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In the following let Q. be the set of irrational numbers in the interval [0,1] and let X be
Lebesgue measure restricted to Q. For any real number x, let {x} — x - [x] be the fractional
part of x. Let Nbe a natural number and let a e £2. Then

N

DN(a) := sup | Y ] clx,y)({na)) - N{y - x) \
0<x<y<\ , , = 1

is known as the discrepancy of the sequence («a)n>| modulo 1; here qXiy) denotes the char-
acteristic function of the interval [x, y).

In this paper we shall prove that

supA( lot eQ\ \DN(a)-^r log N\og log N \> K\og N\ ) = 0(/T1/3).

The convergence of Djv(a)/( log iV log log N) in measure to ^ was first proved in [5]. At that
time no remainder term was available: neither the theory of DN(a) nor the metrical theory of
continued fractions were developed far enough. Nevertheless we can follow the idea of the
proof there. By the way we shall prove some consequences of the metrical theory of con-
tinued fractions that may be of some interest for themselves, although even weaker estimates
would be sufficient to prove our theorem.

1. Foundations. Any a e ( ! has a unique continued fraction expansion
a — [0; a\(a), .. .]. We denote the «-th convergentzof a by pn(a)/qn(a).

Let * : IR -> [0, 1] be defined by <D(z) = 4 ^ J e-y2/2dy. Denoting the constant ^ ^ by

r and correcting some misprints in [6], we have the following result.

PROPOSITION 1.1. There are positive constants a and K such that for all integers n > 2 we
have /rz _ n\ j o g „

sup | A({a e £2 | log qn{a) < z}) - <D r ) \<K—f=-.

The value of r, which is not stated in the paper above follows from the well known relation

lim - log qn(a) =
n*oonA i » -"•""•-' 12 log 2

almost everywhere. In the following let a be the constant stated in this theorem.
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394 J. SCHOISSENGEIER

Let N > 1 be an integer. For any a e ft there exists a unique nonnegative integer
m = wyv(a), such that qm{a) < N < qm+\{a). We shall use this notation throughout the paper.

In the following we shall use the inequalities 1 — <I>(z) = o(\e~zll2\ for z > 0 and
*(z) = o(±e-z2'2} for z < 0. 7

PROPOSITION 1.2. For anj x < 1 and any integer N > 3 we have

The O-constant is absolute.

Proof. Let y := r(l - x) log iV and A(x):-{a e
A{x) - {a e ft | %,]+i(a) > Â } and therefore if x < 1/2

\ mN{a) < r(l - x) log TV}. Then

If/(vv) := rl°g^r"', then for w > w' > \ log N we have

Aw) -AW) =

Since | <D(z) - *(z')| < |z - z'| (for all z, z' e R) we get

log

= 1 - ,J

Let us prove the assertion first of all for 1/2 < x < 1. Then

_

Assume now that x < -1/2. Then

log

log

log Af i
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THE DISCREPANCY OF (nor) 395

Next we assume that 1/2 > |,v| > J&V*J^f£rJr- Then Myy^lH > J log log TV and therefore

Analogously

From this the assertion follows in this case, too.

Finally let |x| < J^a^/zJ ]ofJ°%N. This results in

I - x

and therefore

TogJVJ

logN

Toglv

= J

COROLLARY 1.1. For any integer N > 3 and any x > 0 we have

The O-constant is absolute.

Proof. This follows immediately from Proposition 1.2.

NOTATION. Let fi := j ] ^ - Let G : U -> [0, 1] be that distribution function which satisfies

= f efixff

We note that

G'(x) = -L /sgnt| log \,\)dt

Furthermore for £ e (-1,1} and x e U we put

n(x> «) = — f e-|-«g-l'l(l-^gnt log \l\)dt

In]

and we note that G'(x) = ̂ p(^-^ log/x, -1). Correcting four misprints in [4] we get the
next result.
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396 J. SCHOISSENGEIER

00

PROPOSITION 1.3. For n eZ+ let bn := 3 J e~'t"(i - £ log t)"dt, cn((p) the coefficient ofy" in
o

the power series expansion off[y) := ey v^O-w)-'- 2 j+'W and an = ?H J e~^l2cn{(p)d(p. Then
for any positive integer N and x->oowe have °

I 2

?lx-\— l ' v n=0

P\-

LEMMA 1.1. For x —• oo we

logx, l ) =

Proo/. (1) We have 60 = 0 and by = 1. Therefore j?(.x + f log x, - l ) =^ + 0(x~3). For
every y eU there is exactly one x(y) > 0 with x(y) + \ log x{y) = y. We have
limv_>oox(y) = oo and therefore, if y is large enough, 2x(y) > y > x{y). This implies
logx(>')= log y + 0(1) and therefore x(y) + ̂  log y = y + 0(\); from this we get

^ = 1 - £ log y + 0 ( y . This implies that

(2) Let gO) = -y-2(e'^(l - ^ ) - 1 - *f\ + i<py. Then g(y) = upy(l - <p2/3) + 0(y2) for
y -+ 0. Therefore / ) ) = e?Cv) = ) + / ^ ( i - V / 3 ) + O( / ) and c,((p) = i<p(\ - qp-/f). This
implies a\ — 0.

PROPOSITION 1.4. For x -> oo we have

(1) C(JC) = 1 T ^ r - ' ° g ^ + O(x-\
x log 2 x2 log2 2 V ;

(2) G(-x) =
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THE DISCREPANCY OF (not) 397

Proof. (1) J ^ d x = J^L + J? implies

G(x) = 1 - G'(y)dy = 1 - - p(- - - log M, - 1

.V .V

0 0

= 1- J P(y,-\)dy

— 1

This implies the assertion.
(2) For y ->• oo we have p(y, 1)

oo

I *
A'

2

2 ,-/2

0 0

OO

oo

+ 0(e-^ 2 ) ) and therefore

O(e-*x'2))

For all x e IR we have p(—x, —1) = p(x, 1) and therefore
—.V —.V

G(-x)= f G'(y)dy = - \ pU - - log /*, -
-00

oo

1 <• / > , 2 ,

P\ h— log U,

00

p(yA)dy-
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398 J. SCHOISSENGEIER

In the following we denote. Euler's constant by y.

PROPOSITION 1.5. [1]. There is a constant K > 0 such that for all integers N > 2 and all
x > 0.

„,.,))X a e f l l ) ak(a)<x - G f -
x log N — y

N log 2
<K

\og2N
N '

Proof. This result was proved in [1] only for the case to which X is replaced by the
Gaussian measure P(A) = -A-^ J ̂  L. Heinrich kindly pointed out to me that the same

A
result is valid for any measure \i that is absolutely continuous with respect to P and whose
density function is strictly positive'on [0, 1] and continuous in the sense of Lipschitz. We give
a sketch of the proof (suggested by L. Heinrich). From Theorem 2 in [2, p.8] it results that
there exist constants C > 0 and / e (0, 1) such that, for all m,q eN,

\P([a e Sl\am{a) = q\) - (i({a € fi|am(a) = q})\ < CfP({a € fi \ am(oc) = q}).

Denoting by £M the expectation value with respect of//. we get easily from the formula above

N
I \ ^ I T i n i t o i i \ \ T J 7 ( n i t a \ i \ i ~ /-< i TO i J t a \ i \ i

| J , ^ n \ e 1J — r J h p y e — l ) \ < C i \ h , p \ e — l ) \ .
k=\

It follows that [2, Lemma 4] remains valid if we replace in it Ep by E^ and TQ by |o
c*A,. This

last statement follows from [3, Satz 4]; this theorem is again stated only in the case /x = P,
but following the lines in [2] immediately after Corollary 2 one can prove that it is valid even
in the general case.

PROPOSITION 1.6. There is a constant K > 0 such that for all x > 0 and all integers N > 3

*=, j / x^ogN log 2

Proof. For N>3,x > 0 and 0 < e < 1/2 we define

, _ x log(r(l+£)logAQ-y
mx'e)-r(l+e)\ogN log 2

Then

This implies that there is r\ such that

G(fN(x, e)) - G(fN(x, 0)) = O( s[ T^rTr+ 1 )G'(fN(x, r,))

and 0 < x] < s.
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THE DISCREPANCY OF (no) 399

Now//v(x, s) > 1 implies/AT(X, 77) > 1 and therfore by Proposition 1.3 a simple calcula-
tion yields

G(fN(x, e)) - G(fN{x, 0)) =

If/#(*, e) < 1 we get -$£- + 1 = o( log log N) and therefore again

G(fN(x, £)) - G(fN(x, 0)) = O(e log log N).

Assume now that e > 0. Proposition 1.2 and Proposition 1.5 imply

X\ l a e £f l*(a)<j[ : ] >M \a
*=1 J/ \l k<r(l+e) log N

> T(1 + e) log N})

Now we put e = a^jlx l o f o y . Then we get

Analogously the converse inequality can be proved.
From these results we conclude some Lemmas which will be used later.

Togl

\ogN

LEMMA 1.2. There exists a constant c > 0 with the following property: ^
integer, M :— [ ( | — /x) log JV], v : Q ->• Z + , v(a) = maxjm^a) — M, 0} and 1 < w < log

a e SI I /Ae denominator o/[0; fl^a)+i(a),..., flmAr(a)(a)] « > ^

log log

Proof. The assertion is trivial if \i <1x °f°fr • Otherwise /x log
log Â . Let A be the set mentioned in the Lemma and let

— r log log

B := ja e a) - T log N\ > ̂  log
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400 J. SCHOISSENGEIER

Then Corollary 1.1 implies

= o(
log N log

For a e ^4\B we have

N{a) < (r + ^j log TV

v(«) > (r - ^ ) log TV- g - fi) log TV

and

Proposition 1.1 implies

mN(a) - v(a) < —— log TV.

log TV

= Oi l -

- 01 1

~ T

- fM) log TV/ ^ log TV

4-
- /x) log TV / V log TV

\2OTJ2(X - fi)J V log TV t

xj\ log log

log log TV

LEMMA 1.3. 77?ere

an integer, M := [(|
w/i a constant c > 0 H>Z7/I the following property: ifO < /x < I , TV > 2

) log TV],

v : a) - Af, 0}

*=><«)

i
log 2 / ^ log TV

log log TV

y log TV
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THE DISCREPANCY OF (net) 401

Proof. It is similar to the proof of Lemma 1.2 (and even simpler).

The following Lemma should be well known.

LEMMA 1.4. There is a constant c > 0 such that for all k e Z+, x > 0 and N e N we have

LEMMA 1.5. There is a constant c > 0 with the following property: ifO</j,<^,Nisan
integer >2,M:= [(f - fj) log N], R > 0 and

v : Q -> Z+, y(a) = max{mAr(a) — M, 0},

X l \ a e Q \ £ <&»(.«)> R \ ) <

Proof. It follows the same idea as the proof of Lemma 1.2 (and is even simpler).

2. An application of the inequality of Tschebyscheff. Let a e £2 and let k be a nonnegative
integer. It is well known that there is exactly one sequence (cs(k, a))s>0of integers, such that

00 ~

k = Yl cs(k, a)<7.s(a), where 0 < cs(k, a) < as+\(a), co(k, a) < a\(a) and s > 1, cs(k, a)

= as+\(a) implies cs_\(k, a) = 0 (the Ostrowski-expansion of A: with respect to a). This can be
formulated in a simpler way: there is exactly one sequence (cs(k, a))s>0of integers, such that

oo
for all / > 0, 0 < k — £ cs(k, ci)qs < qt. This variant can be generalized as follows.

LEMMA 2.1. Let («,),•> i be a sequence of positive integers and let (^,),>_1 be a sequence of
real numbers such that q_\ —O<qo and for i > 0, </,+i = ai+\q,- + qi-\. Let z > 0 be a real
number. Then there exists exactly one sequence (c,)l>0 of integers such that, for all t > 0,0 < z

00 ~

— 51 Ckqu < <7,. This sequence has the following properties.
k=i

(1) For all k > 0 we have 0 < Ck < fl/t+i,
(2) co < a\\ also k > 1 and Ck — ak+\ imply Ck-\ — 0.

Proof. This was already used in [5, p. 195].

We denote the "digits" Ck of z by Q(Z) . If the q\ are the denominators of the convergents of
a € £2, we denote them by Q(Z, a). The following lemma is well known.

LEMMA 2.2. Let a € £2. For i > 0, let {^A be the sequence of convergents of

a,-+i := [0, ai+\,...]. If n> i, then

(1) /,„_,,, = (-iy+1(9n(a)A-(o) -/>B(a)g/(a)),
(2) qn_u = (-\)'(qn(a)pi^(a) -pn(a)qi-\(a)).
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402 J. SCHOISSENGEIER

Let («,),> 1 be a fixed sequence of positive integers. Subsequently c, d, i and j are non-
negative integers with the following properties.

(a)i = 0=> c= 1,
(b) / = 1 => c < a\,
(c) i > 1 =• 0 < c < a,-,

Under these conditions we put

Lij(c, d) := {(**)/<*</€ / J+ ' I (i = ; A d = aJ+l) => c = 0,

(/ < j A xi - ai+{) =>c = 0,i<k<j=3-xk< ak+i,

(i < k <jAxk = ak+\) =>• Xfc-i = 0}.

We note that if c > 0 then L,,(cfli+1) = 0, while in the case d= ai+\ =^ c — 0 we have
Lij{c,d) = {<&}.

LEMMA 2.3. Le? a — [0; a\,...] e fi ie //ze continued fraction expansion of a with con-
vergents es-. Assume that (a)-(e) above are satisfied.

(1) Ifc >0andd< aj+x we have |L,j(c, d)\ = ( - l) ' (^,_i - ^ , - _ , ) .
(2)Ifd< aJ+\ we have

|L,/0, d)\ - ( - l ) '

(3) / <y /w/?Wej \Lij(c, aj+\)\ = |L/j_i(c, 0)|.

Proof. We repeat that any nonnegative integer m < </7 has a unique expansion

m = 5Z ^/t%, where 0 < xk < ak+i,xo < a\ and, for k > \,xk — ak+\ implies xk-\ — 0.
A-=0

(1) \L0J(\,d)\ = \\^2xkqk\xk €l,0<xk <ak+\,xo <a\,xk - ak+] =>> xk-\ = o l |

Applying this result to ai+\ = [0; ai+\,...,] instead of to a and using Lemma 2.2(2) we get the
assertion.

(2) The result is valid if / =j. Assume that / < / Then

Lt/0, d) = Lij{\, d) U ({a,+1} x LMJ{1, d))

and therefore |L,v(0, d)\ = |L,j(l, d)\ + \Li+lJ(],d)\.
(3) follows from Ljj(c, aj+\) = L,v_i(c, 0) x {0}.

Let / = {/|,...,/,} c {0,. . . , m — 1}, where ;) < iJ+\ for \<j<t. Let ;0 = —1 and
m-\

il+\ = m. Assume that, for any / e /, 0 < c,- < a,+i is given. For 0 < k < qm, let k = £ Cj(k)qj
be the Ostrowski-expansion of k. We put c,0 = 1 and c,-,+l = 0. Then J=°
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THE DISCREPANCY OF (no) 403

i

\{x e Z+\k < qmi € / =>• c(k) = c,}| = \ \ \LiJ+uJ+] (c<;> c'y+i)l-
y=0

For the rest of this paper we define B2(x) = {x}2—{x} +^; B2 is the second Bernoulli-
polynomial.

LEMMA 2.4. Let a — [0; a\,...] e Q be the continued fraction expansion of a with con-
vergents & and let m e Z+. For 0 < s < t < m let

fc'(k)\ v X V*1

(1) V, = \

(2) For 5 < t, Us,, -VSV, = t^q2
s(p, - ^ ? , ) 2 « , - !)(*?+, - 0-

(3) ^ - ^ =

Proof. We carry out the proofs, which are tedious but trivial in principle, up to those
points from which subsequently it is clear how one has to proceed.

(1) Note that for any q e N, ± £ B2(A = ± A - 1V This and Lemma 2.3 imply
fc= 1

~ Ps) ~ Pm(qs+\ ~ Is))

/ c \
B2[ )qs(-\

(2) First of all we prove that

If s < t — \ this formula follows from Lemma 2.3(3). If s = t - 1, then the left hand side
equals | |Lo,j(l, 0)| = ^. Because of 0 < k < q,_\ =• c^fe) = 0, the right hand side is again
equal to ^.
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404 J. SCHOISSENGEIER

From this it follows that

•.2

\a,+\J
\L0,s(\^)\.\Ls+u(c,d)\.\Ll+lm(d,0)\

as+lal+l ^ ^ \as+h

' n ' + 1 —
' Jl-^CsO- c)\.\Ls+\,t{c,a,.

( c \ ( d\
B2\ \B2 I J \LQ S{] , C)\.\Ls+\ t(C, 0)1

- r̂)) £B2(—) |LO, , (1, c)\.\Ls+hl(c, 0)|
7^ \a>+i/

()"f *(-) E
- A) - Pm(ql+i ~ q,))

(3) If q e N we have
q-\

180

Therefore

(-\)sqS/ , , , ,,
= ^7 (qm(Ps+\ -Ps) ~Pm(qs+\ ~ (Is))

+ ( - l ) i + 1 qs(qmps ~Pmqs) E Bl\ ) H ^ (<lmPs -pmqs)-

PROPOSITION 2.1. Let a — [0; a\,...] be the continued fraction expansion of a e£l wth
convergents & Let m > v be nonnegative integers and let /u. > 0. Then

(2) | U e Z+|A: < qm, £ c,(A:)̂  e [0, /*] U [9v - n, qm)\\ <
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THE DISCREPANCY OF (no) 405

Proof. (1) Let A be the set occuring in the Proposition. For 0 < 5 < t < m let

1 "•£=}

s.t • =— > as+[al+{B2[ )B2[
^S+\J \a,+ij

and for 0 < k < qm

v«J+l

CO

-7 < -f
k=s+\ q

the help of Lemma 2.4(2)

Using Y] -7 < -f- (an inequality which is used repeatedly in the following text) we get with
k=s+\ q< ^ + 1

?i— I m—I i m— I m—1

4) I 4 E « E

-1 m-1

^ ^ 9 •

For v < s < m let ^ := [as; as+l,..., om]. Then for s < m, \ps — ^qs\ = „ ' + — and there-
fore, by Lemma 2.4(1), we have

m—\ i m—\ / \ i m—\

E rr , ' V ^ / 1 I Pm l

° V Q"1

l^i_ / as+iqs \ 1"^ q.

| m - v
6

wi-v

6
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406 J. SCHOISSENGEIER

At the end, if 0 < s < m we get, by Lemma 2.4(3),
i , s 7

s2,4 (* -&*)«„ - .

? J + 30

Now let
m-1 /m-1

fi:= \keZ+\k<qm,

Then

m-l m-l m-l

m- l

m—1

this implies that \B\ < j ^ .
It is therefore enough to prove A Q B. Let k e A. Then we get

m—1 m—1 / (K\\ m—I

( )

1 / 2
 m _ v

- l
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THE DISCREPANCY OF (not) 407

Therefore k e B.

(2) Let A := \k e Z+|A: < ?M, £ ' c,(fc)fc 6 [0, IM]\.
I *=0 J

Then

\A\=

>v - pv-\) -pm(qv - <7v-0)

v-i -pmqv-\)

Let

B := I k € Z+ | fc < ^m, ^ c,(fc)^ €

Then we get similarly

\B\=

v—u.<t<a»

Besides Proposition 2.1 we need the following (apparent) generalization.

COROLLARY 2.1. Let a = [0;a\,...] e Q be the continued fraction expansion of a. Let
(qdi>-\ be a sequence of real numbers such that q-\ = 0 < qo and, for
i>O,qi+\=qi+\qi + qi-\. Let Z c [0, <?„,), d := inf{|x - y\\x,y e Z, x ^ y) > 0, m > v be
nonnegative integers and let fi be any positive real number. Then
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408 J. SCHOISSENGEIER

Proof. Let k(z) := [f^q0 (for z € Z),

m-1

A'=\zeZ\z-J2 c&)<ls e [0, /*] U fev - /i, qv) ,

f )

: = \ k e q0Z+ \ k < q m , k - ^ c ^ k ) ^ e [°- ^ u ^ ~ V< 9v) \ •

Then, by Proposition 2.1 applied to & we get \B\ < ^ and 1 (̂̂ )1 < 4([^] + l) %.
m-\

Let us prove that for 0 < 5 < m, cs(z) = cs(k(z)). From the inequalities £ cs(k(z))qs <
k(z) < z we get, for t > 0, s=v

m—\s=t

m-\

k(z) - ^ cs(k(z))qs + q0

This implies the assertion. Therefore if z e A, then k{z) e B. We get

zeA keB k<:*j<

Assume now that z e A'. Then
v—1 m—\

s=0 s=v
m-\

e [0, n]U[qv- n- q0, qv)

and therefore k(z) e B'{^i + q0). We get

^ E E i
k<I<k+q0

- +: .
q*
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THE DISCREPANCY OF (net) 409

3. The Main Lemma. We use the following property, which is an immediate con-
sequence of the mixing property of the random variables a,(a).

Let B c Q be measurable; for a e fi let ctn — [0; an+\(a),...] and b e H". Then

X({a e Q\an e B, 1 < / < « = > a,(a) = ft,}) <

LEMMA 3.1. There is a positive real number c > 0 with the following property: if N is a
positive and m a nonnegative integer, (6,)i<,<m " a sequence of natural numbers, qm is the
denominator of[0;b\,..., bm],

A := {a e Q \ 1 < / < m =>• a,(a) = 6,}

5 := {a e ^ | 0 < i < m =$• a(N, a) = 0},

Proof. For 0 < n < m, let ^ be the convergent of [0; b\,..., bm]. Let

K := {(k, l)\0<k<l,lqm + kqm.i = TV}.

We prove that, for some constant c\, Yl 7 - ci l̂ v + «

Because of gcd(gm_i, qm) = 1, there are integers ko, /o with loqm + fco?m-i = TV. For any
(k, t)e K, there is aj € Z with / = /0 +jqm-i- Now 0 < k < I implies lqm <N< l(qm + qm-\)

and therefore —^— < /0 +jqm-\ < ^ - The number of these integers y is at most

1 + ?m(?m+?m_,)- Therefore we get

J~ N ^ J ~ N V qm(qm + qm-\)J ~ N qm

For 0 < A: < / we put ifo,/ := {a e ^||fc - am/| < 4}. We prove that B c \J(kJ)^KBkj.
Let a € 5 and ; > m. Lemma 2.2 implies that

qt(0t) = qm-\Pt-m,m(a) + qmq,-m,m(a)-

Therefore
oo

t=m

OO 00

(c,(TV, a)q,-m,m{a).
l=m l=m
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00 OO

If we put k :— Y^ c,(N, a)/?,_mm(a) and / = £ c,(N, a)?,_m,m(a), we get 0 < k < I and there-
t=m t=m

fore (k, I) e K. Furthermore
oo

\k - aml\ < ^ c,(N, a)\p,_mjn(a) - amq,-m,m{a)\
t=m

oo

<

Therefore a e B^j- We get

PROPOSITION 3.1. There is a positive real number c with the following property: if N is a

positive integer, 0 < \i < \, M = [ ( | — /j.) log N] > 2, e > 0 and

a e fill > as+\(a)B2\ — ! ! > £ / at+\(a)},

I—1 V ac4.i (a) *—>

1
2/3)'(s\ogM)

Proof. Let a := Je-^-. The assertion is trivial if e log M < 2 log 2 or if log N-

y < 4 log (a log A/). We may assume the opposite and we put v := (E log M)l / 3 . Then

£ £ 102 A/
— - ( l o g A/ - y - 2 log (a log A/)) > —-2— > 1.

Therefore there exists an 7? > 0 such that

- + - ^ - = ^ - ^ (log M - y - 2 log (a log M)).

This R satisfies the inequality v-^~ >
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We put
B : = {« e £2

M-l

(where ^ denotes the denominator of [0; b\,..., b^])- For b e B let

£h: = {aeQ\l<s<M^ as{a) = bs\,

By Proposition 1.1 we have

= 1 - O

P-V? log

log JV

Lemma 1.2 implies

By Proposition 1.5 and Proposition 1.4(2) we get

411
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Assume now that b e B and a e E j . Then

Denoting by

we get, with the help of Proposition 2.1(1), \V\ = O(^). Since

mg(a) M—\
N=J^ cs(N, a)qs(ct) + J^ cs(N, a)qs

s=M s=0
M-l

we have k :— J2 ^(W, a)qs e V and cs(N — k, a) = 0 for 0 < s < M. Now qM < ~/N and

Lemma 3.1 imply

From this it follows that l( \J Eb } = O(V) = O((s log M)~2/i). Finally we have

and this proves the assertion of the proposition.J
beB

We need an estimation for

a

from above. To get such a result we have to estimate

from above. To manage this task is more difficult (although similar in principle) because of
the fact that the upper summation limit depends now on a.
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Let k and / be nonnegative integers. Then

£ X({a € $2 | ?,_,(«) = k, q,{a) = /}) < 1
(=0 '

See [5, p. 207]

LEMMA 3.2. 77iere is a positive real number c with the following property: if N is a positive
andm a nonnegative integer, b e N'", q denotes the denominator of[0;b\,..., bm), v : Q ->• Z +

is measurable,
£={ae f i | l< i<m=* a,-(a) = 6,}

and
A = [aen\\<i<m=> au ( a ) +,(a) = ft,-, qm+v(a)(a) = N],

Proof. For 0 < k < I, let

/t,/ := {a e £2 | 1 < / <

Let /? be the numerator of [0; b\,..., bm]. Now a e ^ implies Â  = qq^^ia) + pqv^-i(a) and
therefore we get A c (J

o<*<;

Now

Ak.i c.{aeQ\ 3t(t e Z + A 1 < / < m =» fl,+,-(a) = bjAk = q,-\(a) A / = ?,(a))}.

Therefore
CO

X! X ! = q,-\(a) A / = #,(a)})

2
0<k<l 1=0

kp+lq=N

<2k{B) j
0<k<l i=0 0<*</

kp+tq=N kp+lq

Let (^, /) be a solution of kp + lq = N with the side condition 0 < k < I. Then
lq < N < l(p + q) and therefore -^- < / < ̂ . The number of the solutions of this equation
with this side condition is therefore at most 1 + } ( f - -Sz) < 1 + 4- This implies that

LEMMA 3.3. Let N > w, M,b\,...,b\f and K < M be natural numbers. Letv:Q^-Z+ be

measurable. For 0<i<M let 0- be the i-th convergent to ]f);b\,...,bu\. We put

tf-i = °'^o = 4 and, for 0 < i < M, q'i+l = b^q'^. Let q2
M < ^

N N
^a)+i(a) - b{, N () () <) , r < ?«+*)(«) <
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and
B := [a e Q, | 1 < / < M =>• a,(a) = />,}.

^o^ ^ r < 7 < f /e' z/ = ^{N — wj). Then there exists, for every a e A, exactly one sequence

(cXa))o</<M€ ~^-M suc^ tnat' for a " v eZ+ which satisfy 0 < v < M, 0 < zqM+V(a){a)—
M-\

Ê <•' <a)q's < q'v is valid. Furthermore there is a positive and absolute constant c such that

{a e A | 3u(K <U<MA c'u(a) ? cu+v(a)(N, «
HK

Proof. For 0 < i < M we have #, = % and therefore q\ — -^~qi- In particular q'M = ^.

Now a € A implies N < (w + \)qM+v(a)(ot) and therefore N~^*(°)(°') < 1- This results in
z?«+v(a)(a) < ^'w The first assertion therefore follows from Lemma 2.1.

If <7K < 5, the result follows from the assertion preceding Lemma 2. We may therefore
assume that qn > 5. The case A = 0 is trivial. Otherwise we have, for a e A,

, _ JV_> N_ N
0 wqM ~ w^Mq^W+puq^yiia)) wqM+v(a)(a)~

Let

C: = \ qM+v(a)(a) \aeA,3u\K<u<MA

We prove that for every a e A, for which there is a u, with K < u < M and with
c'u(a) ^ cu+v(a)(N, a), we have qM+v(a)(ot) e C. As long as this assertion is not proved we write
qs instead of qs(a) and v for v(a).

Let a € A and assume that v <j < M +v. Then <j-; = ^/_,,̂ w +pj-vqv-\. This gives us

Nqj

wqM + v
n' 1

w q^

= —qv-\

Nqv-\

wqM+v

Nq

~ wqM+v

f<lv+,

\Pj-v

91*%

• \Pj-v

u-1

Pj-vqv-\ qj-i

pMqv-\ qM

qM -PM<JJ-V\

vqv+PMqv-\)

PM - .

qM^
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From ^ < q/n+v < ^ it follows that CM+V(N, a) = w. Assume now that u is chosen maximal

such that c'u{a) / cll+v(N, a). Then

A/-1 w / M+v \

u - 2 c's(a)q's - —— [N-'E cs(N,a)qs =
s=u w<lM+v \ s=u+v J

NcM+v{N,a)qM+v

This implies

N / M+v

" l cs(N, a)qs - zqM+v - ^ c's(a)q's - « ( « ) - ^ ( i V , a ) ) q

M+v-\

wqM+

M+v-\

wqM+vqu qvq
L

u

First of all we get

wqM+v ^ qs

^» ~ —-> •

i \ t-Ki M N<iu+V \Nqu+v , 1
cu(a) - cu+v(N, a)\ — < max , qu

wqM+v [wqM+v

>-\
wqM+vqu

Nqu+V 5Nqv-\
wqM+v wqM+vqu
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Sa i 5
\c'u{a) - cu+v(N, «)| < 1 + - ^ 4 - < 1 + - < 2.

lu+vQu Qu

This results in c'u(a) — cu+v(N, a) = ± 1. Assume first that c'u{a) — cu+v(N, a) = 1. Then

cs{a)qs H
wqM+v q\ wqM+v

wqM+v

M-\
and therefore zqM+v - E c's(

aK ^ ~k- I f c'u(a) ~ Cu+V{N, a) = - 1 , we get

A f - 1 , ^ Nqu+V Aq'u

, _

Hence qM+v e C is proved. Next observe that ^ <j<^ implies zj — Zj+\ = ^ ^ > 5. Now
q'o > 1 and Corollary 2.1(2) imply

144/V

wqK

For q e C we get q2
M < ̂  < q. Let c be chosen as in Lemma 3.2. Then this implies

X{\a € A I 3u(K <U<MA c'u(a) ± cu+v(a){N, a))})

a e £2 I 1 < / < M => ai+v{a)(a) = bu qM+v(a){a) =
qeC

2.144c w -
w

LEMMA 3.4. There is a c> 0 with the following property: if w < N, K < M are positive
integers, e, K, R are positive reals,

v : ft ->• Z+, v(a) = max{mN(a) - M, 0},

{where <JM denotes the denominator of[0; b\,..., bM]),for b 6 B,
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Eb = {a € Q | 1 < i < M => o,-+w(o)(a) = ft,-,

Proof. Let us define for ft e B,

Ab := {a € Q | 1 < i < M =>• a,{a) = ft,},

f • , N L ^ , N W

5 / , : = < a € S 2 | 1 < ( < M ^ a,+v(a)(a) = ft,-, < ^ (n\\
a) — —

vv + 1 v ' w
AT

and, for 0 < i < M, let q'i+](b) = ft,-+i^-(ft) + ?•_!(*)• Note that q'M(b) = f and that (even in

the case mN(a) < M)N < qM+v{a)+i(a). For ^ <j <~, let z,- = ^(N - wj). From Lemma 3.3

it follows that for any a € 5* there is exactly one sequence (cKa))o</<A/e ^ -^ s u c ' 1

Af—1 ~

0 < v < M implies 0 < zqms(a)(a) - Y, c's(a)q's(b) < q'v(b). Let

Corollary 2.1(1) implies \Vb\ < ^ = $ . For v 6 FA we have ^( f t ) < ^ < v.

Let a e Eb- Then
1/2

If for every ; with 1 < / < M, we have ci+v(a)(N, a) = c'^a), then ^mAr(a)(a) € Vb.
Therefore Lemma 3.2 and Lemma 3.3 imply

X(Eb) < k({a € Ui|3i(A" < i < MAa+vMiN, a)

= 0 \X{Ab) \[—^
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This implies the assertion of the Lemma.

LEMMA 3.5. There is a positive number c with the following property: ifN > 2 is an integer,
e > 0, 0 < /x < | , M = [(f - n) logJV], K= [> log N] and v:Q.=$Z+, is given by
v(a) = maxjm^a)— M, 0}, then

a e Q\\ £

log log A0-1/3+M~1/2( log N)-l/Ae-^log M ^ 2

. Let a := J^f±. If

1 / M-K
log r2 log 2

- y\ ±

then £ log log N = 0(1) and the assertion is trivial. Therefore we may assume the contrary.
Let A be the set occurring in the Lemma and let K = {s log M)1/3. There is an R > 0 such

that

W e h a v e ^ § ) > 2 W 2 l o g ^ a n d therefore ^ f + o ( £ l o g ( ^ ) , which results in

T~ ®\E\O%M)- ^ e t ^ b e a n integer with 2 < w < log log ./V and let

;v := | a 6 ^ | ^ y < qmf/(a)(a) < ^, the denominator of [0; av ( a ) + i (a) , . . . , amjv(ff)(a)] is

lessthan L ( ) i? 2 ( ) +

For i e N M , let ^^(6) be the denominator of[0;b\,..., bM). We put

bzNM\ q2
M(b) < ——, J J ^2

+1 < /? J J ^ +

Then i

Aw ^\ \\aeQ\\ <i<M=^ flv(a)+,(a) = bu •w c ( J | | ( ) + , ( ) u

I W

and therefore Lemma 3.4 implies k{A'w) = o((1±^
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Let Aw :— la e A | ̂  < qmN(a)(u) < $}• From Lemma 1.2, Lemma 1.5 and Lemma
1.3 we get, replacing in the last two Lemmas [i by 2/x, X(AW) < X(A')+

- T h e l a s t s u m -

mand is equal to G ( - 2 log (a log (M - K))^) = o{\ - <!>( log (M - K)) =

Therefore

For any k e N,

-K
1 1

(elogM)2

a € Q\qn(a) = k}) < x(L e Q\3j, 0 <j < k, \a - J- \ < 1 H < 1

and therefore

" ' J / l<A-<A'/»'n<A-<A'/»'n=0

\<k<N/wn=0
> - - l )

< 2

4 V )t 1 4
N-kk~ w — 1'

We get, for all u'O which satisfy 2 < w0 < log log N,

v . . . 4
k{A)<

1 <H'<H'o

-K

Putting

min

log log N)-

> (£ l0g 'Og A°'/3>

we get the desired result.
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LEMMA 3.6. There is a constant c > 0 with the following property: if e > 0, 0 < /A < ^,
< \, N>16 is an integer, M = [ ( f - fx) log N], K= [/X log N] and v : Q -»• Z+,

{ — M, 0\,then

aeQ\\
5=0 e log log N

Proof. The assertion is trivial if e log log N < I. We denote by A the set occurring in the
Lemma. Put

I . v(a)+A— 1 %(a)

B:=\aeQ\- V as+l(a) > s

a) - T log AT |> e log A^},

mN(a)

5=0

X — £ I
«5+i(«) < - j — 2 l o g ^ l o 8 ^r l o § ^ f •

Corollary 1.1 implies A(Q = OlQ+ log log N) -yJ== J = O( £ l o g ' l o g J . Proposition 1.4
implies

log (r log AO -

= O[G —s
r log 2

log (r log AQ +

log 2

X \ , (log log
log 2, log

logN

= 0 1 -ct> ,-X/2-£ log (r log AQ/(2r) ,

= Q (e

V

elog2

-« log (r log A0/(2t) , ( lOg lOg A Q 3 / ^

logA'

1

log log

For # large enough we get

log (T log AO - log (3(e + ix) log AO + y > - ^ - log (r log AO - log (r log
S "T" /^

4r
log (r log AO - log (r log AO

> log(rlogA0.
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Assume now that a e B\(C U £>). Then on the one hand

) _ -
Y] as+\(a) > 6s- log N log (T log AO > log N log (r log N)
f^ l o 8 2 l o § 2

and on the other hand

v(a) + K- M < (r + s) log N + K- 2M < (s + 3fi) log N + 2 < 3(« + ix) log

Proposition 1.3 implies that

T as(a) >-p^-log N\og(r log N)
^ l 0 § 2 ]

log2log
) \sIog2 j slogN ) \sloglogN

A c. B implies the assertion.
We are now able to prove the main Lemma.

MAIN LEMMA. There is a constant c > 0 such that for all e > 0 and all integers N > 2

L
s=Q \as+\WJ s=0 (eloglogAO173.

Proof. Let ^ := ** N log log Â , M := [ ( | - /x) log / / ] , /C := [^ log N], v : ^ - • Z + ,

(a) = max{/??/v(a) — M, 0} and let A be the set occurring in the Lemma. Furthermore let

i
u(ar)+A^— 1

s=M

a e fi|| £

1 / (M W mN(a)

a (CmM{Na>) | £
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First of all we estimate ^.(Ai) from above. Let

B : = {a € Q\\mN(a) - x log TV| > fi log TV},

C : = | a € Cl I amNia)+\(a) > -mN(a)j.

Note that A4 Q C and that
1

^e log log TV/'

Now a e C\B implies amN(a)+\{ct) > ̂ ^ log TV. Therefore

A(C\B) = O[ > " xl\aen\aM(ct)>"-^-r^\ogN\))=O(^) = OllOglOgN

log TV\k-T\ogN\<ix\ogN

This results in A(i44) = Q(eiogiogW)-

Since A <z\J Ai; we get from Proposition 3.1, Lemma 3.6 and Lemma 3.5
1=1

\s log log N + (e log log A02/V + \ \ 2 J + (e log log A01/3 + (e log logA01/2y

Hence f > EJ log AT log log TV - 1 > | ^ log TV immediately implies the assertion.

4. The proof of the main theorem. Let a e £2 with continued fraction expansion
[0; a\,a2,...] and convergents ^ . Let us put

IN \
coffia) = sup Vc[0,x)({na}) - Nx),

0<x<\ \f^ I
/ N \

cojjia) = sup [Nx - V c[0,x)([na}) I.

Denoting by m the integer mN(a), we obtain the following result.

PROPOSITION 4.1. (See [7].)

afoot) = Y, (aj+i hNa}{\ - {qjNa}) + {^7Va}({ .̂+1aTV} - {qj-iNct})) + 0(1),
2[/<m

^ ( « ) = E (aj+i [qjNa}(l - {qjNct}) + {^TVa}({^+|aTV} - {qMNa})) + 0(1).
2\j<m

The O-constant is absolute.
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Proof. This is essentially Corollary 2 in §1 of [7].
m

COROLLARY 4.1. DN(a) = ^2aj+\{qjNa}(l - {qjNa}) + 0(1). The 0-constant is absolute.
j=0

Proof. This follows from DN(a) = a)^(a) + coj,(a).

m"^ I (N 1\

COROLLARY 4.2. DN{a) = £ cj(N,«)(1 - t^j) + °(loS ^0- Tne O-constant is absolute.

Proof. We put, for i,j > 0,

SiJ '•— qmin(ij)(otqmax(ij) ~ Pmax(iJ)),

m

Aj := ]T a(N, <x)Sjj and P:={j\O<j< m, Aj > Ol. Then {qjNa} -Aj+l- cP(j). (Use the
i=0

proof of Corollary 3 of §1 in [7] and note the slightly different notion of Aj there.) Further-
more it is easily seen that

and that 2cp(f) — 1 ̂  (— \y implies Cj(N, a) = 0. Using m^{a) = O{ log N) we get the asser-
tion.

COROLLARY 4.3. There is a constant c > 0 such that, for all integers N > 2 and all e > 0,

log log ,\p-

Proof. Let 4̂ be the set occurring in the Corollary. Corollary 4.2 implies the existence of
a constant K > 0 such that, for all N > 2 and all a e S2,

\DN(a)+ £ flt+1(aWJ*-^J - - £ fljf+1(a)| < AT log TV.

Let

We have A c 5 U C. If ^ > log (r
1o°g

2
A°"'/, the assertion is trivial. Otherwise

2A: log (r log N) - y log (r log N) - y

ex log 2 ~ 2 log 2
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and therefore

r log 2

1r>o (T Ino

2 log 2 ) /Toi"

1
log/log

From the Main Lemma in §3 we get the result.

THEOREM. There is a constant c > 0 such that, for all K > 0 a«rf every integer N > 2,

L e Q||£>yv(«) - ^ log TV log log N \> K log

Proof. Let s be positive,

A : = \a e tt | ^ ( a ) > ( - r + e) log Â  log log Â  I,

r , lr ,s £jog2 (\ \
gN(cc)= > ak+\(a), rj = 1 + e log 2 \ r 6/

Corollary 4.3 implies

^ 0(
(f? log log A01/3/ V(£ log log A0l

Furthermore a e A\B implies that DN(a) > (-^-^ +s\ \ogN\og\og N and we have
gN(u) > 6Z>iv(a) - 6r)gN(a). This results in

^ ( ) > '°,g2, <- log AT log log N = - r - ^ 0 + £ log 2) log JV log log N.
1+6?) log 2

7 ^ ^ ^ ( a ) , , <- log AT log log N = r ^
I + or] 1+6?) log 2

Now Proposition 1.6 implies

MA\B) = 1 - g f O + ^ o g t o g ^ _ log (r log AQ - y\ Q /(log log AQ3/2

V log 2 log 2 / ^ yi3gJV

= p
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Choosing e = l0BfcgJV, we get k{A) = O(K'l/3).

Similarly
Af a e £2 | DN(a) < ( - j - s J log V̂ log log N\ j = O(/ : - | / 3 ) .
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