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SMALL SQUARING AND CUBING PROPERTIES
FOR FINITE GROUPS

YA. G. BERKOVICH, G.A. FREIMAN AND CHERYL E. PRAEGER

A group G is said to have the small squaring property on it-sets if \K3 < k3 for all
^-element subsets K of G, and is said to have the small cubing property on fc-sets
if \Ka < A:3 for all fc-element subsets K. It is shown that a finite nonabelian group
with the small squaring property on 3-sets is either a 2-group or is of the form TP
with T a normal abelian odd order subgroup and P a nontrivial 2-group such that
Q = Cp(T) has index 2 in P and P inverts T. Moreover either P is abelian and
Q is elementary abelian, or Q is abelian and each element of P — Q inverts Q.
Conversely each group of the form TP as above has the small squaring property
on 3-sets. As for the nonabelian 2-groups with the small squaring property on
3-sets, those of exponent greater then 4 are classified and the examples are similar
to dihedral or generalised quaternion groups. The remaining classification problem
of exponent 4 nonabelian examples is not complete, but these examples are shown
to have derived length 2, centre of exponent at most 4, and derived quotient of
exponent at most 4. Further it is shown that a nonabelian group G satisfies
\K* I < 7 for all 3-element subsets K if and only it G = S3. Also groups with the
small cubing property on 2-sets are investigated.

1. INTRODUCTION

The problems considered in this paper come from a class of problems suggested by

the second author, namely problems concerning the size of Km — {a.\ 02 . . . am \ a{ G

K for l ^ i ^ TO} for a fc-element subset K of a. group G as a function of k and TO .

Several problems of this type have been considered in the literature. For example if G

is the additive group of integers and i f is a set of k integers then (writing K + K for

K2)

2 J f c - l ^ \K + K\ s$ fc(Jfc

and it was shown in [7], see also [10], that \K + K\ = 2k — 1 if and only if K is an
arithmetic progression. Also, in [7], the structure of K was determined if \K + K\ < ck
for some constant c and k sufficiently large. More generally if G is any torsion free
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group then (see [14], [10, Theorem 3] and [5]), \K2\ ^ 2fc - 1 and equality holds if
and only if K is a progression, that is K = {a, ac, . . . , ack~1} = {b, db, ..., dk~1b}
for some a, 6, c, d G G with c ^ 1, d ^ 1. On the other hand if G is not torsion free
then it is possible for \K2\ to be less than 2fc — 1. Trivially if G is a finite group and
K = G then if2 = A\ In [8] the second author showed that \K2\ < 3 \K\ /2 for some
finite subset K of a group G if and only if either K2 = {K) (the group generated by
K) or if C </JV for some g £ G and some normal subgroup N of (9 of order | if21.

Let us say that a group G has the small squaring property on k-sets if \K21 < fc2 for
all fc-element subsets K. In order to gain an understanding of the structural restrictions
placed on a group by the small squaring property on fc-sets for a fixed fc, the second
author ([9]; see also [4]) investigated this property for 2-element subsets and showed
that a finite group has the small squaring property on 2-sets if and only if it is a
Dedekind group, that is, either it is abelian or the direct product of an elementary
abelian 2-group and the quaternion group Q% of order 8. Recently Neumann [17] has
shown that a group G has the small squaring property on fc-sets if and only if G has
normal subgroups M, N with 1 < M < N < G such that \M\ and \G/N\ are bounded
above by a function of fc, and N/M is abelian, that is G is "finite by abelian by finite".
In the present paper we consider finite groups with the small squaring property on 3-sets
and obtain an almost complete characterisation, namely we obtain a characterisation of
all examples except those of exponent 4. The first main result is the following theorem
which is proved in Section 2.

THEOREM 1 . Let G be a finite group such that \K2\ < 9 for all 3-element

subsets K of G. Then one of the following is true.

(a) The group G is abelian.

(b) The group G is a nonabelian 2-group.

(c) The group G — TP where T is a nontrivial normal abelian odd order

subgroup and P is a nontrivial 2-group. Further the subgroup Q of P

which centralises T has index 2 in P and each element of P — Q inverts

T, and either

(i) P is abelian and Q is elementary abelian, or

(ii) P is nonabelian, Q is abelian, and each element of P — Q inverts

Q-

Conversely any group satisfying (a) or (c) has the small squaring property on 3-sets.

In Section 3 nonabelian 2-groups with the small squaring property on 3-sets are

investigated. They are shown (Theorem 2) to be similar to dihedral or generalised

quaternion groups unless they have exponent 4, derived length 2, and a very restrictive

structure on the centre and derived quotient. We obtain a complete characterisation of
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all examples of exponent at least 8.

If we impose an even stronger restriction on the orders of the squares of 3-element

subsets then we obtain the following result. It will be proved in Section 4.

THEOREM 3 . Let G be a Unite nonabelian group. Then G has the property that

| K21 < 7 for all 3-element subsets K of G if and only if G - S3.

In Section 5 we consider finite groups with the small cubing property on 2-sets.
Our main result, Theorem 5.1, is fairly technical but is sufficiently strong to characterise
all odd order examples:

THEOREM 4 . Let G be a group of odd order. Then \K*\ < 8 for all 2-element
subsets K of G if and only if either G is abelian or G is a nonabelian group of exponent
3.

This problem was first considered in an unpublished manuscript [3] of the first two
authors where a weak version of Theorem 5.1 was proved. The version of Theorem 5.1
in [3] was improved in [6, Theorem 3] to give a characterisation of all examples of finite
groups G with the small cubing property on 2-sets except for the case where G has a
normal abelian 2-complement. Their result [6, Theorem 3] is rather technical for use
in applications. We derive from our result, Theorem 5.1, the following characterisation
of finite groups G in which \KS\ < 6 for all 2-element subsets K of G.

THEOREM 5 . Let G be a finite group. Then \K*\ < 6 for all 2-element subsets
K of G if and only if either G is abelian or G is a .nonabelian 2-group satisfying one
of

(a) G = (a, H) where H is an abelian subgroup of index 2 in G and of
exponent 4, and a has order 2 and inverts H.

(b) The Frattini subgroup $(G) of G has order 2.

2. NONABELIAN GROUPS OTHER THAN 2-GROUPS WITH SMALL SQUARING ON

3-SETS

Suppose that G is a finite nonabelian group which is not a 2-group and which
has the small squaring property on 3-sets. We shall show that G satisfies part (c) of
Theorem 1. Note that each subgroup and quotient group of G has the small squaring
property on 3-sets. First we consider odd ordered Sylow subgroups of G.

LEMMA 2 . 1 . Each Sylow subgroup of G of odd order is abelian.

PROOF: Suppose that P is a nonabelian p-subgroup of G for some odd prime p.
Then P/Z(P), where Z(P) is the centre of P, is not cyclic and so P has distinct
maximal subgroups M and iV containing Z(P) (see [12, 5.1]). Further M and N are
normal subgroups of P. Let Q — M !~\ N and let a G M — Q. Now M and N are
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generated by M - Q and N - Q respectively. Thus (a, N - Q) = {a, N) = P, so if a
centralised every element of N — Q then a would lie in the centre of P which is not
the case. So there is an element b £ N — Q such that ab ̂  ba. Let K = {a, ab, b2}.
Then \K\ = 3 and we claim that K2 = {a2, a2b, ab2, aba, abab, ab3, b2a, b2ab, b*} has
order 9.

Note that since M is normal in P, the coset of M containing the word w =
o*1^1 . . .atrb*r is the coset VM where j = 53 j * and the coset of N containing w is
a*N where i = ^ t ' t .

So, for example, the only elements of K2 in M are a2, ab3 and b2ab, the latter
two lying in M if and only if 6s G M. Then as a?N is different from the coset of
N containing ab3 or b2ab it follows that a2 is not equal to any of the other words in
K2. Similarly, considering membership of N we find that ft4 is not equal to any of
the other words in K2. Also the only elements of K2 in a2N — M are a2b, aba, and
abab and clearly these are all distinct. Thus the only equalities among the expressions
in K2 must be between ab2, b2a, ab3 and b2ab. The first two of these lie in b2M and
the last two are in b3M so the only possible equalities are ab2 = b2a and o63 = b2ab,
each of which implies the other. However as b has odd order ab2 = b2a is equivalent
to ab = ba which does not hold. Thus \K2\ = 9 which is a contradiction. D

LEMMA 2 . 2 . A finite group of odd order with the small squaring property on
3-sets is abeiian.

PROOF: Suppose that there is a finite nonabelian group of odd order with the
small squaring property on 3-sets and let G be such a group with the least possible
order. Then all proper subgroups of G are abeiian. By Lemma 2.1 it follows that G is
not nilpotent and so by a result of Schmidt, see [18, 9.1.9] or [11], |G| = puqv where p
and q are distinct primes and G has a cyclic Sylow p-subgroup P = (a) which is not
normal in G and a normal Sylow q-subgroup Q. Since G is nonabelian a does not
centralise Q, that is at ^ ba for some b 6 Q. Suppose first that \P\ = pu > 3 and
let K = {b, a, ba2}. We claim that K2 = {b2, b2a2, ba, ba2b, ba3, ba2ba2, a2, ab, aba2}
has order 9. As in the previous lemma a*1^1 ...alrVTQ = alQ where t = ^3 ** • Thu s

the only element of K2 !~l Q is b2, the only elements of K2 in aQ are ab and 6a
and these are distinct, the only elements of K2 in a3Q are ba3 and oia2 and these
are distinct, and the only element of K2 in a*Q is 6a26a2. Thus the only possible
equalities among the expressions in K2 are between 62a2, ba2b and a2 and here the
possibilities are b2a2 = ba2b or 6a2 6 = a2. The former is equivalent to 6a2 = a2 6 which
implies ba = ab (since a has odd order) and so does not hold. The latter is equivalent
to a~2ba2 — 6"1 which implies 6a4 = a46 and hence ba = ab, which again is not true.
Thus \K2\ = 9 which is a contradiction.
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Thus \P\ = p" = 3. In this case let K = {a, b, ab} so that

K2 = {a2, a2b, ab, aba, ab2, abab, ba, b2, bob}.

Again the only element of K2 in Q is b2. The elements of K2 in aQ are ab, ab2, ba
and bab and the only possible equality among these is ab2 = ba, that is a~*ba = b2,
so that b = a~3ba3 = b8, that is b1 = 1. In this case (a, b) is a nonabelian subgroup
of G of order 21 and hence G = (a, b), but it is easy to check that \L2\ = 9 for
L = {a, b2, ab} which is a contradiction. Thus ab, ab2, ba and bab are all distinct,
and the only equalities among expressions in K2 must be between the elements a2,
a2b, aba and abab of K2 D a2Q. Here the only possibility is a2 — abab, that is
a~xba = 6"1 which implies 6a2 = a2b and hence ba = ab which is not the case. This
final contradiction completes the proof U

Now let P be a Sylow 2-subgroup of G. We show next that G has a normal
2-complement.

LEMMA 2 . 3 . The group G has a normal subgroup T of odd order such that
G = TP.

PROOF: Suppose that there is a finite nonabelian group with the small squaring
property on 3-sets which does not have a normal odd order subgroup of 2-power index,
and let G be such a group with minimum order. Then every proper subgroup of G
has an odd order normal subgroup of 2-power index and so by [13, IV.5.4], the Sylow
2-subgroup P is normal in G of exponent at most 4, \G/P\ = qv for some odd prime
q and a Sylow g-subgroup Q of G is cyclic, say Q = (o). Since Q is not normal
in G, there is an element b £ P such that ab ^ ba. Let K = {a, 6, ab}. We claim
that \K2\ = 9 contradicting the small squaring property of G. Now K2 C\ aP =
{ab, ba, bab, ab2} and the only possible equality among these expressions is 6a = ab2 ,
that is, a-1ba = b2. This implies that b and b2 have the same order which is not
true. Also, K2 ("1 a2P — {a2, a2b, aba, abab} and the only possible equality among
these expressions is a2 = abab, that is a~lba = b~* so that 6 commutes with a2 and
hence with a which is not the case. Thus \K2\ = 9 and this contradiction completes
the proof. D

LEMMA 2 . 4 . Tie normal subgroup T is abeh'an and is not centralised by P.

PROOF: It follows from Lemma 2.2 that T is abelian. Suppose that P centralises
T. Then G — PxT and as G is not abeh'an, P is not abeh'an. As in the proof of Lemma
2.1, P has distinct maximal normal subgroups M and N containing Z(P) and there
are elements o € M—N and b £ N—M such that ab ̂  ba. Let c £ T—{1} and consider
K = {a, be, abc2}. (Note that c commutes with o and b and, if w — aHVl ...alTbir

then wM = VM, wN = a{N where j = J^jk, i = £ t t . ) Then K2 n (N x T) =
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{b2c2}, K2 n a(N x T) = {abc, bac, ab2c3, babe3} and these elements are all distinct
since ab ^ 60 and c has odd order, K2 (~l a?(N x T) = {a2be2, abac2, a2, ababc*} and
again these elements are all distinct. Thus \K2\ — 9 which is a contradiction. u

LEMMA 2 . 5 . The subgroup P has a subgroup Q of index 2 which centralises T
and every element of P — Q inverts T.

PROOF: Let a e P be an element which does not centralise T, so ab ^ ba for
some 6 £ T. First we show that a2 b = ba2. This is true if a2 — 1 so assume
that a2 ^ 1 and consider K = {b, ba, ba2}. Then K2 n aT = {b2a, bab} has order
2, A"2 D a3T = {baba2, ba2ba} has order 2, and if2 D ( T U a 4 T ) = {62, 6a26a2},
If2 (~1 a2T = {ft2a2, baba, ba2b}. Since |iif2| < 9 some pair of expressions in one of the
latter two sets must be equal in G. The only possibilities are b2 = ba2ba2 with a4 = 1,
or &2a2 = ba2b. In either case 6a2 = a2b.

Now consider K = {b, ba, b2a}. We have K2 D aT = {b2a, b*a, bab, b2ab} and
K2 n (TU o2T) = {b2, baba, bab2a, b2aba, b2ab2a}. Since \K2\ < 9 some pair of ex-
pressions in one of these sets must be equal in G. If a2 ^ 1 then the only possibilities
are 6s a = bab and baba = b2ab2a. The latter is equivalent to a"160 = 6"1. In the case
of the former equality we have aba'1 = b2, and as ba2 = a2b we have b — a2ba~2 = b* .
Thus b3 = 1 and so aba-1 = 6"1 . In either case a inverts 6. If a2 = 1 then apart from
the above possibilities there is also the possible equality b2 = bab2a. This implies that
aba = b2 and hence that b — a2ba2 = 64 whence b3 = 1. Thus in all cases a inverts b.

Thus, for each x € T, x° = a~lxa is either x or x " 1 , and for some b e T — {1},

ba = 6" 1 . Suppose there is an x G T — {1} which commutes with a. Then (x6)° =

xb-1 is either xb or (x6) - 1 = x~1b~1 (since T is abelian). Neither of these is possible

and hence a inverts each element of T.

Thus each element of P either centralises or inverts T and so P has a subgroup

Q of index 2 which centralises T. D

At this point we distinguish two cases according as P is abelian or not.

LEMMA 2 . 6 . Either P is abelian or there are elements a € P - Q and b 6 Q

such that ab ^ ba.

PROOF: If a G P — Q centralises Q then a centralises (a, Q) = P, that is a €
Z(P). Thus if each element of P - Q centralised Q then each element of {P - Q) = P

would centralise Q and hence would lie in Z(P), that is P would be abelian. D

First we consider the case of P abelian.

LEMMA 2 . 7 . (a) If P is abelian then Q is elementary abelian.

(b) Conversely suppose that G = TP is a finite group with T a nontrivial abelian

odd order normal subgroup and P an abelian 2-group such that the centraliser Q =
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CP(T) of T in P is elementary abelian of index 2 in P and P inverts T. Then G
has the small squaring property on 3-sets.

PROOF: (a) Suppose that P is abelian and that Q contains an element b of order
4. Let a E P ~ Q. By replacing b by b~x if necessary we may assume that a2b ^ 1.
Let c GT — {1} and consider K = {ac, abc2, c} . (Recall that 6c = cb and ac = c~1a.)

Now K2 D P consists of (ac)2 = a2, cac = a, (abc2)2 = a2b2, and also abc3 = ab if
cs = 1, and these elements are all distinct. The elements of K2 not in T x Q are ac2,
a, abc3, and c(abc2) — abc and these are all distinct. The elements of K2 n (T x Q)
not in P are ac(abc2) = a2bc, abc2(ac) = a2bc-1, and c2 and these are all distinct.
Thus \K2\ = 9 which is a contradiction. So Q is elementary abelian.

(b) Let G, T, P, Q be as stated and let a G P - Q. Let K be any 3-element
subset of G. If K contains at least two elements of T x Q then |iJT2| < 9 since T x Q
is abelian. So assume that K contains two elements of G — (T x Q) say x = abc and
x' = ab'c' where b, b' G Q and c, c1 G T. Then x2 = (abc)2 = a2 since ca = ac'1,

and b2 = 1, similarly (x')2 = a2. Thus \K2\ < 9 and so G has the small squaring
property on 3-sets. D

Now we consider the case where P is not abelian.

LEMMA 2 . 8 . If P is not abelian then Q is abelian and each element of P — Q
inverts Q.

PROOF: By Lemma 2.6 there are elements a G P — Q and b G Q such that
ab ^ ba. Consider K = {a, ab, c} where c G T — {1}. The elements of K2 not
in T U P are ac, ca, abc, cab and these are all distinct. The elements of K2 D P
are a2, a2b, aba and abab. Since \K2\ < 9 at least two of these elements are equal
and hence a = abab, that is 6° = b~l. In particular b2 ^ 1. Thus a centralises
or inverts each element of Q. If a inverts each element of Q then, for x, y G Q,
z"1!/"1 = (yx)'1 = (yx)a = yaxa — y~lx~l and it follows that Q is abelian. Also in
this case each element of P — Q is of the form ax for some x G Q, and ax inverts Q.
Thus we may assume that, for some c G Q, ca = c ^ c"1. In particular c ^ b, c ^ ft"1

and c2 ^ 1. Now (bc)a = baca =b~1c^bc and hence (bc)a = (be)'1. It follows that
be = (b~*c) , that is 6 inverts c. (In particular be ̂  cb.)

Now consider K — {a, bx, cy} where x, y are distinct nontrivial elements of T.
The elements of K2 not in T x Q are abx, acy, bxa = ab~1x~1, cya = acy~x and
these are all distinct. The elements of K2 in T x Q axe a2, b2x2, c2y2, bcxy, cbxy
and as \K2\ < 9 at least two of these elements are equal. It follows that xy — 1 and
either a2 = be or a2 — cb. It follows that c (equal to b~1a2 or a2^"1) commutes with
6. This contradiction completes the proof. D

LEMMA 2 . 9 . Let G = TP be a finite group with T a nontrivial abelian odd
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order normal subgroup and P a 2-group such that the centraliser Q — Cp(T) of T in
P is abelian of index 2 in P and P inverts T x Q. Then G has the small squaring
property on 3-sets.

PROOF: Let K be a subset of G of order 3. If K contains at least two elements
of the abelian group T x Q then \K2\ < 9. So assume that K contains two elements
not in T x Q, say x = abc and x' = ab'c' where a £ P - Q, b,b' £ Q, c,c' £ T. Then
x2 = a2 = (r1)2 and hence again \K2\ < 9. D

3. NONABELIAN 2-GROUPS WITH THE SMALL SQUARING PROPERTY ON 3-SETS

Here we investigate nonabelian 2-groups with the small squaring property on 3-
sets. A complete classification is obtained of those with exponent at least 8. First let
us consider some examples.

DEFINITION 3.1: (a) A 2-group G is called a D-group if it is nonabelian and the
subgroup A = (x \ x £ G, x2 ^ 1) is a proper subgroup of G.

(b) A 2-group G is called a Q-group if it is nonabelian and satisfies the following
conditions.

(i) G has a subgroup A of index 2 such that each element of G — A has
order 4.

(ii) If x, y £ G — A then x2 = y2 and ax = x~1ax = o"1 for all a £ A.

The dihedral and generalised quaternion groups of order 2n ^ 8 are examples
of Z>-groups and Q-groups respectively. All D-groups and Q-groups have the small
squaring property on 3-sets.

LEMMA 3 . 2 . (a) If a 2-group G is a D-group then A = (x \ x2 ^ 1) is an

abelian subgroup of index 2, each element of G — A inverts A, and G has the small

squaring property on 3-sets.

(b) If a 2-group G is a Q-group then G has the small squaring property on 3-sets
and the subgroup A of 3.1 (b)(i) is abelian.

PROOF: (a) Since G = (G — A) and G is nonabelian there are non-commuting
elements x, y in G — A and by the definition of A, x2 — y2 = 1. Suppose that
\G : A\ > 2. Then we may choose x and y so that xy ^ yx and also xA ^ yA. Since
A is normal in G, the four cosets A, xA, yA and xyA — Axy are all distinct. Thus
xy £ G — A and hence has order 2. This implies that xy — yx which is a contradiction.
Thus A has index 2 in G. Now if a £ A then xa £ G — A and so {xa)2 — 1, that is
a' = o" 1 . So x inverts every element of A and it follows that A is abelian. Let K be
a 3-element subset of G. If \K D A\ ^ 2 then \K2\ < 9 since A is abelian while if K

contains two elements x, y of G — A then x2 = y2 — 1 and again | ^ 2 | < 9.
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(b) Since an element of G — A inverts A, A is abelian. Then if K is a 3-element

subset of G, \K2\ < 9 when \KnA\^2 since A is abelian, and \K2\ < 9 when K

contains two elements x, y of G — A since x2 = y2. u

The main result which will be proved in this section is the following theorem.

THEOREM 2 . Let G be a nonabelian 2-group such that \K2\ < 9 for all 3-
element subsets K of G. Then either

(a) G is a D-gioup or a Q-group, or
(b) G has exponent 4 and derived length 2. Further each of the centre Z(G)

and the derived quotient G/G' is either elementary abelian or the product
of an elementary abelian group and a cyclic group of order 4.

Conversely each 2-group which is a D-group or a Q-group has the small squaring
property on 3-sets.

The problem of determining all exponent 4 examples is open. There are certainly
examples which are not D-groups or Q-groups and this is demonstrated in the following
result.

PROPOSITION 3 . 3 . Let G be a nonabelian 2-group which is minimal (by in-
clusion) such that \K2\ < 9 for all 3-element subsets K. Then G is D8, Qs or
T = (a, b | a4 = 64 = 1, 6~1a6 = a"1) (and all of these groups have the small squaring
property on 3-sets).

PROOF: If \G\ = 8 then G is D$ or Q% which have the small squaring property
by Lemma 3.2, so assume that \G\ ̂  16. Now G is a minimal nonabelian 2-group since
all subgroups of G have the small squaring property. Then, see [13, p.309], either

G = G1={a,b\ a2" = b20 = 1, b-'ab = a1*2""1)

with a > 2, and \G\ = 2a+>3, or

G = G2 = (a, b | a2 = b2* = 1, [a, b}2 = 1),

with say a ^ 2 and \G\ = 2 a + ^ + 1 .

Suppose G = Gi. Then Z(G) - (a2, b2) has index 4. If a = 3 then |iir2| = 9 for
K = {a, b, ba},soa = 2 and hence /? Js 2. If /3 > 3 then \K2\ = 9 for K = {a, b, ab3},
so f3 = 2 and G — T. It can be checked that T has the small squaring property on
3-sets.

Now let G = G2. Then Z(G) = {a2, b2, [a, b}) again has index 4, and \K2\ = 9
if K = {a, b, ba}. Thus G2 does not have the small squaring condition. U

This result is very important when investigating nonabelian 2-groups G with the
small squaring property on 3-sets as the small squaring property is inherited by sub-
groups and quotient groups. For example if H is a minimal nonabelian subgroup of

https://doi.org/10.1017/S0004972700029932 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700029932


438 Ya.G. Berkovich, G.A. Freiman and C.E. Praeger [10]

G, then by Proposition 3.3, H is isomorphic to D8,Q8, or the group T defined there.
Also if A is a cyclic subgroup of Z(G) then HA is a direct product or a central product
of H and A, and HA has the small squaring property on 3-sets. We shall need some
information about such products.

PROPOSITION 3 . 4 . (a) None of the centred products Z8 * D8 and Z8 * Q8 and
the direct product Z8 x Q8 has the small squaring property on 3-sets.

(b) The direct product Z^xL of a cyclic group of order 4 and a nonabelian 2-group
L has the small squaring property on 3-sets if and only if L — Q8 x E, where E is an
eVementary abeiian 2-group or E = 1.

(c) A central product of a cyclic group Z4 — (c) and the group T = (a, b | a4 =
64 = 1, b-1ab = a"1) has the small squaring property on 3-sets if and only if c2 = a262 .
A central product of the abeiian group Z4 x £4 = (c) x (d) and T does not have the
small squaring property on 3-sets.

PROOF: (a) This is proved by showing that \K2\ = 9 for the following sets K. For
Z8 * D8 = (c, a, b | a4 = 62 = 1, c4 = a2, ca = ac, cb = be, ba = a3b) let K{a, b, abc},
and for Z8 x Q8 = (c) x {a, b | a4 = 1, a2 = 62, 6a = a*b) and Z8*Q8- (c, a, b \ a4 =
1, c4 — a2 = 62, ca = ac, cb = be, ba — a3b) let K = {a, 6c, a6c3}.

(b) Suppose that Z± x L = (c) x L has the small squaring property on 3-sets but
that L is not of the required form. Then by Freiman [9], there is a subset Ko = {a, 6}
of L such that \K$\ = 4. Since for K = {a, 6, a6c} we must have \K2\ < 9, it follows
that 6(a6c) = (abc)a and hence that a = (ab)~ b(ab). Thus LQ = {a, 6) is a finite
nonabelian 2-group in which a and 6 are conjugate. This is impossible. (For suppose
that Xo = (a, 6) has least order among finite nonabelian 2-groups with the generators a
and 6 conjugate in LQ . Then LO/Z(LQ) = {aZ(Lo), bZ(Lo)) has its generators aZ(Lo)
and bZ(Lo) conjugate, so by minimality Lo/Z(Lo) is abeiian. As aZ(Lo) and bZ(Lo)
are conjugate in LQ/Z^LQ) they are equal and hence LQ/Z(LO) is cyclic. Thus LQ is
abeiian, which is a contradiction.) Thus L is of the required form.

Conversely consider H = Z4 x L = (c)xL where L = QxE, with Q — (a, b \ a* =
1, a2 = b2, ba = asb) and E an elementary abeiian 2-group. Let K be a 3-element
subset of H. If K C\ L contains distinct elements x and x' then by [9], |{z, z '}2 | < 4
and so | K21 < 9. Similarly if K C\ [cL U c*L) contains distinct elements csx and c6 x',
where 6, 6' £ {1, 3} and x, x' € L, then {csx, c6'x1}2 - c2{x, x'}2 has size at most 3
and so \K2\ < 9. Again if K (1 c2L contains distinct elements c2x and c2z', where x,
I ' G I then {c2x, c2x'}2 = {z, x'}2 has size at most 3 and \K2\ < 9. The remaining
case to be considered is K = {x, c2x', csx"} where z, z', z" £ L and 6 is 1 or 3.
If any one of z, z' , x" lies in Z[IS) then | ^ 2 | < 9. So we may assume that all of
them he in L - Z(L), but then z2 - x'2 and again \K2\ < 9. Thus H has the small

https://doi.org/10.1017/S0004972700029932 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700029932


[11] Small squaring and cubing properties 439

squaring property on 3-sets.

(c) By (b), T f l ( c ) / 1 . Hence c2 G {a2, b2, a2b2}. Take K = {a, b, abc}. If
\K2\ < ,9 then c2 ^ a2,b2. Thus c2 = a2b2, and in this case it is easy to check that
T * (c) with c2 = a2ft2 has the small squaring property on 3-sets. Finally suppose
that some central product G = T * ((c) x (d)) has the small squaring property. Then
T * (c) and T * (d) have the small squaring property also, and hence <? = a2b2 = d?.

Therefore c2 = d2 G (c) l~l (d), which is a contradiction. D

This Proposition yields the result claimed for the structure of Z{G) in Theorem 3.

THEOREM 3 . 5 . Let G be a nonabeiian 2-group with the small squaring property-

oil 3-sets. Then Z(G) is either E or E X Z4, where E is elementary abelian (or trivial).

PROOF: Let H be a minimal nonabeiian subgroup of G. Suppose that Z(G) is
not elementary abelian and let A = (a) be a cyclic direct summand of Z[G) of maximal
order. By Propositions 3.3 and 3.4 applied to H and HA it follows that \A\ — 4 and
H is Da or Qa or T. Now suppose that Z(G) has a subgroup A x B = Zt x Z4 .
If H n {A x B) = 1 then H(A X B) = (H x A) x B cannot have the small squaring
property on 3-sets by Proposition 3.4(b), which is a contradiction. Thus we may assume
that H 0 A ^ {1}. Suppose first that H is D8 or Q8. Then Z(HA) = A, so
that HA H B = 1. Hence H{A x B) = {HA) x B and this does not have the small
squaring property on 3-sets by Proposisiton 3.4, a contradiction. Now suppose that
H = T = (a, 6 I a4 = 64 = 1, b^ab = a " 1 ) . Then H{A X B) does not have the
small squaring property on 3-sets by Proposition 3.4(c). Thus Z(G) = E x A with E
elementary abelian or trivial. D

Next we investigate the structure of the derived quotient G/G' of a nonabeiian
2-group G with the small squaring property on 3-sets. Let

G/G' = (aG1) x {cxG') x . . . x (cnG')

where O(aG') ^ O(ciG') > ^ O(cnG'), (where 0(g) denotes the order of g). To
obtain restrictions on the orders of the cyclic direct summands we shall examine certain
sections of G, for example certain quotients of (a, CJ) for some t. We shall need the
following lemma which allows us to make use of Proposition 3.3 again.

LEMMA 3 . 6 . Let L be a nonabeiian 2-group with derived group V of order 2.
Then L/Z(L) has exponent 2. In particular if L has a generating set of size 2 then L
is a minimal nonabeiian group.

PROOF: Since \L'\ = 2 it follows that V C Z(L). Let x, y G L. Then 1 =
[x, y]2 = x'^x, j/JiT1*!/ = [x2, y]. Hence x2 G Z(L) for all x G L, that is L/Z(L) has
exponent 2. Now let L = (a, b). Then L/Z(l) = {aZ(L), bZ(L)) is elementary abelian
of order 4. If JT is any subgroup of L of index 2 then H contains Z(L). (For if not then
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L — H Z(L), so H contains az and bz' for some z, z' in Z(L) and hence H contains
{[«, bz'} = [a, b}) = V. Then H/L' is a subgroup of L/V = (aL1) x (bL1) of index
2 and so H/L' contains Z(L)/L' = {a2L') x (b2L') which contradicts L = HZ{L).)
Then since |/7 : Z(L)\ = 2 it follows that H is abelian, and hence that L is a minimal
nonabelian group. D

THEOREM 3 . 7 . Let G be a nonabelian 2-group with the small squaring property
on 3-sets. Then G/G' is either E or ZtxE where E is elementary abelian (or trivial).

PROOF: We use the notation introduced before Lemma 3.6. Note that, since G' C
$((?) , we have G = (a, c\t ..., cn). Suppose first that O(aG') ^ 8. Then, by Theorem
3.5, a £ Z(G), and so for some i = 1, ..., n, H = {a, c;) is nonabelian. Let R be
a subgroup of H' of index 2 which is normal in H. By Lemma 3.6, L = H/R is a
minimal nonabelian group. Since L has exponent at least 8 it follows from Proposition
3.3 that L does not have the small squaring property on 3-sets, which is a contradiction.
Thus O(aG') = 4 .

Next suppose that a G Z(G). Then by Theorem 3.5, a has order 4, and it follows
that G = (a) x (a, . . . , cn). By Proposition 3.4(b), G = (a) x QB x E where E is
elementary abelian, and so G/G' is the direct product of Z4 and an elementary abelian
group. Thus we may suppose that a </i Z[G). Suppose that c\G' has order 4. Consider
(ci, . . . , cn). If a centralised every element c of this group for which O(cG') — 4 then,
since the elements of order 4 in the abelian group G/G' generate G/G', it follows
that a would centralise (ci, . . . , cn) and hence o would lie in Z(G). Thus we may
assume that ac\ ^ c\a. Let H = (a, Ci) and let R be a subgroup of H', of index 2 in
H', which is normal in H. Then, by Lemma 3.6, H/R is minimal nonabelian, and by
Proposition 3.3, H/R does not have the small squaring property on 3-sets, which is a
contradiction. Thus G/G' has the required form. D

Our next task is to examine examples of large exponent. First we deal with those
containing an abelian subgroup of index 2.

PROPOSITION 3 . 8 . Let G be a nonabelian 2-group with the small squaring

property on 3-se<s. If G has an abelian subgroup A of index 2 with exponent exp(A)

at least 8 then G is a D-group or a Q-group.

PROOF: Let C = (c) be a cyclic subgroup of A of order exp(.A) = 2n say, and
let b € G - A. Then G = (b, A) = A U bA. Also, by Theorem 3.5, c i Z{G)

and hence 6c ^ cb. Assume first that fe2, c2 and (6c) are all distinct, and consider
K = {6, c, 6c}. Now K2 D bA = {be, cb, cbc, be2} and these elements are all distinct
(for the only possible equality is c6 = 6c2 which implies 6-1c6 = c2 whence c and
c2 have the same order, a contradiction). The set K2 ("1 A = {62, 62c, (6c)2, c2, 6c6}
and the only possible equalities between these elements are 62c = c2 and c2 = 6c6. If
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62c = c2 then c — b2 whence CG(C) contains (b, A) = G, that is c £ Z(G) which is a
contradiction. I f c ! = bcb then c3 = (6c) whence CG{C3} contains (A, be) = G, that
is cs and hence c lie in Z(G), again a contradiction. Thus \K2\ = 9 which is not the
case. So for any element c of maximal order in A, and any b £ G — A, the elements
b2, c2 and (6c) are not all distinct.

Suppose that b2 — c2 for some such b, c. Then 6 has order 2 n . Let L = (6, c).
Then L is nonabelian (recall be ^ c6) and c2 lies in its centre. So by Theorem 3.5,
c2 has order at most 4. Thus exp(j4) = 2™ = 8. We claim that 6 inverts c. For
d = b3 £ G - A and d? = 68 = c6 ^ c2 so either d? = (def or c2 = {def. In the
latter case, c = ded = d(dcd)d = d?cd? = c

6 + 2 + 6 = c8 which is a contradiction. Thus
d2 = (dc)2, that is d~1cd — c"1 and it follows that 6 = d3 inverts c. Similarly, if
(6c) = c2 then exp(.A) = 8, and 6c, and hence 6 inverts c. Finally if c2 is not equal
to 62 or (6c) then we must have 62 = (6c) , and again 6-1c6 = c~x.

Thus we have shown that, for each 6 £ G — A and each c £ A of order 2" , 6 inverts
c, and if either 62 = c2 or (6c) for some such 6, c, then A has exponent 8. Now,
as A is generated by its elements of order 2 n , each element 6 £ G — A inverts each
element of A. In particular, for c of order 2" in A, 6 2 c - 1 £ A and so 6 inverts c and
Pc-1. Thus we have 62

C-J = 6-162(6c-1) = &-162c6 = (62c)~1 = c"1*"8 = 6-2c~1

(as A is abelian), and hence 64 = 1. Thus each element 6 of G — A has order at
most 4. Suppose that some 6 £ G — A has order 2. Then, for each a £ A we have
(6a) = (bab)a = a~xa = 1, that is each element of G — A has order 2. In this case
G is a D-group. Thus we may assume that each element of G — A has order 4. If
6, d £ G — A then d = ba for some a £ A and so d2 — b(ab)a = 66a"1 a = 62. Thus G

is a Q-group. U

Now we complete the classification for the case of large exponent.

THEOREM 3 . 9 . Let G be a nonabelian 2-group of exponent at least 8 with the

small squaring property on 3-sets. TJien G is a D-group or a Q-group.

PROOF: We prove this Proposition by induction on \G\. Now |G| ^ 16 and if
\G\ — 16 then the result follows from Proposition 3.8. So assume that the result is true
for groups of order less than \G\. Let G have exponent 2 n ^ 8 and let C — (c) be
a cyclic subgroup of order 2n in G. By Proposition 3.8 we may assume that G does
not contain an abelian subgroup of index 2 and exponent 2 n . Let M be a subgroup
of G containing C with \G : M\ = 2. Then M is not abelian, and by induction M

is a D-group or a Q-group. It follows from Lemma 3.2 that M has a characteristic
subgroup A of index 2 which is abelian. Thus A is normal in G of index 4.

Suppose that G/A is cyclic, say G/A — {aA}. By Definition 3.1 and Lemma 3.2,
a2 inverts A and a2 has order at most 4. Let K = {a, c, ac}. Then K2 D A = {c2}.
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In the set K2 D aA — {ac, ca, ac2, cac} the only possible equality is ca = ac2 which
implies a~xca — c2. This is impossible since c and c2 have different orders. Thus
\K2 C\aA\ —4. Also K2 l~l a2A = {a2, (ac)2, a2c, aca} and the only possible equality
between these elements is a2 = (ac) , that is a~xca = c"1. However this would imply
that a2 centralised c which is not the case. Hence \K2\ — 9 which is a contradiction.
Thus G/A is elementary abelian of order 4. Let Mi, i — 1, 2, 3, be the subgroups
of index 2 in G containing A. As above each M,- is a .D-group or a Q-group. Let
Mi = (ai, A) for i = 1, 2, 3. Suppose that A is not cyclic. Then A — C contains an
involution x say, and as a; inverts A, a,-« = xai for each i = 1, 2, 3. Hence x G Z(G).
Now G/(x) has exponent 2n (as C ~ C(x)/(x}), is nonabelian, and is not a .D-group
or a Q-group (since A/{x) is a maximal abelian subgroup of G/(x) and it has index
4 and order at least 2n). This contradicts the inductive assumptions. Thus A — (c) is
cyclic. If Mi is a D-group then by definition a? = 1 and M,- is dihedral of order 2 n + 1 .
If Mi is a Q-group then aj has order 4 and M; is a generalised quaternion group of
order 2 n + 1 . Thus each of the Mi is a nonabelian 2-group of maximal class (see [12,
5.4.5]), and G itself is not of maximal class. Hence the subgroup A is contained in
exactly 3 subgroups of G of maximal class and order 2 n + 1 , whereas it was shown in
[2] that a proper subgroup A of a 2-group G, where G is not of maximal class, is such
that A is contained in an even number of subgroups of maximal class and given order
2r > \A\. This contradiction completes the proof of Theorem 3.9. D

Finally we obtain a bound on the derived length. Note that each D-group and
Q-group has derived length 2.

THEOREM 3 . 1 0 . Let G be a nonabelian 2-group with the small squaring prop-
erty on 3-sets. Then G has derived length 2.

PROOF: We prove this result by induction on \G\. It is certainly true for |G| = 8
so we assume that |G| > 8 and that the result is true for groups of order less than
\G\. We may assume that G has exponent 4. Suppose that G" ^ 1. Then G
has a normal subgroup R which is elementary abelian of order 4 (see [13, III] or
[1]). Suppose that R is contained in Z(G), and let M\, Mi be distinct subgroups
of R of order 2. Then by induction (G/Mi)" = 1 and (G/M2)" = 1 and hence
G" < Mx n M2 = 1, which is a contradiction. Hence R £ Z(G). Now R ± *(G), for
it was shown in [15] that a 2-group G with Frattini subgroup $(G) = Z2 x Z2 is such
that $(G) < Z(G). If $(G) C R then |§(G)| = 2 and G" = 1. Hence R ^ #(G), and
so G/R has exponent 4. Also G/R is nonabelian since G" ^ 1. Let x G G — R be
such that x2 $ R and consider L — (x, R). Then \L\ = 16 and if L were nonabelian
it would be minimal nonabelian (note that x2 centralises R) and by Proposition 3.3,
L ~ T = (a, b | a4 = b* = 1, b~xob = a"1) which is not the case. Thus L is abelian,
that is x centralises -R.
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Now consider A = (x \ 0{xR) = 4). Then A contains R and \G : A\ < 2 (for G/R

is nonabelian, and if A/R ^ G/R then the arguments in the proof of Lemma 3.2(a)
show that \G : A\ = 2). Also R centralises each element of A. If G = A then R < Z{G)

which is not the case. Thus \G : A\ = 2, and so G/R is a .D-group. Also CQ(R) = A,

and G = (A, d) for some d such that d2 G R. Now d $ Ca(R) and so (d, R) ~ Da

(a nonabelian group of order 8 containing Z2 x Z2 )• Thus (d, R) — R contains an
involution, and we may assume therefore that d2 = 1. Let a G A be such that a? £ R

(that is O(aR) = 4). Let b £ R- Z((d, R)), and let c = dbd. Then Z((d, R)) =

(be). Since G/i2 is a D-group it follows from Lemma 3.2 that dadR — a~xR. If
dad = a~*b then a = d(dad)d = da~Hd = {dad)'1 dbd = ( a ^ i ) " ^ = bac = a&c (since
a G CG(-R)) , and hence be — 1 which is a contradiction. Similarly dad ^ a~1c. Hence
dad is either a"1 or a~1bc.

Suppose that dad = a"1, and consider K = {a, d, abd}. Then K2 — A =

{ad, da, a2bd, abda). If ad — abda then d = bda = dca, so ca = 1, contradic-
tion. If da — a2bd then a~xd — a2bd so that a3 = fc"1 G R, contradiction. If
a2bd = abda = aba~1d, again a contradiction as a centralises R. Thus \K2 — A\ = 4 .
Also K2 D A = {a2, dabd = a~xc, d2 = 1, abd2 — ab, (abd)2 = be} has size 5 and so
\K2\ = 9 which is a contradiction.

Thus dad = a-Hc. Consider K = {a, d, bd}. Here K D R = R, K2 D (A - R) =

{a2}, and K - A = {ad, da, abd, bda} has order 4. Thus \K2\ = 9. This final
contradiction completes the proof of Theorem 3.10. U

The main theorem of this section, Theorem 2, now follows immediately from The-

orems 3.5, 3.7, 3.9 and 3.10.

3. GROUPS IN WHICH \K\ < 7 FOR ALL |iif2| — 3

In this section we prove Theorem 3. Suppose that G is a finite nonabelian group
such that | A"21 < 7 for all 3-element subsets K of G. We shall prove that G is
isomorphic to 5 3 . Clearly 5S has this property.

Suppose first that G is a 2-group. Then, as G is not abelian, G/Z(G) is not cyclic
and so G has distinct maximal normal subgroups M, N both containing Z(G). Let
a G M — N. Then a ^ Z(G) and so a does not centralise N = (N — M), so there is
an element b G N - M such that ab ^ ba. If K = {a, b, ab} than \K2\ ~2 7 which
is a contradiction. Thus G is not a 2-group. By Theorem 1, G = TP where T is an
abelian normal odd order subgroup and P is a nontrivial 2-group. Also P contains an
element a which inverts T. Suppose that \T\ > 3 and let b, c G T - {1} be such that
c ^ b, c ^ 6"1. Then for K = {a, b, c}, we have \K2\ ^ 7 which is a contradiction.
Thus T = (b) is cyclic of order 3. Also if o2 ^ 1 then for K = {a, b, ab} we have
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7. Thus o2 = 1 and (a, 6) ~ Ss. If \P\ > 2 then P contains an element c
distinct from a such that c inverts T. As above c2 — 1. Then for K = {a, b, be} we
have \K2\ = 8 which is a contradiction. Thus |P| = 2 and G S Ss .

5. GROUPS WITH SMALL CUBING ON 2-SETS

In this section we consider finite groups G with the small cubing property on 2-
sets, that is \K3\ < 8 for all 2-element subsets K of G. The main result we prove is
the following technical theorem.

THEOREM 5 . 1 . Suppose that G is a finite group such that \K3\ < 8 for all
2-element subsets K of G. Then the following hold.

(a) The group G has a normal abelian Hall {2, 3}'-subgroup H.
(b) A Sylow 3-subgroup P of G centralises H. Further either P is abelian,

or H = 1, P is a nonabelian group of exponent 3 and P contains its
centrah'ser in G that is CG(P) - Z(P).

(c) If Q is a Sylow 2-subgroup of G then (a2 \ a G Q) centralises H.

An immediate corollary to this result is the complete classification of odd order
groups with the small cubing property on 2-sets stated as Theorem 4 in the introduction.

Unfortunately we do not have sufficient information about the Hall (2, 3)-
subgroups of G to get a classification of the even order examples. This is an open
problem. However we are able to obtain the weaker classification, Theorem 5, of finite
groups G such that | K31 < 6 for all 2-element subsets K of G.

First we prove Theorem 5.1 in a sequence of lemmas.

LEMMA 5 . 2 . Let G be a finite group, which is not a 2-group, with the small
cubing property on 2-sets. Let p be an odd prime dividing \G\ and let P be a Sylow
p-subgroup of G. Then either P is abelian, or p = 3, P has exponent 3, there is a
2-element subset K of P with \K3\ = 7, and the centraliser CQ(P) of P is the centre
Z(P) of P.

PROOF: Suppose that P is not abelian and let b £ P — Z(P). Then 6 lies in a
maximal normal subgroup N of P, and, as P is generated by P—N, there is an element

aeP-N such that ab^ba. Let K = {a, b}. Then each of K*naN = {ab2, bab, b2a}
and K* D a2N = {a2b, aba, ba2} has size 3. Since \K*\ < 8 it follows that as = 6s

whence p = 3 (for ab ^ 6a) and |-K^3| = 7. Similarly by considering K = {a, b2} we
obtain a3 = 66 whence as = b3 - 1. Thus all elements in P - Z(P) have order 3. If
now c e Z(P) then 6c £ Z(P) so 1 = (6c)S - b3c3 = c3. Hence P has exponent 3.

Finally suppose that c is a nontrivial element in CG{P) — P and consider K —

{a, be} C P x (c). The sets K3 D Pc2 and K3 n (Pc U Pc3) have sizes 3 and 4
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respectively and it follows that \K*\ = 8 which is a contradiction. Hence CG(P) —

Z(P). U

LEMMA 5 . 3 . Let G be an odd order group with the small cubing property on
2-sets. Then (a) and (b) of Theorem 5.1 are true.

PROOF: Suppose that Theorem 5.1 is false for some odd order group and let G
be such a group with minimal order. By Lemma 5.2 it follows that G is not nilpotent.
Also, by minimality and Lemma 5.2, each proper subgroup of G is either abelian or
a nonabelian group of exponent 3. Suppose first that a Sylow 3-subgroup P of G is
nonabelian. Now G is soluble and G ^ P. If G/G' is a 3-group, then by minimality
G' has a normal abelian Hall {2, 3}'-subgroup H and H is a Hall subgroup of G. By
Lemma 5.2, P does not centralise H and so there are noncommuting elements a £ P
and b 6 H. If K = {a, b} then \K3\ = 8 which is a contradiction. Thus \G/G'\ is
divisible by some prime p greater than 3. Then G has a maximal normal subgroup M
of index p . Since M contains P it follows from minimality that M = P. Let c £ G
have order p , and let K = {a, b} C P with \K31 = 7 as in the proof of Lemma 5.2. If c
centralised P then |{a, 6c}3 j = 8 which is a contradiction. Hence c does not centralise
P, so let be P be such that cb^bc. Then if K = {c, b} we have ĵ iT31 ^ 8 which is
a contradiction. Thus P is abelian and each proper subgroup of G is abelian. Then
by [11] or [18, 9.1.9], \G\ = puqv for distinct primes p and q, G has a normal abelian
Sylow g-subgroup Q and a cyclic Sylow p-subgroup (a). Since G is nonabelian there
is an element b £ Q such that ab ^ 6a. Then if K = {a, b} we have \KS\ — 8 which
is a contradiction. This completes the proof of the lemma. D

LEMMA 5 . 4 . Let G be an even order group with the small cubing property on
2-seis. Then Theorem 5.1 is true for G.

PROOF: Suppose that Theorem 5.1 is false for some even order group and let G be
such a group with minimal order. Suppose that G is not simple and let N be a maximal
normal subgroup of G. By the minimality of G and by Lemma 5.3, N has a normal
Hall {2, 3}'-subgroup Hi. Since Hi is a characteristic subgroup of N it follows that
Hi is normal in G. Suppose that Hi is nontrivial. Then, by minimality, G/Hi has
a normal Hall {2, 3}'-subgroup H/H\ where H D Hi. It follows that H is a normal
Hall {2, 3}'-subgroup of G, and H ^ G since \G\ is even. Then G/H is a {2, 3}-group
and, in particular, G is soluble. Let T be a Hall 2'-subgroup of G. Then T contains
H and, since H D Hi ^ {1} it follows from Lemma 5.3 that T is abelian. Thus H

is abelian, a Sylow 3-subgroup P of G is abelian, and P centralises H. Let Q be a
Sylow 2-subgroup of G. If a2 centralised H for each a E Q then Theorem 5.1 would
be true for G. Thus there are elements a £ Q and b £ H such that a2b ^ ba? . But
then \{a, b}3\ = 8. Hence Hi = {1}, that is AT is a {2, 3}-group. Now by minimality
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and Lemma 5.3 the quotient group G/N satisfies the conclusions of Theorem 5.1. In
particular G/N is soluble, and since G/N is simple we have G/N ~ Zp for some prime
p. By minimality a Sylow 3-subgroup of G is abelian or nonabelian of exponent 3. If
p ^ 3 then Theorem 5.1 is true for G and hence p > 5. Thus |G| = 2u3"p and N

is the unique maximal normal subgroup of G. Let M be a minimal normal subgroup
of G. Then by minimality it follows that G/M has a normal Hall {2, 3}'-subgroup
L/M of order p. If L ^ G, then, again by minimality, L has a normal subgroup
Li of order p. Further L\ is a normal {2, 3}'-subgroup of G and (considering the
subgroup L\P) a Sylow 3-subgroup P is abelian and centralises L\. Also for each
2-element o, a2 centralises L\ (consider K = {a, 6} for I 6 I i ) . Hence Theorem 5.1
is true for G which is a contradiction. Thus L = G, and it follows that N = M is
a minimal normal subgroup of G and hence is an elementary abelian 2-group. Now
G acts irreducibly on N and so a subgroup (a) of order p is self-normalising in G.

Thus each element of G - N has order p. Let b£a2N. If K = {a, 6} then |ii:s| = 8
(for K3 n aAN = {ba2, a?b, aba}, K3 f\ asN = {bab, b2a, ab2}, K3 n (a) = {a3}, and
neither a nor a2 commutes with 6).

We conclude that G is a simple group, and as Theorem 5.1 is false for G, G is a
nonabelian simple group. By Burnside's Theorem [12, 4.3.3], \G\ is divisible by at least
three distinct primes, p, q, r, say, with p > q > r. Then p > q ^ 3. As G is simple
it is generated by its elements of order p, and, as G has trivial centre, no non-identity
element of G is centralised by all the elements of order p. In particular, for a £ G of
order q, there is an element b £ G of order p such that ab ̂  ba. Let K = {a, b}. By
our assumption, \K3\ < 8. Thus i 1 i2 I s = !/i!/2!/3, where each Xj and rji is a or 6
and the triples (xi, X2, X3) and (j/i, y2, j/s) are distinct. Since ab ^ ba, and since a
and 6 have odd order, we must have x\ j^y\ • Similarly X3 ^ j/3 . We may assume that
x\ — a and j/i = 6. Suppose first that x% — a. Then 1/3 = 6 . If xi = a and j/2 = &>
then (6) = (63) = (os), which is not the case. Thus if X2 = a then also j/2 = ° a^d
a3 = 606. In this case o4 = {ab)2, and so (a) = (a4) = ((a6)2) ^ (ab); it follows that
(a, b) = (06) which contradicts the fact that ab ̂  ba. Therefore X2 = b. If also y% = b

then 63 = 06a and we get a contradiction as before. So 1/2 = <* and aba = bab. Then
(ia)-1a(6a) = (ba)~1bab = b, so that a and 6 are conjugate. This is impossible since
a and b have different orders.

Thus Xi —b and ys = a. Suppose that X2 = a. Then a2b = by2a. Since ab ̂  6a
and o has odd order, a2b =fi ba2, and therefore y2 = b and a2b = b2a. It follows that
b~1a2b = fc-^a = 60, and o ' ^ o = ab. Thus 6~2a262 = b'Hab = ab = a~lb2a,

which means that a2 and b2 are conjugate. This is impossible as a2 and b2 have
different orders. Hence X2 = b and ab2 = by2a. Again, as ab2 ^ b2a, we must
have y2 = a. Then at2 = 6a2, and hence (6-1) a"1 = (a"1) 6"1; this leads to a
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contradiction as above. This completes the proof of Lemma 5.4. U

Lemmas 5.3 and 5.4 complete the proof of Theorem 5.1. Now we prove Theorem 5.

PROOF OF THEOREM 5: First we show that abelian groups and groups satisfying
(a) and (b) have the property that \K3\ < 6 for all 2-element subsets K. This is
certainly true for abelian groups. Next let G — (a, H) where H is abelian of exponent
4 and of index 2 in G, a2 = 1, and axa = x~l for all x in H. Let A" be a 2-element
subset of G. If K C H then \K3\ < 4 so assume that K contains an element c of
G — H. Now c — ay for some y in H. We have c2 = yay = 1 and if x G H then
xc = (xa)y = x" 1 so we may assume that c = a G K. If K = {a, x} with x G H then
K3 = {a = a3 = xax, x = x3 = axa = a2x — xa2, ax2, ax2 — x2a} has order at most
3. Thus we may assume that K = {a, ax} for some x G H. Then K3 = {a = a3 =
(ax)2a = a(ax)2, ax = a2(ax) = (ax)a2 = (ax)3, ax2 = (ax)a(ax), ax3 = a(ax)a} has
order at most 4. Finally let G be a 2-group such that $(G) = (x) has order 2. Then
x is in the centre of G. Let K be a 2-element subset of G. If x G K then \K3\ < 6
so assume that K = {a, b} C G - (x). Then a2 and b2 he in $(G) = {1, x} C Z(G)
and each element of K3 is equal to one of a, ax, b, bx. Thus each of the groups in
the conclusion of Theorem 5 has the required cubing property.

Now suppose that G is a nonabelian group with the property that |-K^3| < 6 for
all 2-element subsets K. Then G satisfies the conclusions of Theorem 5.1. By Lemma
5.2 a Sylow 3-subgroup P of G is abelian and so a Hall 2'-subgroup HP of G is
abelian. Since G is not abelian \G\ is even. Let Q be a Sylow 2-subgroup of G. If
there are elements a G Q and 6 G H such that ab j^ba, then, with K — {a, 6}, each
of the sets K3 n (H U a2H) and K3 D (aH U a3H) has size at least 3, contradicting
the fact that |ii:3| < 6. Thus Q centralises H, whence H lies in the centre Z(G) of
G. Suppose that G has a normal subgroup M of index 3. Then, by minimality, either
M is abelian or M is a nonabelian 2-group. We claim that G has a section isomorphic
to A*. Let G — (M, c) with c G P. As G is not abelian, and as c centralises PH,
in either case c normalises but does not centralise Q. It follows that some section of
(Q, c) is isomorphic to A*. However {(1 2 3), (1 2)(3 4)}3 has order 7. Thus G has
no normal subgroup of index 3, and therefore a maximal normal subgroup M of G,
with H ^ M, has index 2 in G. Suppose now that PH ^ 1. Then, by minimality,
M is abelian, whence M = PH x (M D Q). Let G = (M, c) with c G Q. li ca ^ ac
for some o G Ptf, then, with K = {a, c}, each of the sets K3 D (PH U a2PH) and
A"3 H (aPJTUa3P.ff) has size at least 3, contradicting \K3\ < 6. Thus c centralises
PJ? and we have G = PH x Q, whence Q is nonabelian and ca ^ ac for some o e Q .
Then, if 6 G {PH) \ {1} and K = {ab, c}, we have \K3\ ^ 6 (noting that the sets
{c3, a3 ft3}, {(ab) c, abcab}, and {o6c2, cabc} are each of size 2 and are disjoint, as they
lie in disjoint unions of cosets of Q). Thus PH = 1 and G is a nonabelian 2-group.
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If \K2\ < 4 for all 2-element subsets of G then Theorem 5(b) is true by [9] so we may
assume that for some K = {a, 6} we have \K2\ = 4. For such 2-element subsets K

we consider Table 1 below,

a2 ab ba b2

a
b

ar arb aba ab2

ba2 bab b2a b5

Table 1
called a third stage multiplication table in [4]. We write A = a3, B — a2b, C = aba,

D = ab2. Then according to the analysis in [4], since \K2\ = 4 and \K3\ < 6,
the second row (6a2, bab, b2a, 6s) of Table 1 is one of (B, A, D, C), (D, A, E, C),

(D, C, B, A) and (E, A, B, C) where E e G is distinct from A, B,C, D. Let us
temporarily call these types 1 , 2 , 3 and 4 respectively. We will show that only type 1
is possible.

Suppose first that K is of type 2, that is as — bab, aba — b3, and ab2 — ba2.

It follows that, for L = {a2, b}, \L2\ = 4 . If I is of type 1, 2 or 4, then a6 = ba2b

which in turn is equal to ab3 , whence as = b3 = aba so that b — a3 and hence ab — ba,

which is a contradiction. Thus L is of type 3, so o8 = 4s which equals aba, whence
a4 = b and ab = ba, again a contradiction.

Next suppose that K is of type 3, that is ab2 = ba2, aba = bab, a2b = b2a, and
a3 =b3. Again it follows that \L2\ = 4 for L - {a2, b}. If L is of type 1, 2 or 4 then
a6 = ba2b which equals ab3, whence as = b3 — a3 and so a2 = 1 which contradicts the
fact that |Z2 | = 4. Thus L is of type 3 so a2b2 = ba* which equals ab2a2 = abab2

whence 6 = 1 which is a contradiction.

Finally suppose that K is of type 4, that is a3 — bab, a2b = b2a, and aba =

b3. Again we find that |Z2| = 4 for L = {a2, 6} and arguing as above leads to a
contradiction.

Thus any K = {a, 6} such that \K2\ = 4 is of type 1, that is a3 = 6a6, a26 = 6a2 ,
a62 = 62a, aba = 6s . Since for such a set K = {a, 6} we have ab ̂  ba, certainly a26 ^
aba. If a2 ^ {ab)2 then L = {a, ab} is also of type 1 and so a3 = (o6)a(a6) = a362,
that is 62 = 1. On the other hand if a2 = (ab)2 then a2 = a(bab) = a4, that is a2 = 1.
Thus, for each K = {a, 6} such that \K2\ = 4, either o2 = 1 or 62 = 1.

We claim that G has exponent 4. Let K = {o, 6} have \K2\ — 4 and suppose

that 62 = 1. Then a6 = (6o6)2 = 6a26 = a2 so that o4 = 1, and as a2 ^ 62 = 1, a has

order 4.

Now suppose that there is an x 6 G with xA ^ 1. Then |{a, x}2 | < 4 and as x2

(of order at least 4) is not equal to a2 we must have ax = xa. Similarly bx = xb. But
then | {a, 6z}2| = 4 while a2 ^ 1 and (bx) — x2 ^ 1, which is a contradiction. Thus
G has exponent 4.
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Suppose that, for each pair a, b of non-commuting elements of G either a2 = 1 or
b2 = 1. Then A = (x \ x2 ^ 1) is an abelian subgroup of G. Let a £ G — A. Then
a2 = 1, and if x G A then ox £ G - A and so (ax)2 — 1, that is i" = x"1. Thus each
element of G — A inverts A. Further G/A is elementary abelian. If |G/A| ^ 4 then
there are elements a, b, ab in G — A lying in distinct cosets of .A and it is not possible
for each of a, 6 and ab to invert A. Thus \G : A\ = 2. Finally, as G has exponent 4,
A has exponent 4 and so G satisfies (b)(i) of the theorem.

Thus we may suppose that there is a pair a, b of non-commuting elements such
that a2 = b2 ^ 1. We claim that $(G) = (x2 | x G G) has order 2. Suppose that there
is an x e G such that 1 ^ x2 ^ a2. Then |{o, x } 2 | < 4 and so ax = xa. Similarly
bx = xb. Also (6x)2 = 62x2 = o2x2 ^ a2 and (bx)a = bax ^ abx and so \{a, bx}2\ — 4
while a2 7̂  1 and (bx)2 = o2x2 ^ 1. This is a contradiction and so $(G) = (a2) has
order 2 and (b)(ii) of the theorem is true. This completes the proof of Theorem 5. D

REMARK. Nekrasov [16] proved that a finite nonabelian group with the property that,
for each K = {a, b} with \K2\ = 4, the equalities o3 = bob, a2b — ba2, ab2 = b2a and
aba = b3 hold, satisfies part (b) of Theorem 5; the last part of our proof of Theorem 5
is basically due to him.
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