CHARACTERIZATIONS OF RIGHT NAKAYAMA RINGS
by MANABU HARADA

(Received 21 August, 1990)

We have studied relationships between almost relative projectivity and Nakayama
rings [8]. In this paper we shall further investigate certain characterizations of right
Nakayama rings in terms of almost relative projectives (or injectives). We shall consider
three conditions (A), (B) and (C) (see Section 1), which are always satisfied for the
relative projective modules, but not for almost relative projectives in general. As an
application of [9, Theorem] and [10, Theorem 2], we shall show that a right artinian ring
is right Nakayama if and only if one of the above three conditions holds true for almost
relative projectives (Corollary to Theorem 1). Moreover we shall give a characterization
of two-sided Nakayama rings related to (C) and the dual (C*¥) (Theorem 2). Finally we
shall investigate the transitivity of almost relative projectives, which is the converse of (B),
and give some characterizations of right Nakayama rings related to the transitivity.

1. Preliminaries. In this paper we always assume that R is an associative ring with
identity and every module M is a unitary right R-module. We shall denote the length, the
socle and the Jacobson radical of M by |M|, Soc(M) and J(M), respectively. In particular
we denote J(R) by J. We follow [8] and [11] for other terminology. We recall here the
definition of almost relative projectivity {8]. Let M and N be R-modules. For any diagram
with K a submodule of M:

M, --E> N

n ';, i
' .
v e

M~ M/K — 0 (exact),

if either there exists A : N— M with vi = h or there exist a non-zero direct summand M,
of M and h: M,— N with hh=v|M,, then N is called almost M-projective [8] (if we
always obtain the first case, we say that N is M-projective [2]).

Let {M;, N;}/L,]-, be any set of finitely generated R-modules such that M; is almost
N;-projective for any pair i and j. We consider the following property:

(A) L®M, is always almost ©,® Nj-projective for any set {M;, N;} as above.
i i
As is easily seen, the above property is equivalent to M; being almost Z‘Bl\lj-

J
projective for all i (cf. [S, Lemma 2]). We note that £® M, is ¥ ® N;-projective if M; is
N;-projective for all i and j [2].

Let R be a perfect ring. Let My, M, and M, be finitely generated R-modules and M,
indecomposable. Assume that M, is almost M,-projective but not M,-projective. Then M,
is M,-projective by [9, Proposition 1], if M, is M,-projective. However if M, is almost
M,-projective, then M, is not almost M,-projective in general.

By (B) we shall denote the above property:

(B) For any indecomposable R-module M, and any finitely generated R-modules M,
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and M,, if M, is almost M,-projective but not M,-projective, and M, is almost
M,-projective, then M, is always almost M,-projective.

Finally we shall give one more property of relative projectives which is not satisfied
for almost relative projectives. Let M and N be R-modules. Assume that M is
N-projective. Then it is well known that M is N’-projective and N/N'-projective for any
submodule N’ of N. We study the same properties for almost relative projectives. We
assume that M is almost N-projective. Take a diagram for a submodule K of N':

M

lh

N' > N'/K—> 0.
From the above we can derive the diagram:

M

lh
N — N'/[K—0

N N
N — N/K — 0.

Assume that there exist a non-zero direct summand N, of N and /4 : N,— M such that
hh = v |N,. Then v(N,) = (N, + K)/K c hh(N;) c h(M) = N'/K. Hence N, = N', because
v is the canonical epimorphism. Accordingly N, is also a direct summand of N’, and
hh = v' | Ny. If there exists A : M— N with viA =h, then h(M) = N' as above. Therefore
M is almost N’-projective. However M is not almost N/N'-projective in general. Hence
we consider the following property:

(C) If M is almost N-projective, then M is also almost N/N'-projective for any
submodule N' of N.

Related to (C) we can consider the following condition: If M is almost N-projective,
then M’ (or M/M') is also almost N-projective, where M’ is any submodule of M. We
shall study this property in the forthcoming paper [12].

2. Right Nakayama rings. We assume that R is right artinian. If eR is a uniserial
module for each primitive idempotent e, we call R a right Nakayama ring. We shall give
several characterizations of right Nakayama rings with respect to the above properties
(A), (B) and (C). We recall here the definitions of LPSM and lifting modules ([9] and
[13]). Let {e;}7-, be a set of primitive idempotents and A; a submodule of ¢;R for each i.
If every element f in Homg(e;R/eJ, e;R/eJ) for any pair (i) (or f7') is lifted to an
element in Homg(e;R/A;,¢;R/A;) (or in Homg(e;R/A;,e,R/A})), then we say that
ZeeiR/Ai has the lifting property of simple modules, briefly LPSM. Next, let M be an

R-module. If, for any submodule N of M, there exists a direct decomposition M = M, ® M,
such that N > M, and N N M, is a small submodule of M,, then we call M a lifting moduie.
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We note that if e,R/A, is almost e,R/A,-projective or ¢,R # e,R, then ¢,R/A, @ e,R/A,
has LPSM by definition.
We frequently use the following.

Lemma 1([6, Theorem 5]). Assume that R is a semi-perfect ring. Let A, and A, be
submodules of eR such that eJ’”*' c A;c el forj=1,2. If eR/A, @ eR/A, has LPSM, then
A, c A, or Ayc A,. In particular R is a right Nakayama ring if and only if R is right
artinian and every (two) finite direct sum of local modules eR/A; has LPSM for each
primitive idempotent e.

Let M, be indecomposable. If M, is almost M,-projective and M, is not a local
module, then M, is M,-projective by [11, Theorem 1]. Furthermore if a local module
eR/A is almost fR/B-projective (eR # fR), then eR/A is fR/B-projective by definition.
On the other hand (A), (B) and (C) always hold for relative projectives. From this
observation we may study essentially (A), (B) and (C) on local modules eR/A for a fixed
primitive idempotent e.

THEOREM 1. Let R be a perfect ring and e a fixed primitive idempotent. Then the
following conditions are equivalent:

(1) eR is a uniserial module (and hence |eR| < «),

(2) (A) holds on local modules eR/A,

(3) (B) holds whenever My, M, and M, are local modules of the form eR/A,

(4) (C) holds on local modules of the form eR/A.

Proof. We first remark that |eR|<e if eR is uniserial. Since R is perfect,
eR >el >eJ?*>- - - is a composition series of eR. Then eJ’ = a;R for some a; in eJ' — eJ'*!
and ;. ,R=el'*'=aJ, i.c., a,,, = a;j; for some j; € J. Therefore eJ” =0 for some n.

(1)=>(2). Assume that eR/A, is almost eR/A;-projective for 1=i=m. Since
eR/A; D eR/A; has LPSM for i #j by (1) and Lemma 1, eR/A, is almost $L%eR/A,-
projective by [9, Theorem ]. . A

(2)=>(1). Let A, and A, be the modules in Lemma 1 and eJ'#0. Since e/’ is
characteristic and eJeeJ' c eJ'*' « A;cel’, eR/eJ' and eR/A, are mutually almost relative
projective for k=1,2 by [5, Proposition 2], but eR/eJ' is neither eR/A, nor eR/A,
projective by [1, p. 22, Exercise 4]. Then eR/eJ' being almost eR/A, @ eR/A,-projective by
(2), eR/A, @ eR/A, has LPSM by [9, Theorem]. Hence A, = A, or A, < A, by Lemma 1.
As a consequence eJ'/eJ™*! is simple, and so eR is uniserial.

(3)>(1). Let A; be as above. Then eR/eJ' is almost eR/A;-projective, but not
eR/Aj-projective as in (2)=>>(1) for j =1,2. Hence eR/A, is almost eR/A,-projective by
(3), and so eR/A, @ eR/A, has LPSM from the remark after the definition of LPSM.
Therefore eR is uniserial as above.

(1)=> (3). Let By, B, and B, be submodules of eR. Assume that eR/B, is almost
eR/B,-projective, but not eR/B;-projective. Then By,> B, by (1). If eR/B, is almost
eR/B,-projective, then eJeB, < B, by [11, Proposition 2], and hence eJeB, c eJeB, < B,.
Therefore eR/B, is almost eR/B,-projective by [11, Proposition 2].

(1)=>(4). Assume that eR is uniserial and M(=eR/A) is almost N (=eR/B)-
projective. Then eJeA  B. Let N' be a submodule of N and N/N’ =eR/C. Since C 5 B,
CoeleA. Further eR/C®eR/A has LPSM by assumption. Therefore M is almost
N/N'-projective by [11, Proposition 2}.
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(4)=>(1). Let A; be as in (2)=> (1). Then as is shown in (2)=> (1), eR/A, is almost
eR/eJ™'-projective. Hence eR/A; is almost eR/A,-projective by (4). Accordingly eR is
uniserial as before.

CoRroLLARY. Let R be a right artinian ring. Then the following are equivalent:
(1) R is right Nakayama,

(2) (A) holds,

(3) (B) holds,

(4) (C) holds for local modules M and N.

Proof. (1)=>(2). Let R be right Nakayama. Let M,, M, and M, be finitely generated
R-modules. Assume that M, is almost M;-projective for i=1,2. We take a direct
decomposition of M; into indecomposable modules 7; (i=1,2; j=1,...,n(i)). Then M,
is clearly almost Tj;-projective for all i, j. We may assume that there exists an integer m(i)
such that M, is almost T,-projective but not T,-projective for all k Zm(i) and M, is
T«-projective for all k'’ <m(i) (i =1,2). Then T is a local module by [11, Theorem 1]
for k=m(i). Further, lef T, has LPSM by Lemma 1 and the remark after the

kZm(i)
definition of LPSM. Hence M, is almost M, © M,-projective by [9, Theorem].

(2)=>(3). We may assume by [11, Theorem 1} that M, is a local module. Let
M, = $,®T,, be the direct decomposition of M, as in (1) => (2). Then there exists an integer
m such that M, is Ty-projective for all j<m and M, is almost T-projective but not
T;-projective for all j' = m. Further since M, is almost M, © .lge T,;-projective by (2) and

j'zm

M, is not M;-projective, M, ® Y.®T,,. is a lifting module by [9, Theorem]. Hence M, is
i'ZEm
almost Y® To;-projective by [10, Theorem 1]. Moreover M, is Ty-projective for j <m by
=l
[9, Proposition 1]. Hence M, is almost M,-projective by (2).

The remaining implications are clear from Theorem 1 and the observation before
Theorem 1.

From the above we know that (A) is equivalent to
(A") (A) holds for local modules M; and N;

and (B) is equivalent to
(B’) (B) holds for local modules My, M, and M,.

However we do not have the same result for (C) (see Theorem 2 below).

Next we shall study a dual result to Theorem 1. If every indecomposable injective
module is uniserial, we say that R is right co-Nakayama ([3] and [6]). We shall give some
characterizations of right co-Nakayama rings, which are dual to the Corollary. We refer
to [4] for the definition of almost relative injectives. First we define properties (A¥), (B¥)
and (C*) dual to (A), (B) and (C), respectively.

Let Uy, U, and U, be finitely generated R-modules.

(A*) If U, is almost Ur-injective for i =1,2, then Uy is almost U, ® U,-injective.

Assume that U, is indecomposable.
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(B®) If U, is almost U,-injective but not U,-injective, and U, is almost Us-injective,
then U, is always almost U,-injective.

(C*) If U, is almost Uyinjective, then U, is always almost U'-injective for any
submodule U’ of U,.

As the dual to the Corollary we obtain together with results in [10]

CoroLLARY®. Let R be a right artinian ring. Then the following conditions are
equivalent:

(1) R is right co-Nakayama,

(2) (A®) holds,

(3) (B¥) holds,

(4) (C?) holds whenever U, and U, are finitely generated and uniform.

The implications (1)< (2) are given in [4].
Finally we shall give a characterization of two-sided Nakayama rings. Let {M,}’_, be

a set of indecomposable R-modules and M = E_]@Mi. Take a submodule N of M. If there
exists a suitable direct decomposition M = ZGBMI’ such that M;=M; for all { and

N =2®N N M/, then we call N a standard submodule. The following lemma is well

!

known.
Lemma 2. Let R be a two-sided Nakayama ring. Then any submodule T of

n
P= .E ®e.R is a standard submodule, where the e; are primitive idempotents.

i=1

Proof. See [15], [16, Section 55] or [8, Lemma 5].

If eRe is a local ring for an idempotent e, e is called a local idempotent. In this case e
is the unique maximal submodule in eR.

LeEMMA 3. Let R be any ring and e\, e, local idempotents. Let B be a submodule in
e, ®e,J ceR®e,R and C a submodule in e\J such that B C ®O0. If e,R/C is almost
(e;R D e,R)/B-projective, then (e,R @ e,R)/B is decomposable.

Proof. Since M =(e,R®e,R)/B is not local, e;R/C is M-projective by [11,
Theorem 1], provided M is indecomposable. However since e, R is a projective cover of
e;R/C, and further there exists a natural homomorphism A of ¢;R into M such that
h(C) # 0 by assumption, e, R/C is not M-projective by [1, p. 22, Exercise 4] (cf. the proof
of [5, Lemma 6]). Therefore M is decomposable.

From [1, Proposition 2.5] and the dual result to [11, Theorem 1] we obtain dually to
the above:

Lemma 3%, Let U, and U, be indecomposable injective modules and B an essential
submodule of U, ® U,. If A is almost B-injective for 0% A c U, such that 7t,(B) ¢ A, then
B is decomposable, where n, : U, @ U,— U, is the projection.

Let e be a local idempotent. By M(e) we denote the set of finitely generated
R-modules M such that M/J(M) = (eR/e])"™)| the direct sum of n(M)-copies of eR/el.
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THEOREM 2. Let R be a perfect ring and e a fixed primitive idempotent. Then the
following conditions are equivalent:

(1) eR is uniserial (and hence |eR| < x) and every submodule in eR @ eR is standard,

(2) (C) holds whenever M and N are any members in M(e).

Compare (7, Theorem 5).

Proof. (1)=>(2). In this proof A, A; and A/ mean submodules of eR. N is a direct
sum of local modules, N =Y%® eR/A; by (8, Lemma 5]. Assume M =M, @ M,. Then it is
clear from the definition that M is almost N-projective if and only if M; is so fori =1, 2.
Hence we may assume M =eR/A. Now N/N'~Y®eR/A; by [8, Lemma 5] for a
submodule N’ of N. Then each eR/A/ is an epimorphic image of some eR/A;. Hence we
can assume that any A/ contains some A,. Since A; >eJeA by [11, Proposition 2], M is
almost eR/A/-projective by the same proposition. As a consequence M is almost
N/N'-projective by Theorem 1.

(2)=>(1). Put P=eR ® eR and take submodules A, < B, A, < B; in eR such that
h:B,/A,~B,/A,. We shall show that A (or A™') is induced from an element in
eRe = Homg(eR,eR). If B,=eR for i=1 or 2, then this is clear. Hence we assume
B;celfori=1,2. Since eRis a uniserial module of finite length by Theorem 1, we may
assume A, =el", B,=eJ"™ =eJ™ and B,=eJ""" (n,Zn,). Then eR/eJ"™! is
almost eR/eJ™-projective and almost eR/e]™-projective by [11, Proposition 2]. Hence
eR/eJ" ™" is almost eR/eJ" @ eR/eJ™-projective by Theorem 1. Put C = (B,/A,)(h), the
graph in eRe/J" @ eR/eJ™. Let C be the submodule of P such that C > eJ™ @ eJ™ and
C=C/(eJ" ®eJ™). TheneR/eJ™ ' isalmost (P/(eJ" ® eJ"?))/C = P/C (=P)- projective by
(2). Since B; c eJ, P is decomposable by Lemma 3. Hence # is liftable to an element 4 in
Homg(eR/eJ™, eR/eJ"?) or in Homg(eR/eJ™, eR[eJ™) by [14, Lemma 2.1] (cf. [7, p. 526,
Remark]). A is clearly liftable to an element in eRe. Therefore we obtain (1) by [8,
Lemma 5].

COROLLARY. Let R be a two-sided artinian ring. Then the following are equivalent:
(1) R is two-sided Nakayama,

(2) (C) holds whenever M and N are finitely generated R-modules,

(3) (C*®) holds whenever U, and U, are finitely generated R-modules.

Proof. (1)=(2). Assume that R is two-sided Nakayama. Then every finitely
generated R-module N is a direct sum of local modules, N = L® ¢;R/A; (by Lemma 2).
Hence we can use the same argument as in the proof of Theorem 2.

(2)=>(1). We assume (C) for any finitely generated modules M and N. Then R is
right Nakayama from the Corollary to Theorem 1. We may assume that R is a basic ring
with J2= 0. Then eJ is simple or zero for any primitive idempotent e. Assume h : e,J = e,J
for two primitive idempotents e, and e,. Then in the same manner as in the proof of
Theorem 2 we can show that h is liftable to an element in e, Re, or in e,Re,. Hence R is
left Nakayama by [14, Lemma 4.3].

(1)=> (3). If R is two-sided Nakayama, then every finitely generated R-module is a
direct sum of uniserial modules. Hence R is right co-Nakayama and we may assume that
U, is uniform and U, = Z_eVi; the V; are unform. Since U, is almost U,-injective, U, is

almost V;-injective for all i. Let U’ be any submodule of U, and U’ = Z‘BW,, the W, are
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uniform. Then every W, is monomorphic to some V,, since W, is uniform, and hence U, is
almost Wi-injective from Corollary®. Therefore U, is almost U’-injective from Corollary®
((1)=> (2)). Hence (C*¥) holds.

(3)=>(1). We assume (C¥) for any finitely generated R-modules U, and U. Then R
is right co-Nakayama from Corollary®. In order to show that R is two-sided Nakayama,
we may assume J2=0. Let e be any primitive idempotent. We shall show that eR is
uniseriali.e., eJ is simple, provided e #0. AssumeeJ #0andeJ = A, ® A, D B, where A, is
simple, so that A, # 0, and similarly for A,. Put U, =eR/(A, D B), U, =eR/(A, D B) and
U=U,® U,. Then U, is a uniserial module with |U;]=2 for i =1,2. Since R is a right
co-Nakayama ring with J2=0, U, is injective. Put U,= A, and E = E(U;) (=U,). Since
|U;]=2 and U; is injective, U, is almost U-injective, by [S, Proposition 5]. As a
consequence U, is aimost U-injective from Corollary”®. We take the submodule U’ of U
such that (i) U'=2JU)=JU)®I), (i) U/J(U)={x+x|%ke€eR/e]}c
eR/e] ®eR/eJ = U/J(U). Then U, is almost U'-injective by (C*¥). Hence U’ is decom-
posable by (ii) and Lemma 3*. Since |Soc(U’)|=2 and |U'|=3, U' =W, ® W, with
|W,| =2, |Wy|=1. From (i) and (ii) we know that W, is uniserial and ;| W, is an
isomorphism, where x; : U— U, is the projection for i =1,2. Hence U, is isomorphic to
U, by t=(m,| W))(s, | Wy)~', which induces the identity mapping of eR/eJ by (ii).
Therefore there exists j in eJe such that the left sided multiplication of (e +j) gives ¢, i.e.,
(e+))(A, DB)=A,DB. Thus A, ®B=A,® B for J>’=0. As a consequence e/ is
simple, i.e., R is right Nakayama. Therefore R is two-sided Nakayama by {3, Theorem
5.4].

We shall give a right Nakayama ring where (B) does not hold if M, is not
indecomposable. Let R = ZeeiR be a right Nakayama ring with the following structure

({e;}i-\ is a set of mutually orthogonal primitive idempotents with 1= 1Y ¢,):
eR e R esR e R
(13)R (22)R  (34)R (42)R
(13)(34)R (22)(2)R 0 0
b

and R=YL®e,K ® L% (i) K ® 1 ° (ij)(jk)K, (ij) = e,(if)e; and other products among (i)
are zero except as in the above diagram, where K is a field. Put A,=(13)R,
A, =(13)(34)R, B, =(22)(22)R and B, = (22)R. Then M, = e;R/A, ® e,R/ B, is almost M,
(=e,R/A, ® e,R/B,)-projective, but not M,-projective and M, is almost M, (=e,R)-
projective. However M, is not almost M,-projective, since (22)(22)+#0. Similarly M,
(=e,R/A,) is almost M,-projective, but not M,-projective and M, is M,-projective.
However M, is not M,-projective (cf. [9, Proposition 1}).

3. Transitivity on relative projectives. In this section we shall investigate the
transitivity of relative projectives: if M, is M,-projective and M, is M,-projective, is M,
then M,-projective? The similar property on almost relative projectives is in some sense
the converse of (B).
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ProrosiTiON 1. Let R be a perfect ring. Then transitivity of relative projectives on
M(e) always holds. If transitivity on M(e,) UM(e,) holds, then e J =e,J =0, where
e;R =e,R.

Proof. Let M,, M, be in M(e). Assume that M, is M,-projective and take a projective
cover P, of M;, i=1,2: P,= Y%R; eR;=¢R, and M;=P,/A,. Let f be an element in
j=1

Homg(P,, Py); f =Y rje;(P,— P,), where e;(P,— P,) = 1,z: eRy;— eRy;, r; € eRe. Since
rie; € Homg(Py, By), (rje;)Ayc A, by [1, p. 22, Exercise 4]. Assume that M, is
M;-projective and P; is a projective cover of M; as above. Take any element g in
Homg(P,, P;) and g =(g;). Then e;(P,— P;)=e;(P,—> P3)e;;(P,— P;) and g;e;(P,—
P)A, = gie\;(P,— Py)ej(P,— P)A, c ge\(P,— P;)A, c A;. Hence g(A)) c A;. Accord-
ingly we obtain the transitivity. Next we assume the second condition in the
proposition. Here e,R/e,J is e,R/e,J*-projective and e,R/e,J* is e,R/e,J*-projective.
Hence e,R/e,J is e,R/e,J>-projective by the transitivity. Therefore e,J = e,J?, and hence
e,J =0.

From Proposition 1 we have

THEOREM 3. Let R be a perfect ring. Then transitivity of relative projectives over
finitely generated modules holds if and only if either R is semi-simple or R/J(R) is a simple
ring.

We shall study the above problem for almost relative projectives. In this case the
transitivity is the converse of (B). Let M,, M, and M, be finitely generated R-modules.
The property of transitivity of almost relative projectives is

(By) If M, is almost M,-projective and M, is almost My-projective, then M, is always
almost M,-projective.

LEMMA 4. Let R be any ring and {e;}/~, a set of local idempotents. Put P = .}'S‘Be,.R

i=1
and P=Y®e,R/eJ" for a fixed integer n. Assume that every submodule of P is standard.
Then every submodule A of P which contains ¥,® eJ" is also standard in P.

Proof. Put &R =e;R/eJ" and A=A/(L®eJ"). Then there exists a direct decom-
position of P:=Y%®P; such that A= L®(PNA) and P~gR. Since Endg(&R)
is a local ring, we may assume that P,=¢é,R(g,), where g,:é,R— L®&R. Then

j*l

p=P\®é2R®"'@émR=P‘®P2®’”®Pm.

Considering the projection of P onto ¥ ®& R in the above we may assume that P, = &,R(g,)
j=2

with g, : &,R— P,® L®¢,R. Hence we obtain inductively g, : &R — L8P, ® Y ®é,.Rsuch
k=3 k<i k'>i

that P,=¢R(g;) and P= L®P, ® Y®¢,.R. By induction we can show that g, is liftable
k<i k'>i
to an element g; : e,R— L%, R(g.) D L®e R and P = £ %;R(g)® L° e, R. Therefore
k=i k'>i k=i k'>i
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we have P= f']@e,-R(gi) and &R(g;)=P, for all i. Since A> L%eJ"=1%R(g)]",
i=1
A>Y®eR(g)NA)> L®R(g,)J". As a consequence A = ¥ ®(e;R(g;) N A).

THEOREM 4. Let R be any ring such that R/J is artinian, and let e be a fixed local
idempotent. Then the following are equivalent.

(1) (B)) holds on the set of local modules of the form eR/A, where eR > A > el” for
some n.

(2) Any two local modules of the form eR/A are mutually almost relative projective,
where A is as in (1).

(3) eR/N is uniserial with respect to submodules A/N with [eR/A| <® and (eJ)*c N,
i.e., any simple sub-factor module eJ'/eJ’™*" of eR/N except eR/e] and Soc(eR/N) (if it
exists) is not isomorphic to eR/eJ, where N =() (eJ").

Further let M’'(e) be the set {M} given before Theorem 2 such that M is a
homomorphic image of (eR/eJ")™ for some integers n and m. Then the following are
equivalent.

(4) (B,)) holds on M'(e).

(5) Any two R-modules in M'(e) are mutually almost relative projective.

(6) eR/N is unserial with respect to A/N as in (3) and for any n every submodule of
eR @ eR which contains e]" @ eJ" is standard.

Proof. (2)=>(1). This is trivial.

(1)=>(3). Assume eJ' #eJ'*!. Let A be a submodule such that eJ"*' = A c eJ'. Then
eReA cel’ and eleeReA celJee]' ceJ'™' < A. Hence eR/A and eR/eReA are mutually
almost relative projective by [5, Proposition 2]. Hence eR/A is (almost) eR/A-projective
by (1), and so A is characteristic. Let B be another submodule such that eJ"*' = B c e/J'.
Then since A, A+ B and B are characteristic, Ac A+ B and eJe(A + B)cel™'cB,
eR/A is (almost) eR/(A + B)-projective and eR/(A + B) is almost eR/B-projective.
Hence eR/A is almost eR/B-projective and so eR/A © eR/B has LPSM. Therefore A c B
or Bc A by Lemma 1. Accordingly eJ'/eJ™! is simple. Hence eR/N is uniserial with
respect to A/N. Since eR/eJ' is almost eR/eJ™"'-projective for any i, we know that eR/eJ
is almost eR/eJ"-projective for all n by (B,). Hence eJeeJ c eJ”, and so (eJ)* = N.

(3)=>(2). This is clear from [S, Proposition 2].

(5)=>(4). This is clear.

(4)> (6). We assume (B,). Then we know from the first equivalence that eR/N is
uniserial with respect to A/N, and eR/eJ is almost eR/N-projective by (3), since N ceJ
are characteristic. Moreover eR/N is M'-projective from [1, p. 22, Exercise 4] for any M’
in M'(e). Hence by (B,) eR/elJ is almost M'-projective. Let eJ” c A; c B; be submodules
in eR, i =1, 2 such that B,/A,= B,/A, via g. First we shall show that g is liftable to an
element in Homg(eR/eJ", eR/eJ") (cf. the proof (2) = (1) in Theorem 2). If B, =¢eR, g is
easily liftable to an element in Homg(eR/eJ", eR/eJ"). Hence we assume B; cel. Put
M = (eR D eR)/B\(g)B, e M'(e), where B,(g)B,={b,+b,e Bi® B, |g(b,+A,)=b,+
A,}. Then eR/eJ is almost M-projective from the above. Therefore M is decomposable by
Lemma 3 and hence g is liftable to an element in Homg(eR/A,,eR/A,) or
Homg(eR/A,, eR/A,) by [14, Lemma 2.1] (cf. [7, p. 526, Remark]). As a consequence g
is liftable to an element in Homg(eR/eJ", eR/eJ"), since g is given by an element in eRe.
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Thus every submodule of eR/eJ" @ eR/eJ" is standard by [8, Lemma 5], and we obtain
(6) from Lemma 4.

(6) > (5). Assume that eR/N is uniserial as in (6). Then eR/A, is almost eR/A,-
projective for any A; c eR with [eR/A;| <« by (2). Further every module in M'(e) is a
direct sum of local modules eR/A by [8, Lemma 5]. Hence (5) holds by [9, Theorem ]
(note that every module in M'(e) is of finite length).

Assume that R is semi-perfect and that (1) in Theorem 4 holds for any local modules.
Then the above proof (1)3 (3) shows that the set of right ideals {A c eR | |eR/A| <} is
uniserial. Hence eR/eJ' is almost eR/eJ!-projective for any i and j. Further since eR /el is
(almost) fR/fJ**'-projective (f is a primitive idempotent not isomorphic to ), any two
local modules with finite length are mutually almost relative projective. Hence from [8,
Theorem 4] and the proof of Theorem 4 we can get

PropostTioN 2. Let R be a semi-perfect ring. Then the following are equivalent:
(1) (B,)) holds for any local modules,
(2) R is a right Nakayama ring with radical square-zero.
Further the following are equivalent:
(3) (B,) holds for any finitely generated R-modules,
(4) R is a two-sided Nakayama ring with J* = 0.

4. Transitivity on relative injectives. We shall explore here the dual results to the
previous section. We can dually define the concepts of transitivity of (almost) relative
injectives and (Bf). Let S be a simple R-module. By M(S) we denote the set of
R-modules M such that Soc(M) = S™™) with n(M) <»; by M'(S) we denote the set of
M in M(S) such that |M| <oo.

ProrosiTioN 1%, Let R be any ring and S, a simple R-module. Then the transitivity of
relative injectives on M(S,) holds. Assume further that R is a right semi-artinian ring. In
this case, if the transitivity on M(S,) U M(S,) holds, then S, and S, are injective, where S, is
a simple module not isomorphic to S,.

TueoreM 3%. Let R be a perfect ring. Then the transitivity of relative injectives over
the modules with finite Goldie dimension holds if and only if either R is semi-simple or
R/J(R) is a simple ring.

We can obtain the dual result to Proposition 2, which we skip. Finally we observe the
dual to Theorem 4.

THEOREM 4%. Let R be any ring and S a fixed simple R-module. Then the following
are equivalent.

(1) (BY) holds on the set of all submodules with finite length in E(S).

(2) Any two submodules of finite length in E(S) are mutually almost relative injective.

(3) E' =\, Soc,(E) is a uniserial module such that any simple sub-factor module of
E' except E'[J(E") (if it exists) and Soc(E) is not isomorphic to Soc(E). (Here {Soc,(E)}
is the lower Loewy series of E.)

Further the following are equivalent.

(4) (B¥) holds on M'(S).
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(5) Any two modules in M'(S) are mutually almost relative injective.
(6) E’ is a uniserial module as in (3) and every submodule of E' ® E' is standard.

Proof. First we note that if Soc,(E) is uniserial for all n, and if a submodule A in E’
is not contained in Soc,(E) for any n, then A = E’, provided E' # Soc,(E) for all ¢. Since
A ¢ Soc,(E) for any n, there exists a in A\Soc,(E). A being a submodule in E’, a is an
element in Soc,,(E) for some m, and hence m > n. We may assume a ¢ Soc,,_,(E). Since
Soc,,(E) is uniserial, Soc,(E)<Soc,,(E)=aR cA. Therefore A >Soc,(E). Now we
prove the theorem. This is dual to Theorem 4. Hence we shall show only (4) = (6). Put
E = E(S). Then E’' = Soc,(E) is a uniserial module as in (3) from the first equivalence.

Set E* = E, @ E, with E; = E' and denote the projection of E* onto E; by 6;. Let B* be a
submodule of E*, and put B;= 6;(B*) and A;=E;NB*. Then g:B,/A,=B,/A, and
B* = B\(g)B, (cf. [8]). If A, =0, then g is liftable to an element § in Endz(E’), since E’ is
characteristic in £. Hence E* = E, @ E,(§) >0 ® B,(g) = B*. Therefore we assume A; #0
for i =1,2. In the dual manner to the proof of Theorem 4, we can show from the first
equivalence that § is almost B*-injective. On the other hand, since we may assume A; #0
and B; #A;, B* is decomposable by Lemma 3*. Further since Soc(B*)=S@® S, B*=
D, @& D, and the D; are isomorphic to submodules in E’ for the D; are uniform. Hence they
are uniserial. Assume B,=E’ and |E'| =«. Then |D,;| = or |D,| = . We may assume
that |D,| = . Since D is uniform, 6; | D; is a monomorphism for i =1 or 2, say i =1.
Since |Dy|=», 6, | D, is an isomorphism from the initial remark. Putting h =
6,6,|E')"':E'>E’, we obtain E*=E'(h)® E’ and D,=E’(h)c B*. Hence B* =
E'(hy® B*NE’'and B*NE'c E'. Therefore B* is standard. Finally we assume |B;| <
for i=1,2. Then B'=B® B, > B*. Let j; be the projection of B’ onto B,. We may
suppose |B,| 2 |B,|. Since B* = B,(g)B,, m,(B*) = B,, and hence we assume 7,(D,) = B,.
On the other hand, since D, is uniform, D, is monomorphic to a submodule of B, or B,,
i.e. |D,|=|B,|. Hence &, |D, is an isomorphism. Put h =m,n7'|B,: B,— B,. Then
B'=B,(h)® B, and B,(h)=D,. As a consequence B* = B (h)® B* N B,. Since E is
injective and E’ is characteristic, we obtain an extension A’ of A in Endg(E’). Hence
E*=E\(h)DE,2B|(h")D®B*NE,oB,(h)® B*NB,=B*, i.e. B* is standard in E*.
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