A Proof of the Addition Theorem in Trigonometry.

1. Prove $\sin \theta=-\sin (-\theta), \cos \theta=\cos (-\theta)$.

Let $X^{\prime} O X, Y^{\prime} O Y$ be rectangular axes, and let $O P, O()$, starting from the position $O X$, describe angles $\theta,-\theta$. Then $O P, O Q$ are in every case symmetrically placed with respect to $O X$. (Illustrate by taking positive and negative values of θ). Hence $x_{P}=x_{Q}, y_{P}=-y_{Q}$, and the results follow from the definitions of sine and cosine.

Cor. $\cos \theta=\cos (2 n \pi \pm \theta)$, where n is any integer.
II. Prove $\cos \theta=\sin \left(\theta+\frac{\pi}{2}\right), \sin \theta=-\cos \left(\theta+\frac{\pi}{2}\right)$.

If $O P, O Q$ are radii of a circle such that $\widehat{X O P}=\theta$ and $X O Q=\frac{\pi}{2}+\theta, Q$ is always a positive quadrant along the circumference from P. (Illustrate by taking positive and negative numerical values of θ). If M, N are the projections of $P Q$ on $O X$, the triangles $O M P, O N Q$ are congruent, hence $x_{P}=y_{Q}$ and $y_{P}=x_{Q}$ numerically.

If x_{P} is positive, P is on the semi-circle $Y^{\prime} X Y$.

$$
\begin{aligned}
& \therefore Q \quad, \quad, \quad, \quad \quad, \quad X Y X^{\prime} . \\
& \therefore y_{Q} \text { is positive. }
\end{aligned}
$$

Similarly if x_{P} is negative, y_{Q} is negative.
$\therefore x_{P}=y_{Q}$, and $\cos \theta=\sin \left(\frac{\pi}{2}+\theta\right)$.
Again, if y_{p} is positive, l^{\prime} is on the semi-circle $X Y^{\prime} X^{\prime}$.

$$
\begin{aligned}
& \therefore Q \quad, \quad " \quad Y \quad Y X^{\prime} Y^{\prime} . \\
& \therefore x_{Q} \text { is negative. }
\end{aligned}
$$

Similarly if y_{P} is negative, x_{Q} is positive.

$$
\therefore \quad y_{P}=-a_{Q}, \text { and } \sin \theta=-\cos \left(\frac{\pi}{2}+\theta\right)
$$

III. Prove that in any triangle $A B C, a^{2}=b^{2}+c^{2}-2 b c \cos A$.
IV. Prove that if P, Q are the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{0}\right)$, then $P Q^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$.
(Illustrate by numerical examples the fact that the projections of $P Q$ on the axes are in all cases $x_{2}-x_{1}, y_{2}-y_{1}$).
V. Prove that $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$, where α, β are any positive angles less than 360°.

If $O P, O Q$, each of length r, make positive angles a, β with $O X$, the angle $P O Q$ of the triangle $P O Q$ is equal to $\alpha-\beta$ or $\beta-\alpha$ or $360^{\circ}-(\alpha-\beta)$ or $360^{\circ}-(\beta-a)$. (Illustrate by diagrams.)

In every case, by $I, \cos P O Q=\cos (\alpha-\beta)$.

$$
\therefore P\left(Q^{2}=O P^{2}+O Q^{2}-2 O P \cdot O Q \cos (\alpha-\beta)\right.
$$

$\therefore \quad\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}=2 r^{2}-2 r^{2} \cos (\alpha-\beta)$.
But $x_{1}{ }^{2}+y_{1}{ }^{2}=r^{2}=x_{2}{ }^{2}+y_{2}{ }^{2}$.

$$
\begin{aligned}
\therefore \quad \cos (\alpha-\beta) & =\frac{x_{1} x_{2}}{r^{2}}+\frac{y_{1} y_{2}}{g^{2}} \\
& =\cos \alpha \cos \beta+\sin \alpha \sin \beta
\end{aligned}
$$

VI. Extend the above result to any angles.

If A, B are any angles whatever, coterminal with a, β, then $A=2 m \pi+\alpha, B=2 n \pi+\beta$, where m and n are integers, positive or negative.
$\therefore \quad A-\beta=9 h \pi+(\alpha-\beta)$, where k is an integer.

$$
\begin{aligned}
\therefore \quad \cos (A-B) & =\cos (\alpha-\beta) \\
& =\cos a \cos \beta+\sin \alpha \sin \beta \\
& =\cos A \cos B+\sin A \sin B \text { (by I, Cor.). }
\end{aligned}
$$

VII. By means of I and II extend the result to $\cos (A+B)$, $\sin (A-B), \sin (A+B)$ in the usual way.
R. J. T. Bell.

