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Abstract

Let G be a locally compact group, and let D(G) be a dense subalgebra of the convolution
algebra LX(G). Suppose that 7r is a unitary representation of G and that, for each u in
D(G), n(u) is a trace-class operator. Then the linear functional u —» tr(?r(u)) (the trace of
TT(U)) is called the D-character of TT. We give a simple proof that the £>-character of such
a representation determines the representation up to unitary equivalence. As an application,
we give an easy proof of the result of Harish-Chandra that the /f-finite characters of unitary
representations of semisimple Lie groups determine the representations.

1980 Mathematics subject classification (Amer. Math. Soc.): 22 D 10, 22 D 25.

The point of this paper is ta insert into the literature simpler and more general
proofs of some known results in representation theory, described in the abstract.
J. Dixmier ([2], 17.2.1) showed that the D-character of a unitary representation
determines the representation, but he required the extra hypothesis that D(G)
be closed under the involution of L1(G), and his proof is more complicated than
ours. Harish-Chandra proved that if-finite unitary characters determine the
unitary characters from which they arise, but, to quote J. A. Wolf ([5], page
122), the proof involves "a certain amount of machinery comparing Naimark
equivalence, infinitesimal equivalence, Banach equivalence, and unitary equiva-
lence" . It seems worthwhile to point out that this important result has a proof
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which relies only on elementary facts about uni tary representations and compact

operators.

We shall need a few s tandard facts about C* -algebras associated to group

representations. Let G be a locally compact group, and L}(G) be the usual

Lebesgue space constructed relative to a left-invariant Haar measure dm. By G

we denote the set of all irreducible uni tary representations TT of G on Hilbert

spaces H x , modulo uni tary equivalence. Such representations extend natural ly

toL^G) by the rule

TT(«) = / dm(g)u(g)Tr{g) Vu G L\G);
JG

||7r(u)||Op denotes the operator norm of TT(U). By C*(G) we mean the completion
of L*(G) in the norm ||||»:

||ti||. = sup{||7r(U)||oP: n € G} Vu e L\G).

Then C*(G) is a G*-algebra, which is discussed by P. Eymard [3].
If a is a completely continuous representation of G (that is, if cr(u) is a compact

operator on H^ for each u in Ll(G)), then a can be decomposed into a direct
sum of irreducible unitary representations

where P is the subset of G containing all completely continuous uni tary repre-

sentations, and mn e No (see J. Dixmier [2], 5.4.13). Let Q be the subset of P

of those representations TT for which m* ^ 0. We write

to indicate tha t T is an operator on YlneQ m*^K which acts by the operator Tv

on each of the m * copies of H,r in the Hilbert space sum. Since

sup{| |7r(U) | | o p : 7T € Q) < | |u | | . Vw € Ll{G),

we may extend a to C*{G). Then the image a(C*{G)) is the G*-algebra co{Q;CC),

by which we mean the space of all operators Y^eQ m ^ ^ o n 5Z»€Q m T ^ T s u c ^

that each Tv is compact and such tha t TT —• | |7V||op is in co(Q). This result

follows from the observation tha t a(u) is in CQ{Q; LC) because it is compact,

together with the observation tha t , since a is a *-morphism of C*(G) to a dense

subalgebra of co(Q; CC) which does not increase norms, then the quotient algebra

G*(G)/ker(<r) is isometrically isomorphic to CQ{Q\ CC) (see Dixmier [2], 1.8.3).
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Let D(G) be a subspace of C*(G) mapped by a into the space of trace class
operators in CQ{Q\ ZC). Then the D-character of a is the linear functional Xa on
D(G) described by the formula

Xa(t) = tr(a(t)) Vf € D(G).

The principal question of this paper is whether \ a determines o~, up to unitary
equivalence. Obviously, D needs to be large for \a to determine a, so it is
reasonable to suppose that D{G) is dense in C*(G), but this is not enough. For
instance, if a is the regular representation of a compact Lie group and D(G) is
the subset of C°°(G) of functions which vanish at the identity of G, then the
/^-character of a is identically zero. The extra hypothesis we use is simple and
natural: it suflBces to assume that D(G) is closed under convolution (written *).

THEOREM 1. Suppose that G is a locally compact group, and that D(G) is
a dense subalgebra of 1/1(G). If a is a unitary representation of G and cr(u) is a
trace class operator for any u in D(G), then the D-character of a determines a
up to unitary equivalence.

PROOF. AS above, we may write a = Y^eQ171^, where m* € N. Let R
be the set of all irreducible unitary representations of G (or rather, equivalence
classes thereof) which map D{G) to the trace class. If ir € G\R, then m* = 0,
so it suffices to determine mn for n in R. Fix v in R. We shall determine mv.

Temporarily let r denote the representation u ® a, which can be written as a
direct sum:

e

where nn = mn if n ^ v and nv = mv + 1. Take w in D(G) so that v{w) is
non-trivial. By our introductory remarks, applied to r rather than a if mv = 0,
there exists u in C*(G) so that ir(u) = 0 for all TT in R\{v} while u(u) = v(w)*
(the adjoint of v{w)).

Since D{G) is dense in L1(G) and hence in C*(G), there is a sequence (un)
of elements of D(G) such that limn_oo ||u — un||* = 0. Now

lim tr |«T((U — un) * w)\ < lim ||u - un||»tr|CT(u;)| = 0,
n—»oo n—>oo

so that
mvtr(i/(u • w)) = tr(a(u * w)) = lim tr(<r(un * w)),

n—>oo

while similarly tr(i/(u*w)) = linin-Kx, tr(i/(un *w)) ^ 0. Thus mv is determined
by the formula

mv = lim x<r{un * w)l lim xAun * w)-
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COROLLARY 2 (Harish-Chandra, see G. Warner [4, pages 342-343]). Suppose

that G is a connected semisimple Lie group and that r and T' are K-finite unitary

representations whose K-finite characters (Warner uses the appellation "char-

acters" ) coincide. Then T and r' are unitarily equivalent.

PROOF. The space of smooth, compactly-supported, left and right if-finite
functions on G (Warner uses the notation C^°(G)) is a dense subalgebra of
Ll{G), and the theorem applies.

REMARK. The spaces C*(G) on a Lie group G, the space of locally con-
stant compactly supported functions on a totally disconnected group, and the
space AC(G) (see [1]) on any locally compact group are all examples of dense
subalgebras of L}{G) on which characters may be naturally defined.
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