherent in continuous reaction norms

seems not, however, to have been systematically

exploited in artificial selection programmes. This

paper outlines how one can design a selection index

for traits that show phenotypic plasticity using the

infinite-dimensional framework. We begin by

reviewing the basic concepts of this framework. We

then illustrate the approach by constructing a selection

index for practising mass artificial selection on a

phenotypically plastic trait, and suggest that the

approach could be applied directly to breeding

schemes based on more sophisticated designs.

2. The infinite-dimensional framework

In standard quantitative genetics, the phenotypic

distribution for a set of traits is described by a mean

vector, z- , and a covariance matrix, P. Additive genetic

variation is described by a corresponding genetic

covariance matrix, G. Infinite-dimensional traits such

as reaction norms have natural analogues for these

quantities. Consider how a trait (such as metabolic

rate) is expressed as a function of a continuous

environmental variable (such as temperature). The

mean function, Ta (x), simply gives the average value of

the trait in environment x. The value of the phenotypic

co�ariance function, 0(x
"
,x

#
), is equal to the pheno-

typic covariance between the trait exposed in environ-

ments x
"

and x
#
. Likewise, the value of the additi�e

genetic co�ariance function, '(x
"
,x

#
), gives the genetic

covariance between expression of the trait in those

environments.

The values of some traits can be measured on an

individual in each of several environments ; metabolic

rate as a function of temperature is an example. For

other kinds of traits, however, only one measurement

is possible per individual. Crop yield varies in response

to soil nitrogen, for instance, but can only be measured

once (at harvest time) for each individual. Con-

ceptually, it is perhaps easiest to think about ' and 0
in these cases as though we could estimate them

directly by cloning a large number of genotypes and

distributing the clones over very many environments.

We discuss the practical problem of estimation below.

The descriptive statistics T- , ' and 0 can be used

to predict selection response if we adopt a model of

inheritance. Following standard quantitative genetics

(Falconer & Mackay, 1996; Lynch & Walsh, 1998),

we statistically decompose the phenotype expressed in

environment x into the sum of two independent parts :

an additive genetic component A(x) and a non-additive

component ?(x) which is attributable to dominance

and environmental factors other than the one under

consideration. Both A and ? are assumed to be

normally (Gaussian) distributed. Then, in the absence

of epistasis, the change in the mean function caused

by a single generation of selection is given by:

∆Ta (x)¯&&'(x, y
"
)0−" ( y

"
, y

#
) M( y

#
) dy

"
dy

#
(1a)

¯&'(x, y)β( y) dy, (1b)

where the integrals are taken over the full range of

environmental states that the population experiences.

In Equation (1a), M( ) is the selection differential

function, defined as the difference between the mean

phenotypes that would be expressed in environment x

by the selected individuals and those that would be

expressed in x by all individuals. The function 0−" is

the generalized inverse of the phenotypic covariance

function 0 (see Kirkpatrick & Heckman, 1989).

Inspection of (1a) reveals that it is simply the

infinite-dimensional version of the classic breeder’s

equation for multiple traits :

∆z- ¯GP−" s (2)

(Lynch & Walsh, 1998). Loosely speaking, the

summations used in matrix multiplication have been

replaced by integrals. Equation (1b) represents the

selection response in terms of the selection gradient,

β(x). This is a measure of the strength of directional

selection (Lande & Arnold, 1983; Kirkpatrick &

Heckman, 1989; Kirkpatrick, 1993; Gomulkiewicz &

Beder, 1996; Beder & Gomulkiewicz, 1998). Mul-

tiplying a selection gradient by the corresponding

phenotypic standard deviation gives the selection

intensity, a non-dimensional quantity that is widely

used by breeders (Falconer & Mackay, 1996, p. 189).

What advantages do we gain by viewing these traits

as infinite-dimensional? Kirkpatrick & Heckman

(1989) discuss several. Most important is that the

infinite-dimensional approach increases statistical

power and hence improves the accuracy of our

predictions for the response to selection. Accuracy is

gained because the infinite-dimensional framework

makes use of the information about the ordering of

the environmental states. The ordering is exploited to

correct estimation errors in the genetic and phenotypic

variances and covariances (see Section 4). A second

advantage of the infinite-dimensional model is that it

makes no a priori assumptions about what types of

reaction norms can be produced by selection. Schemes

which begin by assuming that reaction norms can be

described by a particular family of functions auto-

matically restrict the range of possible outcomes.

Third, the infinite-dimensional framework naturally

generates a description for the value of the trait

expressed in any environment, not just in a finite set of

environments. Together, these advantages can be

expected to produce more accurate predictions of the

response to selection. Analysis of simulated data sets
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does indeed show that the infinite dimensional method

has increased statistical power over conventional

matrix-based methods that discard information about

the ordering of the environmental states (Kirkpatrick

& Heckman, 1989).

3. Selection indices for phenotypically plastic traits

Economically important traits such as crop yield and

growth rate often show phenotypic plasticity. Our

question is how to select on such traits in order to

maximize the rate of economic improvement. Two

factors complicate the answer. First, the environment

varies in space and time, often in unpredictable ways.

To optimize a selection programme we must account

for that variation. Secondly, each individual or

genotype is typically measured in only one or a few

environments, not the full range that is experienced by

a population. How do we compare measurements

from individuals raised in different environments

when deciding whom to breed?

A genotype’s response to a continuous environ-

mental variable is described by its reaction norm. The

response of a reaction norm to selection can be

described and analysed using the infinite-dimensional

framework (Gomulkiewicz & Kirkpatrick, 1992).

Imagine that we clone an individual and allow the

clones to develop in a set of environments that differ

with respect to the environmental variable. Its reaction

norm is then the curve that relates the value of the

environment e to the average phenotype T- (e) that

results in that environment. To simplify notation, we

assume that the trait is measured in terms of its

economic value.

To maximize economic improvement, we maximize

the expected rate of increase in the trait’s value,

averaging over the frequency with which different

environments are experienced. Let f(x) be the prob-

ability density that the individuals experience en-

vironment x. Denoting the mean phenotype across all

environments as Za , the expected global rate of

economic improvement is

∆Z- ¯& f(x)∆T- (x) dx, (3)

where ∆T- (e) is the change across one generation in

the average phenotypes produced in environment e.

The environmental distribution f( ) plays the same role

here as the vector of economic weights that appear in

selection indices for multiple traits (Falconer &

Mackay, 1996). The problem is how to select so as to

maximize ∆Z- .
An analogous question arises in standard quan-

titative genetics when m traits are measured on each

individual. The question then is how to combine these

measurements such that selection based on this index

will maximize the rate of improvement in economic

value. Economic value, in turn, depends on n traits

that may or may not be among those that have been

directly measured. The value of the selection index for

an individual is calculated as

I¯ bT z, (4)

where z is the vector of n measurements for that

individual and b is a vector of weighting factors that

applies to the entire population. The rate of economic

improvement is maximized with the weights

bT ¯ vT GP−" (5)

(see Falconer & Mackay 1996, eqn 19.15). Here P is

the m¬m phenotypic covariance matrix, G is the

n¬m matrix whose ijth element is the additive genetic

covariance between the ith measured trait and the jth

trait of economic importance, and v is the vector

whose ith element represents the economic value of

trait i.

This argument can be extended directly to the case

where economic value depends on a phenotypically

plastic trait. In effect, we are selecting on an infinite-

dimensional reaction norm that relates the economic

value of a genotype to the environment in which it

develops. Consider the situation where individual i is

measured in set of m
i

different environments. This

number may be as small as one – for example when we

know only the final yield of a crop and the average soil

moisture during the growing season. In other cases, it

may be possible to measure individuals in more than

one environment – for example when data are avail-

able for an animal’s daily growth rate as a function of

its protein intake. We assume that the environmental

states are known. We allow, however, for the

possibility that different individuals are measured in

different sets of environments. This will often be the

case when the environmental variable depends on the

climate or another uncontrolled factor.

The selection index for individual i is again

calculated using (4). Now, however, the jth element of

the vector of weights is given by

[b
i
]
j
¯ 3

mi

k="

9& f(x)'(x, e
ik
) dx: [P−"

i
]
kj
. (6)

Hence P
i
is the m

i
¬m

i
covariance matrix of pheno-

types measured in the same environments that

individual i was, and e
ik

is the kth environmental state

in which i was measured.

There is a clear correspondence between (5), which

applies to a finite number of traits, and (6), its infinite-

dimensional analogue. The summation involved in the

matrix product vTG of (5) has been replaced by an

integral in (6). A second change is that the distribution

of environmental states, f( ), seen in (6), plays the role

of the vector of economic weights, v, that appears in

(5). A final difference is that there is no longer a single
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vector of weights b that is used for all individuals. This

is because we have accommodated the possibility that

different individuals have been measured in different

environments, in which case the measurements are not

on homologous traits.

Often each individual is measured in only a single

environment. In that case, the selection index is

calculated by simply multiplying each individual’s

phenotypic value by a weight that depends on the

environment from which it came. The weight for

individual i is given by (6) with m
i
set equal to 1 :

b
i
¯
& f(x)'(x, e

i
) dx

σ#
i

, (7)

where σ#
i
(¯0(e

i
, e

i
)) is the phenotypic variance of all

individuals in the environment where individual i

developed. The value of this weighting function is

greater when the trait is highly heritable in that

environment (that is, σ#
i

is small) and when selection

in that environment causes large positive correlated

selection response in environments that are

encountered frequently.

Equations (6) and (7) are our main results. In

practice, one would use them to calculate the weight(s)

for each individual. These weights and the phenotypic

measurements are then combined using (4) to give

each individual’s selection index score. The scores are

put in rank order, and the desired upper (or lower)

fraction of the population is bred to produce the next

generation. This procedure is simple mass selection

implemented so as to make best use of information

regarding plasticity.

4. Estimating the genetic covariance function for a

plastic trait

The selection index (Equations 6 and 7) involves the

genetic covariance function ', which we assumed was

known in the previous example. How can one estimate

'? In this section we outline several alternative

approaches that have recently been proposed.

Estimates of genetic covariances include sampling

errors that are often large. For this reason, one

generally prefers an estimate for the covariance

function that smooths the data to some degree

(Kirkpatrick et al., 1990, 1994; Pletcher & Guyer,

1999). This is the point at which the infinite-

dimensional framework makes use of the ordering of

the environmental states. The sampling error in a

covariance estimate is decreased by the smoothing,

which makes use of the estimates from covariances

corresponding to neighbouring environmental states.

That is not true of traditional methods that represent

the phenotype measured in each of several environ-

ments as a vector whose elements have no natural

relationship to each other. Under traditional methods,

one obtains the same results if the ordering of elements

of the vector (corresponding to the different en-

vironmental states) is randomized. Various goodness-

of-fit tests, for example the likelihood ratio test

(Meyer & Hill, 1997), can be used to determine the

appropriate degree of smoothing.

Smoothing requires that we choose a mathematical

representation of the covariance function. The most

flexible approach is non-parametric in spirit : ' is not

assumed to be of any particular form a priori. One

approach here is to use polynomials to represent the

covariance function, which which guarantees that any

form of ' is possible (Kirkpatrick et al., 1990). The

entries of an estimated covariance matrix G can be

interpolated to arrive at an estimate for the covariance

function ' with an appropriate amount of smoothing

(Kirkpatrick et al., 1990, 1994). A mathematically

equivalent approach is to use the method of ‘random

regression’ with polynomials as the basis (Jones et al.,

1999; Hill & Brotherstone, 1999). Meyer & Hill (1997)

developed a direct method based on restricted maxi-

mum likelihood (REML). They bypass the inter-

mediary of a covariance matrix and pass directly from

the phenotypic measurements to an estimate of '. In

addition to being more elegant, their method offers

increases in statistical power. For example, when

estimating the covariance matrix G, several similar

environments might be lumped into a single en-

vironmental state to simplify the analysis. The

resulting artefacts are avoided by Meyer & Hill’s

direct method.

There are two prices to be paid for the flexibility of

a non-parametric approach. First, the resulting co-

variance function is typically quite ‘wiggly’ – a be-

haviour that is generic to higher-order polynomials.

That problem can be rectified by using a different

method of interpolation. The method of smoothing by

splines (see, for example, Press et al., 1992) is a very

promising candidate here (Gomulkiewicz &

Kirkpatrick, 1992; White et al., 1998; Hill &

Brotherstone, 1999). A second difficulty with the non-

parametric approach is that a large number of

parameters must be estimated. This leads to large

errors in the estimates and produces serious com-

putational challenges.

These problems motivate two alternative parametric

approaches to the estimation of '. The first parametric

approach assumes that the covariance function can be

described by a simple mathematical function (Pletcher

& Guyer, 1999). For example, one might assume that

the genetic correlation between any two environmental

states depends only on the difference between them,

and not on their absolute values. One could further

suppose that the correlation declines as this difference

increases according to a exponential function, say, or

a Gaussian curve. In that case, we need only estimate

the genetic variance in each environment and a single
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parameter describing the rate at which the genetic

correlation falls off between different environments.

The number of parameters to be estimated is therefore

greatly reduced compared with the non-parametric

approach. A further advantage is that an appropriate

choice for the functional form will guarantee that the

estimate of ' is positive semi-definite, as required by

the definition of a covariance function. That result is

not automatic for the non-parametric methods. The

drawback of this parametric approach is that the

choice of functional form is arbitrary.

A second parametric approach involves smoothing

the data at the level of the individual, before the

genetic covariance function ' is estimated. If indi-

viduals can be measured in each of several environ-

ments, their reaction norms can be estimated using a

random regression model (see Schaeffer & Dekkers

(1994) and Jones et al. (1999)). The model consists of

a linear combination of basis functions which them-

selves can take any form. By choosing a sufficiently

simple model (that is, one where the reaction norm is

described by a weighted sum of a small number of

basis functions), the number of parameters that must

be estimated will be small. A major drawback of the

non-parametric approach is therefore overcome. This

second parametric method does, however, have

weaknesses. The choice of basis functions is ad hoc. It

is not clear how to decide the optimal degree of

smoothing at the level of the individual, where often

we may have only a single measurement per en-

vironment. Last, the method can only be used when

individuals can be measured in multiple environments.

It could be applied to daily animal growth rate as a

function of nutritional quality, for example, but not to

crop yield as a function of average soil moisture.

The question of how to estimate a genetic covariance

function is difficult. While several approaches have

been proposed, each has its drawbacks. There is no

clear consensus at present about when each approach

will be superior, or what the relative efficiencies of the

approaches are in different situations. Further

advances in this area are to be expected in the near

future.

5. Discussion

The ‘environmental ’ component of phenotypic vari-

ation has itself a genetic component. Information on

the genetics of environmental sensitivity can be

incorporated into standard statistical methods for

breeding in order to improve the efficiency of artificial

selection. Falconer’s insight that the expression of a

trait in a different environment can be viewed as a

different trait provides a natural framework for this

extension. The results above show that this basic idea

can be used when the environmental state varies in a

continuous fashion. These ideas could easily be

extended to the case of multiple traits, or to the case

of a plastic trait whose expression changes with age.

We have assumed that the frequency of different

environmental states acts in effect as an economic

weight. The expected economic gain that is maximized

in the model above is simply the average value of the

trait expected in each environment, averaged over all

possible environmental states. In practice, however, it

might be necessary to transform either the trait value

or the environmental frequency distribution to arrive

at the economic value.

The selection index developed here is a simple

illustration of how information about phenotypic

plasticity can be exploited in artificial selection.

Modern selection programmes use more powerful

designs than mass selection. A more sophisticated

approach would be to expand the statistical model to

account for additional fixed effects, such as the year

and farm in which each measurement is taken. The

widely used best linear unbiased prediction (BLUP)

method, often implemented in animal breeding using

the ‘animal model ’ (Nicholas, 1987; Falconer &

Mackay, 1996, p. 244), would be an efficient frame-

work in which to do that. Ultimately, one wants to

incorporate all the environmental and phenotypic

data into a single statistical model in order to make

breeding decisions. REML is an attractive approach

here (Falconer & Mackay, 1996, p. 244). Meyer & Hill

(1997) pioneered the application of REML to infinite-

dimensional traits by using polynomials to find a non-

parametric estimate of a covariance function. Pletcher

& Guyer (1999) used likelihood to find a parametric

estimate of a covariance function. An important task

for the future is to expand the repertoire of REML

methods to include all the approaches for estimating

covariance functions that have recently been de-

veloped.

This paper is dedicated to Douglas Falconer, whose research
and writings on quantitative genetics have inspired many
breeders and evolutionary biologists. We thank Bill Hill,
Toby Johnson and two anonymous reviewers for helpful
comments on the manuscript. We are grateful for support
from the National Science Foundation.
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