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ALTERNATING BRANCHING PROCESSES
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Abstract

We introduce the idea of controlling branching processes by means of another branching
process, using the fractional thinning operator of Steutel and van Harn. This idea is then
adapted to the model of alternating branching, where two Markov branching processes act
alternately at random observation and treatment times. We study the extinction probability
and limit theorems for reproduction by n cycles, as n→∞.
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1. Introduction

Our main idea is to control one branching process by means of another. We start from
Sevast´yanov and Zubkov’s [15] model of controlled branching processes, by defining

Xn+1 =
Yn∑
i=1

ξi(n),

where Yn is a control function depending on Xn. The traditional interpretation of the states of
the Markov chain (Xn, n = 0, 1, 2, . . . ) is that they represent the number of particles in the
nth generation of reproduction, defined by the independent and identically distributed (i.i.d.)
random variables ξi(n); see [14], [5], and [15]. The control function (which is deterministic in
[15] and random in [19]) modifies the number of particles that are allowed to split in the nth
generation. The principal assumption in Yanev’s model (see [7] and [19]) is of the following
form: if Xn = k then

Yn = εnk[k + o(k)] as k→∞,
where εnk is a family of random variables. Limiting distributions were studied in [8] and [9],
convergence of controlled branching processes was investigated in [10], and multitype random
control functions were introduced in [6].

Here, we propose the following autoregressive-type control:

Yn := θ ⊗Xn + ηn, θ ∈ (0, 1).

The innovation sequence ηn consists of i.i.d. random variables representing the immigration
particles. The fractional thinning operator ‘⊗’ was introduced by Steutel and van Harn [17]
as ‘discrete multiplication’. By definition, θ ⊗ Xn = µ(τ | Xn), with τ = − log θ, where

Received 13 August 2003; revision received 11 June 2005.
∗ Postal address: Institut Supérieur des Etudes Technologiques de Radès, Rue Jérusalem-Radès, B.P. 172, Radès
Médina 2098, Tunisia. Email address: penka.mayster@isetr.rnu.tn

1095

https://doi.org/10.1239/jap/1134587819 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1134587819


1096 P. MAYSTER

µ(τ | Xn) is a subcritical Markov branching process µ(t) starting with a random number
of particles (µ(0) = Xn) and stopped at time τ . We interpret τ as being the duration of a
treatment time period. Actually the control process consists of testing every particle from the
nth generation according to a dying branching process during an independent time τ . We adapt
this idea to the model of alternating branching. Suppose that there are two Markov branching
processes, ξ(t) and µ(t), acting alternately at the random observation times δi and treatment
times τi , respectively. We write

X1 = ξ1(δ1 | 1), Y1 = µ1(τ1 | X1), . . . ,

Xn = ξn(δn | Yn−1), Yn = µn(τn | Xn), . . . ,

where the random variables δi and τi are independent of the branching processes ξi(t)
d= ξ(t) and

µi(t)
d= µ(t). Here, ‘

d=’denotes equality in distribution. The sequences of cycles (observation,
treatment) = (δi, τi) and (treatment, observation) = (τi, δi) constitute a random environment
for the branching mechanisms. We assume that the cycles are independent and identically
distributed. Then the Markov chains (Xn) and (Yn), which do not have explicit immigration,
are transient. Each represents a branching process with a random environment (BPRE).

The purpose of this paper is to introduce this approach to testing the particles and to separate
the branching mechanism from the random environment. Theoretically speaking we want to
formulate the model in terms of BPREs.

In Section 2, we present in detail the models of autoregressive control for the Galton–
Watson process and the alternating branching with immigration. Propositions 1 and 2 contain
the fundamental relations. In the remaining sections, we consider only the model of alternating
branching without explicit immigration. In Section 3, we describe the branching mechanism
of one cycle. We note that the reproductions by one cycle of (treatment, observation) or
(observation, treatment) have the same means but different variances. Therefore, the reactions
(Xn, Yn), starting from the observation of one particle, and (X′n, Y ′n), starting from the treatment
of one particle, have the same critical parameter. The problem of extinction is studied in
Section 4, after a discussion of the properties of the reproduction by n cycles. In the supercritical
case, i.e. when the critical parameter is positive, we compare the extinction probabilities of the
reactions (Xn, Yn) and (X′n, Y ′n). Limit theorems for the reproduction by n cycles, as n→∞,
are given in Section 5 (without proof) as particular cases of the well-known results of Athreya
and Karlin [3].

It should be pointed out that if the observation time periods δi depend on the observed
branching mechanism ξ(t), then the BPRE model is no longer valid. To see this, consider
the observation time δ defined by the additive functional of total progeny of the supercritical
process ξ(t) (see [4, p. 126]). Let

y(δ) =
∫ δ

0
ξ(x)dx, with inverse y−1(r) = inf{δ : y(δ) = r}.

This means that ξ(y−1(r)) is a compound Poisson process, C(r). This provides a way to
realize feedback control at each observation time period. Relative to the population created by
the subcritical process µ(t), the influence of C(r) on the successive cycles is equivalent to that
of stationary immigration. The reaction (Xn, Yn) is no longer transient. The stationary solution
to θ ⊗ C(r + z) = C(r) has been studied by van Harn and Steutel [18] and Pakes [13].
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2. Models: fundamental relations

2.1. Autoregressive control

A sequence (Xn, n = 0, 1, 2, . . . ) of Z+-valued random variables is said to be a controlled
branching process with autoregressive-type control if

X0 = 0, Xn+1 =
Yn∑
i=1

ξi(n), Yn = θ ⊗Xn + ηn, (1)

where ξi(n) are independent copies of the integer-valued random variable ξ with probability-
generating function (PGF)f (s) = E(sξ ). The explicit immigration is described by the sequence
of i.i.d. random variables ηi, i = 0, 1, 2, . . . , with η

d= η for a random variable η whose PGF
is h(s) = E(sη). The thinning operator ‘⊗’ is defined as follows (see [17]). Let θ ∈ (0, 1)
and let µ(t), t ≥ 0, be a subcritical Markov branching process starting with one particle, i.e.
µ(0) = 1. We denote by µ(t | X) the same branching mechanism as µ(t), except starting
with a random number of particles X, where X is independent of µ(t). The main features of
branching processes, namely the additivity by the initial condition and the independence of the
evolution of particles, are manifested in the relation

µ(t | X) =
X∑
j=1

µj (t), where µj (t)
d= µ(t) for j = 1, 2, . . . .

By definition,
θ ⊗Xn = µ(τ | Xn) with τ = −log θ.

The operator ‘⊗’becomes the analogue of scalar multiplication and incorporates the discrete na-
ture of the variables. Relative to the populationZn+1 =∑Zn

i=1 ξi(n) created by the reproduction
law f (s), the action of the thinning operator ‘⊗’ is equivalent to state-dependent emigration.
The PGF of θ ⊗Xn is given by

E(sθ⊗Xn) = Fn(g(τ, s)), τ = −log θ,

where Fn(s) = E(sXn) and g(t, s) = E(sµ(t)). In particular, for the standard semigroup
g(t, s) = 1 − e−t (1 − s) (see [17]), the thinning operator ‘⊗’ coincides with the Bernoulli
filter, i.e. θ ⊗Xn =∑Xn

i=1 1(i), where the 1(i) ∈ Bernoulli(θ) are i.i.d. random variables. If
the branching ξ occurs according to the Bernoulli(θ) distribution, then the process

Zn+1 =
Zn∑
i=1

1(i)+ ηn = θ ⊗ Zn + ηn,

which is a classical Galton–Watson process with immigration, is equivalent to the Z+-valued
autoregressive process AR(1). Relevant examples and stationary distributions were considered
in [1].

We now introduce the notion of a random environment using the treatment time and the
observation time. We shall call τ = −log θ , θ ∈ (0, 1), the treatment time. Suppose that τ
is a nonnegative random variable independent of the branching mechanisms ξ and µ(t). Let
(τ1, τ2, . . . ) be a sequence of independent copies of τ representing the treatment time periods of
the successive generations (X1, X2, . . . ). Traditionally, the lifetime of particles in the classical

https://doi.org/10.1239/jap/1134587819 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1134587819


1098 P. MAYSTER

Galton–Watson process is a constant, 1, and reproduction is instantaneous at the end of the
lifetime. We interpret the lifetime as the observation time δ and we take δ1 = δ2 = · · · = 1
for all successive generations. The sequences of pairs (τi, δi+1) and (δi, τi) define the cycles
of reproduction for (Xn) and (Yn), respectively. The transition from one cycle to another takes
place as follows. Since X0 = 0, the reaction is started by immigration η0, such that

Y0 = θ ⊗X0 + η0 = η0.

The first cycle of (treatment, observation) in the delayed sequence d ′ = {(τi, δi+1), i =
0, 1, . . . } has the form (τ0, δ1) = (0, 1). We take τ0 = 0 and X1 =∑Y0

i=1 ξi(0). Thus,
the first generation observed by time δ1 = 1 is X1, and has PGF F1(s) = h(f (s)). The first
controlled generation Y1, allowed to split according to ξ , is

Y1 = µ1(τ1 | X1)+ η1.

Later generations have a similar form (see (1)):

Xn+1 =
Yn∑
i=1

ξi(n) and Yn = µn(τn | Xn)+ ηn.

Here, µn(t)
d= µ(t) for n = 1, 2, . . . .

Let σ = {(δi, τi) = (1, τi), i = 1, 2 . . . } and d ′ = {(τi, δi+1) = (τi, 1), i = 0, 1, 2, . . . }.
We define conditional PGFs, knowing the environments σ and d ′, by

Fn(s) := E(sXn | d ′) and Gn(s) := E(sYn | σ).
By (1), we have

Fn+1(s) = Gn(f (s)) = h(f (s))Fn(g(τn, f (s))), F0(s) = 1, (2)

Gn+1(s) = h(s)Fn+1(g(τn+1, s)) = h(s)Gn(f (g(τn+1, s))), G0(s) = h(s). (3)

2.2. Alternating branching with immigration

Instead of the classical Galton–Watson process generated by the random variable ξ , we
intend to control a Markov branching process ξ(t) defined by the composition semigroup
(and PGF) f (t, s), t ≥ 0. Suppose that the observation time periods (δ1, δ2, . . . ) form a
sequence of i.i.d. copies of the nonnegative random variable δ. In addition, we assume that the
observation time δ and the treatment time τ are mutually independent. Let ξ1(·), ξ2(·), . . . be
independent copies of ξ(t) representing observed processes. As above, let µ1(·), µ2(·), . . . ,
which are independent copies of µ(t), represent the treatment processes, and let η0, η1, . . .

represent the immigration particles. We define

X0 = 0, Xn = ξn(δn | Yn−1), n = 1, 2, . . . ,

Y0 = η0, Yn = µn(τn | Xn)+ ηn, n = 1, 2, . . . .

Given the environment σ = {(δi, τi), i = 1, 2, . . . }, the reproduction by the nth cycle of
(observation, treatment) = (δn, τn) has random PGF

ϕn(s, σ ) = f (δn, g(τn, s)) := f ◦ g for n = 1, 2, . . . .

https://doi.org/10.1239/jap/1134587819 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1134587819


Alternating branching processes 1099

Indeed, a particle observed by time δn and its offspring tested by time τn are transformed into
a random number,

∑ξ(δn)
j=1 µj (τn), of particles. Given the environment d ′ = {(τi, δi+1), i =

0, 1, . . . }, the reproduction by the nth delayed cycle of (treatment, observation) = (τn−1, δn)

has random PGF

ψn(s, d
′) = g(τn−1, f (δn, s)) := g ◦ f for n = 2, 3, . . . ,

with
ψ1(s, d

′) = g(0, f (δ1, s)) = f (δ1, s) since g(0, s) = s.
Naturally, the delayed cycles are i.i.d. only for n = 2, 3, . . . . The explicit immigration particles
ηn−1 arriving at the time

∑n−1
i=1 (δi + τi) reproduce during the observation time period δn

according to the Markov branching process ξn(·) and increase the populationXn by ξn(δn/ηn−1)

particles having random PGF h(f (δn, s)) := h ◦ f .
In general, the random environment and branching mechanisms are defined on the same

probability space (
,�,P). We denote by E the mean and the conditional mean. All equalities
between random variables are in distribution and almost sure, if it is not mentioned. We can
now state the following result.

Proposition 1. If the random environments σ and d ′ consist of i.i.d. random cycles independent
of the branching mechanisms ξ(t) and µ(t), then the sequences (Xn) and (Yn) are Markov
chains representing Galton–Watson processes with immigration in a random environment. The
sequence (Xn) has random reproduction law ψ = g ◦ f and immigration law h ◦ f . The
sequence (Yn) has random reproduction lawϕ = f ◦g and immigration lawh. The fundamental
relations, analogous to (2) and (3), are

E(sXn+1 | d ′) := Fn+1(s) = h(f (δn+1, s))Fn(ψn+1(s, d
′)), F0(s) = 1,

E(sYn+1 | σ) := Gn+1(s) = h(s)Gn(ϕn+1(s, σ )), G0(s) = h(s).
As (Xn) and (Yn) are Markov chains, we can define the following semiregenerative processes

with Markov-type cycle dependence:

(Xn, τn, µn(r); 0 ≤ r ≤ τn), (Yn, δn+1, ξn+1(z); 0 ≤ z ≤ δn+1).

We consider two renewal epoch processes (Sn) and (S′n), as follows:

S0 = 0, Sn = Sn−1 + (δn + τn), n = 1, 2, . . . ,

S′0 = 0, S′n = S′n−1 + (τn−1 + δn), n = 1, 2, . . . , τ0 = 0.

Then we define the alternating regenerative process

Z(x) =
{
ξn+1(x − Sn | Yn) if Sn ≤ x < S′n+1,

µn+1(x − S′n+1 | Xn+1) if S′n+1 ≤ x < Sn+1.

The initial conditions of the cycles are

ξn+1(0+ | Yn) = Yn and µn+1(0+ | Xn+1) = Xn+1.

LetA(y) = P(δi ≤ y) andB(y) = P(τi ≤ y) be probability distribution functions. Consider
the unconditional PGFs Ḡn(s) = E(Gn(s)) and F̄n(s) = E(Fn(s)). By the total probability
formula, we have the following result, where by ‘∗’ we denote the convolution of probability
distribution functions.
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Proposition 2. The unconditional PGFH(x, s) = E(sZ(x)), x > 0, satisfies the renewal-type
relation

H(x, s) = h(f (x, s))[1− A(x)] +
∞∑
n=1

∫ x

0
Ḡn(f (x − y, s))[1− A(x − y)](A ∗ B)∗n(dy)

+
∞∑
n=0

∫ x

0
F̄n+1(g(x − y, s))[1− B(x − y)](A ∗ B)∗n ∗ A(dy).

(See [11, pp. 201–215] and [12].)

3. Reproduction by one cycle

We intend to compare the reproductions by the cycles (observation, treatment) and (treatment,
observation). Let σ ′ = {(τi, δi), i = 1, 2, . . . }. Consider the random PGFs

ϕi(s, σ ) = f (δi, g(τi, s)) and ψi(s, σ
′) = g(τi, f (δi, s)).

Let u(s) and v(s) be the infinitesimal generating functions of the composition semigroups
f (t, s) and g(t, s), respectively (see [4, p. 106] and [14, p. 27]). We suppose that f (t, s)
is supercritical (i.e. u′(1) > 0) and g(t, s) is subcritical (i.e. v′(1) < 0). Traditionally, q
denotes the extinction probability, that is, the smallest root in [0,1] of the equation u(s) = 0
or v(s) = 0. The supercritical process ξ(t) has extinction probability q ≡ q(ξ) < 1 and
the subcritical process µ(t) has extinction probability q(µ) = 1. The role of the random
environment (δn, τn) can be seen explicitly in the following representations of the PGFs, where
a prime denotes differentiation:

f (δ, s) = A−1(eu
′(q)δA(s)), g(τ, s) = B−1(ev

′(1)τB(s)).

Here,

B(s) := exp

{
v′(1)

∫ s

0

dx

v(x)

}
, s ∈ [0, 1), B(0) = 1,

and

A(s) := exp

{
u′(q)

∫ s

q

dx

u(x)

}
, s ∈ [0, 1), A(q) = 0. (4)

Clearly, B, which has inverse B−1, is decreasing (see [13]), while the function A, which has
inverse A−1, is increasing and satisfies A(1) = ∞ and A(0) < 0 (see [4, p. 115]). The
functions A(s) and B(s) contain information about the asymptotic behavior of the nonlinear
semigroups f (t, s) and g(t, s).

Proposition 3. Let the random environments σ = {(δi, τi), i = 1, 2, . . . } and σ ′ = {(τi, δi),
i = 1, 2, . . . } be independent of the branching mechanisms ξ(t) and µ(t). Suppose that δi

d= δ
and τi

d= τ , i = 1, 2, . . . , are sequences of i.i.d. positive random variables with finite means.
Denote by ζn and ζ ′n integer-valued random variables representing reproductions by the nth
cycles of σ and σ ′, respectively. Then the sequences of random PGFs

ϕn(s, σ ) := E(sζn | σ) and ψn(s, σ
′) := E(sζ

′
n | σ ′)

are independent copies of ϕ = f ◦ g and ψ = g ◦ f , where

ϕ(s, σ ) = A−1(eu
′(q)δA ◦B−1(ev

′(1)τB(s))),

ψ(s, σ ′) = B−1(ev
′(1)τB ◦A−1(eu

′(q)δA(s))).
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The reproductions ζ
d= ζn and ζ ′ d= ζ ′n by the cycles (observation, treatment) and (treatment,

observation) have the same means but different variances, given the respective environments
σ and σ ′. These are as follows:

E(ζ | σ) = E(ζ ′ | σ ′) = exp{u′(1)δ + v′(1)τ },
var(ζ | σ) = var(ξ(t) | t = δ)E(µ(t) | t = τ)2 + E(ξ(t) | t = δ) var(µ(t) | t = τ),
var(ζ ′ | σ ′) = var(µ(t) | t = τ)E(ξ(t) | t = δ)2 + E(µ(t) | t = τ) var(ξ(t) | t = δ).
Let the observation times δi and treatment times τi , being mutually independent, have

probability distribution functions A(·) and B(·), respectively. Consider the unconditional
PGFs of the reproduction by one cycle (of each type):

ϕ̄(s) := E(f (δ, g(τ, s))), ψ̄(s) := E(g(τ, f (δ, s))).

Let

f̄ (s) := E(f (δ, s)) =
∫
f (x, s)A(dx) and ḡ(s) := E(g(τ, s)) =

∫
g(y, s)B(dy).

Jensen’s inequality and convexity of the PGFs provide the inequalities

ϕ̄ ≥ f̄ ◦ ḡ and ψ̄ ≥ ḡ ◦ f̄ .
Proposition 4. If the observation and treatment time periods follow exponential distributions,
i.e. A(dx) = αe−αx dx and B(dx) = βe−βx dx, α > 0, β > 0, then

ḡ(s) = s + [B(s)]β/v′(1)
∫ 1

s

[B(y)]−β/v′(1) dy

and

f̄ (s) = s + [A(s)]α/u′(q)
∫ q

s

[A(x)]−α/u′(q) dx,

where u(q) = 0.

Proof. We will prove the result for f̄ (s); the proof for ḡ(s) is similar. By (4), we have

eu
′(q)t = A(f (t, s))

A(s)
and e−αt =

[
A(f (t, s))

A(s)

]−α/u′(q)
.

By the backward equation and the change of variable x = f (t, s), where f (0, s) = s and
f (∞, s) = q, we obtain

f̄ (s) =
∫ ∞

0
f (t, s)αe−αt dt =

∫ ∞
0

f (t, s)α

[
A(f (t, s))

A(s)

]−α/u′(q)
∂f (t, s)

∂t

dt

u(f (t, s))

= α[A(s)]α/u′(q)
∫ q

s

x[A(x)]−α/u′(q) dx

u(x)
.

Moreover, 1/u(x) = A′(x)/A(x)u′(q) and A(q) = 0. On integrating by parts, we obtain

f̄ (s) = α

u′(q)
[A(s)]α/u′(q)

∫ q

s

x[A(x)]−α/u′(q)−1 d(A(x))

= −[A(s)]α/u′(q)
{
x[A(x)]−α/u′(q)

∣∣∣∣
x=q

x=s
−

∫ q

s

[A(x)]−α/u′(q) dx

}

= s + [A(s)]α/u′(q)
∫ q

s

[A(x)]−α/u′(q) dx.
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Example 1. (Bernoulli filter andYule process.) Let δ and τ follow the exponential distributions
from Proposition 4. For the standard semigroup, we have

g(t, s) = 1− e−t (1− s) and ḡ(s) = 1+ βs
1+ β , β > 0.

For the Yule process u(s) = a(s2− s), we have u′(1) = a > 0 (see [4, p. 109]). The extinction
probability is q = 0 and we have a = −u′(q) and

f (t, s) = 1− eat (1− s)
1+ (1− s)[eat − 1] .

The functions A and A−1 are given by

A(s) = s

1− s and A−1(s) = s

1+ s ,

while the unconditional PGF is given by

f̄ (s) = s +
(

1− s
s

)α/a ∫ 0

s

(
x

1− x
)α/a

dx, α > 0.

In particular, if α = 2a then

f̄ (s) = s +
(

1− s
s

)2[
1− s − 1

1− s − 2 log(1− s)
]
=
∞∑
k=1

4sk

k(k + 1)(k + 2)
.

The first derivative of this is

f̄ ′(s) = 2

s2

[
2− s + 2

1− s
s

log(1− s)
]
=
∞∑
k=0

4sk

(k + 2)(k + 3)
,

meaning that f̄ ′(1) = 2 while f̄ ′′(1) = 4[− 2
3 +

∑∞
n=4 1/n], on the other hand, is infinite.

4. Extinction probability

4.1. Reproduction by n cycles

Here, we consider the model of alternating branching without explicit immigration.
Obviously, the initial conditions will play an important role. Suppose that the reaction (Xn, Yn)
starts with one particle observed by time δ1. We have

Y0 = 1, X1 = ξ1(δ1 | 1), . . . ,

Yn = µn(τn | Xn), Xn+1 = ξn+1(δn+1 | Yn), . . . .
(5)

We shall compare it with the reaction (X′n, Y ′n), starting with one particle treated by time τ1.
We define

X′0 = 1, Y ′1 = µ1(τ1 | 1), . . . ,

X′n = ξn(δn | Y ′n), Y ′n+1 = µn+1(τn+1 | X′n), . . . .
(6)
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The Markov chains (Yn) and (X′n) are respectively conditioned on the random environment of
the cycles

σ = {(observation, treatment) = (δi, τi), i = 1, 2, . . . },
σ ′ = {(treatment, observation) = (τi, δi), i = 1, 2, . . . }.

Furthermore, the Markov chains (Xn) and (Y ′n) are respectively conditioned on the delayed
random environment of the cycles

d ′ = {(treatment, observation) = (τi, δi+1), i = 0, 1, . . . , τ0 = 0},
d = {(observation, treatment) = (δi, τi+1), i = 0, 1, . . . , δ0 = 0}.

The first cycle of the delayed random environment brings reproduction with the following PGFs:

ϕ1(s, d) = f (δ0, g(τ1, s)) = f (0, g(τ1, s)) = g(τ1, s), since f (0, s) = s,
ψ1(s, d

′) = g(τ0, f (δ1, s)) = g(0, f (δ1, s)) = f (δ1, s), since g(0, s) = s.
We remark that, for n = 2, 3, . . . , the delayed cycles are equal in distribution to the ‘regular’
one, since (δi, τi+1)

d= (δi, τi) and (τi, δi+1)
d= (τi, δi), for i = 1, 2, . . . .

Denote by T the shift operator on the random environment, i.e. translation by one cycle,
defined by T d ′ = {(τi, δi+1), i = 1, 2, . . . }, T d = {(δi, τi+1), i = 1, 2 . . . }, T σ =
{(δi, τi), i = 2, 3, . . . }, and T σ ′ = {(τi, δi), i = 2, 3 . . . }. As the random environment
consists of i.i.d. cycles, they have the following properties.

(a) The random environments σ and σ ′ are stationary ergodic processes (see [2]). The
reproduction by the first n cycles is equal in distribution to the reproduction by any n successive
cycles. Analytically, this property can be expressed by the composition of the random PGFs of
n cycles. That is, if we let

φ→n (s, σ ) := E(sYn | σ) = ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕn(s, σ )
then, for each s, 0 ≤ s ≤ 1, we have

φ→n (s, T σ ) := ϕ2 ◦ ϕ3 ◦ · · · ◦ ϕn+1(s, σ )
d= φ→n (s, σ ).

Furthermore, if we let

ψ→n (s, σ ′) := E(sX
′
n | σ ′) = ψ1 ◦ ψ2 ◦ · · · ◦ ψn(s, σ ′)

then, for each s, 0 ≤ s ≤ 1, we have

ψ→n (s, T σ ′) := ψ2 ◦ ψ3 ◦ · · · ◦ ψn+1(s, σ
′) d= ψ→n (s, σ ′).

For the delayed random environments d and d ′, we can similarly write

E(sXn | d ′) := f (δ1, ψ
→
n−1(s, T d

′)) d= f (δ1, ψ
→
n−1(s, σ

′)),

E(sY
′
n | d) := g(τ1, φ

→
n−1(s, T d))

d= g(τ1, φ
→
n−1(s, σ )).

(b) The random environments σ and σ ′ are exchangeable processes. By definition, a stationary
ergodic process σ = {(δi, τi), i = 1, 2, . . . } is said to be exchangeable if the random vectors

((δi, τi), . . . , (δi+n, τi+n)) and ((δi+n, τi+n), . . . , (δi, τi))
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are identically distributed for each i ≥ 1 and n ≥ 1 (see [3]). Therefore, the dual sequences
(see [16]) are equal in distribution to the PGFs of reproduction by n cycles:

φ←n (s, σ ) := ϕn ◦ ϕn−1 ◦ · · · ◦ ϕ1(s, σ )
d= φ→n (s, σ ),

ψ←n (s, σ ′) := ψn ◦ ψn−1 ◦ · · · ◦ ψ1(s, σ
′) d= ψ→n (s, σ ′).

(c) In our model, the random environments σ and σ ′ are uniformly mixing stationary processes;
see [3] for a definition.

4.2. Extinction events

From (5) and (6), we have the following increasing sequences for the events of extinction
by n cycles:

{Xn = 0} ⊂ {Yn = 0} ⊂ {Xn+1 = 0} ⊂ · · · ,
{X′n = 0} ⊂ {Y ′n+1 = 0} ⊂ {X′n+1 = 0} ⊂ · · · .

The unconditional probabilities of extinction are defined by the constants

q(X, Y ) := P(Xn = 0 for some n = 1, 2, . . . ) = P(Yn = 0 for some n = 1, 2, . . . ),

q(X′, Y ′) := P(X′n = 0 for some n = 1, 2, . . . ) = P(Y ′n = 0 for some n = 1, 2, . . . ).

The conditional probabilities of extinction, given the environments σ and σ ′, are defined by the
random variables Q and Q′ as follows:

Q = P(Yn = 0 for some n = 1, 2, . . . | σ) = lim
n→∞φ

→
n (0, σ ) (a.s.),

Q′ = P(X′n = 0 for some n = 1, 2, . . . | σ ′) = lim
n→∞ψ

→
n (0, σ

′) (a.s.).

For the delayed environment of cycles, we have

P(Xn = 0 for some n = 1, 2, . . . | d ′) d= lim
n→∞ f (δ1, ψ

→
n−1(0, σ

′)) = f (δ1,Q
′),

P(Y ′n = 0 for some n = 1, 2, . . . | d) d= lim
n→∞ g(τ1, φ

→
n−1(0, σ )) = g(τ1,Q).

By monotonicity, these convergences are almost sure. However, the delayed cycles satisfy

(δi, τi+1)
d= (δi, τi) and (τi, δi+1)

d= (τi, δi), i = 1, 2, . . . .

Consequently,

Q
d= f (δ,Q′) and Q′ d= g(τ,Q). (7)

Denote byQ0 andQ′0 the random variables representing the minimal solutions of the equations
ϕ(s, σ ) = s and ψ(s, σ ′) = s. These are given by

f (δ, g(τ,Q0)) = Q0 and g(τ, f (δ,Q′0)) = Q′0 (a.s.). (8)

Then Q0 = f (δ,Q′0) and Q′0 = g(τ,Q0), a.s. From (8), we have

Q
d= Q0 and Q′ d= Q′0. (9)
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Example 2. Let f (t, s) and g(t, s) be fractional linear PGFs. Then

Q0 = 1− exp{u′(1)δ + v′(1)τ } − 1

ev′(1)τ [eu′(1)δ − 1]u′′(1)/2u′(1)+ [ev′(1)τ − 1]v′′(1)/2v′(1) (a.s.).

Clearly,
q(X, Y ) = E(Q) and q(X′, Y ′) = E(Q′).

Definition 1. (Critical parameters.) We define the constants m and γ as follows:

m := E(ϕ′(1, σ )) = E(ψ ′(1, σ ′)) = E(exp{u′(1)δ + v′(1)τ }),
γ := E(logϕ′(1, σ )) = E(logψ ′(1, σ ′)) = E(u′(1)δ + v′(1)τ ).

The reproductions by one cycle ζ
d= ζn and ζ ′ d= ζ ′n will be labeled supercritical, critical, or

subcritical if γ > 0, γ = 0, or γ < 0, respectively.

Jensen’s inequality implies that m ≥ eγ for all m and γ .

Example 3. If the observation and treatment times, being mutually independent, follow the
exponential distributions mentioned in Proposition 4, then, for α > u′(1),

m = αβ

[α − u′(1)][β − v′(1)] and γ = u′(1)
α
+ v
′(1)
β

.

The classical Galton–Watson processes with reproduction laws given by the unconditional
PGFs ϕ̄, ψ̄ , f̄ ◦ ḡ, and ḡ ◦ f̄ have the constant m as critical parameter, while, in the model
of autoregressive control, m = f ′(1)E(exp{v′(1)τ }) and γ = log[f ′(1)] + v′(1)E(τ ). The
unconditional means of the BPREs (Xn) and (Y ′n) are given by E(Yn) = E(X′n) = mn.
Theorem 1. Assume that u′(1) > 0 and v′(1) < 0, and that the random variables τ and δ
have finite means.

• If γ ≤ 0 then Q = Q′ = 1 (a.s.).

• If γ > 0 and if, additionally, P(τ > 0) = P(δ > 0) = 1 and

E(−log (1− g(τ, f (δ, 0)))) <∞, E(−log (1− f (δ, g(τ, 0)))) <∞,
then

q < Q < 1 and q < Q′ < 1 (a.s.),

P(Q′ ≤ x) < P(Q ≤ x) for all x, q < x < 1,

where the constant q is the extinction probability of the supercritical Markov branching
process ξ(t).

Proof. The case γ ≤ 0 is well known; see [2, Corollary 1]. Consider the supercritical case.
By (9), following [2, Theorem 3], we have

P(Q0 < 1) = P(Q < 1) = P(Q′0 < 1) = P(Q′ < 1) = 1.

We intend to compare two convex functions having common tangent at the point s = 1. Let
R(s) = g(T , f (t, s))− f (t, g(T , s)) for deterministic T > 0 and t > 0. Obviously, for each
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s, q ≤ s < 1, we have R′(s) < 0 and R(s) > 0. The assumption P(τ > 0) = P(δ > 0) = 1
almost surely guarantees the convexity of f (δ, s) and the truth of the following inequalities:

f (δ, s) < f (δ, g(τ, s)) < g(τ, f (δ, s)) < g(τ, s) (a.s.) for each s, q ≤ s < 1.

By monotonicity and convexity of the PGF we can find almost-sure bounds on the roots of (8):

f (δ, g(τ, q)) < Q0, g(τ, q) < Q′0 (a.s.).

Since q < g(τ, q) (a.s.), we have

P(q < Q) = P(q < Q0) = P(q < Q′0) = P(q < Q′) = 1.

Moreover, f (δ,Q0) < Q0 < g(τ,Q0) (a.s.) since q < Q0 < 1 (a.s.). From the definition (8)
of the random variables Q0 and Q′0, we have g(τ,Q0) = Q′0 (a.s.). Thus,

q < Q0 < Q′0 < 1 (a.s.)

and, consequently,

P(Q′ ≤ x) = P(Q′0 ≤ x) < P(Q0 ≤ x) = P(Q ≤ x) for all x, q < x < 1.

Remark 1. Naturally, setting m ≤ 1 causes extinction with probability one, i.e. q(X, Y ) =
q(X′, Y ′) = 1. However, the most precise sufficient condition for extinction is given by the
critical parameter γ . If E(δ) = ∞ and E(τ ) < ∞, then E(− log(1 − f (δ, g(τ, 0)))) < ∞
implies that P(Q = 1) = 0. The unresolved cases are E(δ) = ∞ and E(τ ) = ∞, or γ > 0 and
E(− log(1− f (δ, g(τ, 0)))) = ∞ (see [4, p. 255]).

5. Limit theorems

We now consider the asymptotic behavior of the BPRE (Yn) generated by the reproduction
ζ by the cycles (observation, treatment). The symmetry with (X′n), describing (treatment,
observation), is obvious. Our results are particular cases of those proved in [3]. We outline
the specific features of a random environment and PGFs. The main normalizing quantity is the
conditional mean of the reproduction by n cycles, i.e.

Mn :=
n∏
i=1

ϕ′i (1, σ ) = exp

{ n∑
i=1

u′(1)δi + v′(1)τi
}
.

Theorem 2. (Supercritical case.) Assume that E(−log (1 − f (δ, g(τ, 0)))) < ∞. Let Wn =
Yn/Mn, and denote by Fn(σ ) the filtration generated by the random variables (Y1, Y2, . . . , Yn)

and the random environment σ . If γ > 0 then the family

{Wn,Fn(σ ), n = 1, 2, . . . }
constitutes a nonnegative martingale and, hence,

lim
n→∞Wn = W exists (a.s.).

Suppose, in addition, that

E

(
E(ζ log ζ | σ)
ϕ′(1, σ )

)
<∞.
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Then the limit
lim
n→∞E(e−λWn | σ) =: w(λ, σ ), λ > 0,

exists (a.s.) and is the unique solution of the functional equation

w(λ, σ ) = f
(
δ1, g

(
τ1, w

(
λ

ϕ′1(1, σ )
, T σ

)))
(a.s.),

among those satisfying

lim
λ↓0

1− w(λ, σ )
λ

= 1 (a.s.).

Moreover, E(W | σ) = 1 and P(W = 0 | σ) = Q (a.s.).

Theorem 3. (Subcritical case.) Assume that E(−log (1−f (δ, g(τ, 0)))) <∞. If γ < 0 then,
for each s, 0 ≤ s < 1,

lim
n→∞E(sYn | Yn �= 0, σ )

d= 1− F (s, σ ).

Here, the random function F (s, σ ) obeys the relation

F (s, σ )F (ϕ1(0, σ ), T σ)
d= F (ϕ1(s, σ ), T σ).

The values of F (s, σ ) at the points s = ϕ1(0, σ ) and s = 1 are as follows:

F (ϕ1(0, σ ), T σ) = ϕ′1(1, σ ), F (1−, σ ) = 0 (a.s.).

Theorem 4. (Critical case.) Assume that

0 < c1 ≤ ϕ′1(1, σ ), 0 < c2 ≤ ϕ′′1 (1, σ ), ϕ′′′1 (1, σ ) ≤ c3 (a.s.),

and let

an(σ ) = 1

2

φ←′′n (1, σ )

φ←′n (1, σ )
= 1

2

n∑
i=1

Mi−1
ϕ′′i (1, σ )
ϕ′i (1, σ )

.

If γ = 0 then (
Yn

an(σ )

∣∣∣∣ Yn �= 0, σ

)
converges in law to an exponentially distributed random variable.
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