A Proof of the Addition Theorem in Trigonometry.

I. Prove $\sin \theta = -\sin(-\theta)$, $\cos \theta = \cos(-\theta)$.

Let X'OX, Y'OY be rectangular axes, and let OP, OQ, starting from the position OX, describe angles θ , $-\theta$. Then OP, OQ are in every case symmetrically placed with respect to OX. (Illustrate by taking positive and negative values of θ). Hence $x_P = x_Q$, $y_P = -y_Q$, and the results follow from the definitions of sine and cosine.

Cor. $\cos \theta = \cos (2n\pi \pm \theta)$, where n is any integer.

II. Prove
$$\cos \theta = \sin \left(\theta + \frac{\pi}{2} \right)$$
, $\sin \theta = -\cos \left(\theta + \frac{\pi}{2} \right)$.

If OP, OQ are radii of a circle such that $\widehat{XOP} = \theta$ and $\widehat{XOQ} = \frac{\pi}{2} + \theta$, Q is always a positive quadrant along the circumference from P. (Illustrate by taking positive and negative numerical values of θ). If M, N are the projections of PQ on OX, the triangles OMP, ONQ are congruent, hence $x_P = y_Q$ and $y_P = x_Q$ numerically.

If x_P is positive, P is on the semi-circle Y'XY. $\therefore Q$, ,, ,, XYX'. $\therefore y_Q$ is positive.

Similarly if x_P is negative, y_Q is negative.

$$\therefore x_P = y_Q$$
, and $\cos \theta = \sin \left(\frac{\pi}{2} + \theta\right)$.

Again, if y_P is positive, P is on the semi-circle XYX'.

$$\therefore Q ,, ,, ,, YX'Y'.$$

$$\therefore x_Q \text{ is negative.}$$

Similarly if y_P is negative, x_Q is positive.

$$\therefore$$
 $y_P = -x_Q$, and $\sin \theta = -\cos\left(\frac{\pi}{2} + \theta\right)$.

III. Prove that in any triangle ABC, $a^2 = b^2 + c^2 - 2bc \cos A$. (12) A PROOF OF THE ADDITION THEOREM IN TRIGONOMETRY.

IV. Prove that if P, Q are the points (x_1, y_1) , (x_2, y_2) , then $PQ^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$.

(Illustrate by numerical examples the fact that the projections of PQ on the axes are in all cases $x_2 - x_1$, $y_2 - y_1$).

V. Prove that $\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$, where α , β are any positive angles less than 360°.

If OP, OQ, each of length r, make positive angles a, β with OX, the angle POQ of the triangle POQ is equal to $a - \beta$ or $\beta - a$ or $360^{\circ} - (a - \beta)$ or $360^{\circ} - (\beta - a)$. (Illustrate by diagrams.)

In every case, by I, $\cos POQ = \cos (\alpha - \beta)$.

$$\therefore PQ^2 = OP^2 + OQ^2 - 2OP \cdot OQ \cos(\alpha - \beta)$$

:. $(x_2 - x_1)^2 + (y_2 - y_1)^2 = 2r^2 - 2r^2 \cos(\alpha - \beta).$

But $x_1^2 + y_1^2 = r^2 = x_2^2 + y_2^2$.

 $\therefore \quad \cos(a - \beta) = \frac{x_1 x_2}{r^2} + \frac{y_1 y_2}{r^2}$ $= \cos a \, \cos \beta + \sin a \, \sin \beta.$

VI. Extend the above result to any angles.

If A, B are any angles whatever, coterminal with a, β , then $A = 2m\pi + a$, $B = 2n\pi + \beta$, where m and n are integers, positive or negative.

 $\therefore \quad A - B = 2k\pi + (a - \beta), \text{ where } k \text{ is an integer.}$ $\therefore \quad \cos(A - B) = \cos(a - \beta)$ $= \cos a \cos \beta + \sin a \sin \beta$ $= \cos A \cos B + \sin A \sin B \text{ (by I, Cor.)}$

VII. By means of I and II extend the result to $\cos(A+B)$, $\sin(A-B)$, $\sin(A+B)$ in the usual way.

R. J. T. BELL.

(13)