
J. Fluid Mech. (2021), vol. 924, A10, doi:10.1017/jfm.2021.564

Transition from shear-dominated to
Rayleigh–Taylor turbulence*

Stefano Brizzolara1,2,†, Jean-Paul Mollicone3,4, Maarten van Reeuwijk3,
Andrea Mazzino5 and Markus Holzner2,6

1Institute of Environmental Engineering, ETH Zurich, CH-8039 Zurich, Switzerland
2Swiss Federal Institute of Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
3Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK
4Division of Fluid Dynamics, Department of Mechanics and Maritime Sciences, Chalmers University of
Technology, SE-41296 Gothenburg, Sweden
5DICCA, University of Genova and INFN, Genova Section, Via Montallegro, 1, 16145 Genova, Italy
6Swiss Federal Institute of Aquatic Science and Technology Eawag, 8600 Dübendorf, Switzerland

(Received 26 January 2021; revised 19 April 2021; accepted 18 June 2021)

Turbulent mixing layers in nature are often characterised by the presence of a mean shear
and an unstable buoyancy gradient between two streams of different velocities. Depending
on the relative strength of shear versus buoyancy, either the former or the latter may
dominate the turbulence and mixing between the two streams. In this paper, we present a
phenomenological theory that leads to the identification of two distinct turbulent regimes:
an early regime, dominated by mean shear, and a later regime dominated by buoyancy.
The main theoretical result consists of the identification of a cross-over timescale that
distinguishes between the shear- and the buoyancy-dominated turbulence. This cross-over
time depends on three large-scale constants of the flow, namely, the buoyancy difference,
the velocity difference between the two streams and the gravitational acceleration. We
validate our theory against direct numerical simulations of a temporal turbulent mixing
layer compounded with an unstable stratification. We observe that the cross-over time
correctly predicts the transition from shear- to buoyancy-driven turbulence, in terms of
turbulent kinetic energy production, energy spectra scaling and mixing layer thickness.
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S. Brizzolara and others

1. Introduction

Combined shear-driven and Rayleigh–Taylor (RT) turbulence occurs in mixing layers
when the overlying stream is more dense than the underlying one. This configuration
results in a complex flow, in which the turbulent mixing process is driven by both shear
and buoyancy forces. Examples of such a flow can be found in the natural environment,
e.g. in the ocean or the atmosphere (Turner 1979), as well as in industrial processes,
e.g. combustion chambers (Nagata & Komori 2000) and inertial confined fusion targets
(Atzeni & Meyer-ter Vehn 2004). The two pertinent phenomena, RT and shear-driven
turbulence, have been widely studied independently. The RT turbulence phenomenology
was originally introduced by Chertkov (2003) and has been recently reviewed by Boffetta
& Mazzino (2017). By shear-driven turbulence, here we refer to shear turbulent mixing
layers (see Pope (2001), chap. 5, § 5.4.2 for a complete overview).

Only a few works have investigated the compound effect of shear and buoyancy in the
mixing of two fluids. In this context, most of the past research was devoted to analysis of
the instability phase, referred to as RT/Kelvin–Helmholtz instability (RTKHI), especially
in plasma physics (Satyanarayana et al. 1984; Finn 1993; Shumlak & Roderick 1998) but
also in classical fluid flows (Olson et al. 2011). The major result of this research is that,
while a linear stability analysis predicts that adding an arbitrary shear velocity to an RT
configuration will increase the perturbation growth rate, if early nonlinear effects are taken
into account, the shear can lead to a decrease of the growth rate or, in extremis, to a
suppression of the RTKHI (Shumlak & Roderick 1998; Olson et al. 2011).

Focusing on the fully developed turbulent phase, Snider & Andrews (1994) performed
an experimental study in a water channel, in which an unstable thermal stratification is
combined with a mean shear. The authors inferred that this problem is governed by two
different types of transition: one from laminar flow to self-similar turbulence, and the
other from shear-driven to buoyancy-driven mixing. Focusing on the latter, the authors
identified as a suitable parameter for distinguishing between these two distinct mixing
regimes the (negative) bulk Richardson number Ri = −hg�ρ/(ρ�U2) (where h is mixing
layer thickness, �ρ and ρ are the density difference and the reference density, respectively,
�U is the shear velocity and g is the gravitational acceleration). However, their estimate
for the transitional Richardson number spans a wide range, from −5 to −11. Moreover,
the transition to turbulence seemed to always occur in the RT regime, and it was not
possible to clearly identify the shear-dominated phase. More recent experiments performed
in a gas tunnel focused on the later time of the instability phase (Akula, Andrews &
Ranjan 2013; Akula et al. 2017). The authors identified two distinct mixing regimes
through analysis of the mixing layer growth rate, which is expected to be constant for
shear-dominated turbulence (Pope 2001, constant velocity) and linear for RT turbulence
(Boffetta & Mazzino 2017, constant acceleration). Again, the bulk Richardson number
was chosen to be the parameter for identifying the transition from the shear to the RT
regime. The transitional Ri was shown to be within the range (−2.5, −1.5) in Akula
et al. (2013) and (−2.5, −0.8) in Akula et al. (2017). However, the range of investigated
stratification levels is completely different from that in Snider & Andrews (1994), which
might suggest that the transitional Richardson number depends on the stratification level.
Moreover, the value of Ri depends sensitively on the definition of the mixing layer
thickness h.

The complexity of the transition from shear-dominated to RT turbulence motivated
investigators to devise low-order Reynolds-averaged turbulence models to adequately
describe it. Within this context, Morgan, Schilling & Hartland (2018) recently proposed
a two-length-scale turbulence model to describe compound shear and RT mixing.
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Transition from shear-dominated to RT turbulence

Within this framework, the bulk Richardson number is again employed to quantify the
relative strength of shear and buoyancy forces.

Despite the effort devoted to this research, only a few of the aforementioned works
clearly capture a shear-driven, fully developed turbulent regime, because the investigated
shear velocity Reynolds numbers are usually smaller or comparable to those needed for this
regime to manifest. In fact, the focus of Akula et al. (2013, 2017) and Snider & Andrews
(1994) was always stated to be on the (at most) later stage of the instability phase; this is
highlighted by the reference time chosen to scale the phenomena (

√
2ρH/(�ρg)), which

is suitable for quantifying the advancement of the RT instability only. Another critical
point regarding the previously mentioned works concerns the so-called early nonlinear
phase of the RT instability (Waddell, Niederhaus & Jacobs 2001; Celani et al. 2009).
During the weakly nonlinear phase of the RT instability, the perturbation growth rate
is expected to be constant. Because of this, distinguishing between the early nonlinear
RT and the shear-driven turbulence is extremely challenging, especially in laboratory
experiments, where a large separation between the time/space at which the transition to
turbulence occurs and the time/space at which the transition from shear-dominated to RT
turbulence occurs is hard to achieve. Moreover, small-scale quantities (such as the spatial
velocity gradient), which could provide suitable indicators of the dominant flow regime,
are difficult to access experimentally.

In this work, we investigate the fully developed turbulence arising in unstable
stratified mixing layers. Our aim is to (i) clarify in which conditions a transition
from shear-dominated to RT turbulence can occur and (ii) provide a phenomenological
theory valid for a shear to RT transition where the shear-dominated turbulence is
already developed from early times. Finally, we validate our theory against direct
numerical simulations of a turbulent temporal mixing layer compounded with an unstable
temperature stratification.

2. Phenomenological theory

In the following, we present a phenomenological theory that describes the transition
from shear-driven to RT turbulence in a temporal mixing layer, for the case where the
flow is already turbulent during the shear-dominated regime. Our theory leads to the
identification of a cross-over time, which distinguishes between the shear-dominated and
the RT regimes. We assume that the fluid motion is governed by the Navier–Stokes
equations with the Boussinesq approximation, i.e. density variations are neglected for
inertial effects, while they are still significant in the gravitational term:

∂u
∂t

+ u · ∇u = − 1
ρ0

∇p + ν∇2u + βgθe3, (2.1)

∇ · u = 0, (2.2)

where u = (u, v, w) is the fluid velocity in the streamwise, spanwise and wall-normal
directions, respectively, θ is the relative temperature, β is the thermal expansion
coefficient, g is the gravitational acceleration and ∇2 is the Laplace operator. The relative
temperature is a scalar field that must satisfy the following advection–diffusion equation:

∂θ

∂t
+ u · ∇θ = κ∇2θ, (2.3)

where κ is the thermal diffusivity.
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We consider the case of a temporal turbulent mixing layer. Note that a temporal mixing
layer is a limit of the spatial mixing layer for which the ratio between the shear velocity �U
(the velocity difference between the two streams) and the mean convective velocity UC (the
mean velocity of the two streams) is much less than unity. In such a limit, the flow becomes
statistically one-dimensional for an observer travelling in the streamwise direction at the
mean convective velocity (Pope 2001, chap. 5, § 5.4.2). Such a flow was experimentally
observed to hold for a velocity ratio of at least 0.60 between the two streams (Bell &
Mehta 1990), and was numerically reproduced using periodic boundary conditions in the
streamwise direction (Rogers & Moser 1994). We assume that the Reynolds number is
large enough such that the flow is dominated by large-scale quantities only and the present
turbulent state is independent of the initial perturbation and of viscosity. Moreover, we
assume that at early times the turbulence is shear-dominated, so that the balance of the
Navier–Stokes equation at large scale dictates that the first term on the left-hand side of
(2.1) is balanced by the nonlinear term:

uL

t
∼ u2

L
h(t)

, (2.4)

where uL is the large-scale velocity magnitude and h(t) is the integral scale that we identify
with a measure of the mixing layer thickness. If we assume uL ∼ �U > 0 (as is the case
for shear-driven turbulence), the well-known linear law for the growth of the mixing layer
thickness is thus obtained:

h(t) = S�Ut. (2.5)

The proportionality constant S has been measured both experimentally and numerically,
and ranges from 0.06 to 0.11 (Pope 2001). Let us now assume that the flow is
gravitationally unstable, i.e. the density of the upper layer is greater than the density of
the underlying one. The large-scale balance becomes

∂u
∂t︸︷︷︸

uL/t

+ u · ∇u︸ ︷︷ ︸
u2

L/h(t)

= · · · + βgθe3︸ ︷︷ ︸
βg�θ

, (2.6)

where �θ is the constant temperature difference between the two streams and the dots on
the right-hand side represent the subleading terms. If shear turbulence develops at an early
time, it must initially dominate with the scaling of (2.5). The order of magnitude of the
inertial term decreases as t−1, and it therefore follows from (2.6) that, sooner or later, the
constant on the right-hand side must dominate. This happens when

t � tc � �U
βg�θ

. (2.7)

For t � tc the buoyancy term becomes dominant; thus, given that always h(t) ∼ uL t, the
terms on the left-hand side balance the buoyancy term such that

uL

t
∼ βg�θ, (2.8)

from which one can estimate the large-scale velocity as uL ∼ βg�θ t. One can thus obtain
the typical RT turbulence law for the mixing layer thickness as h(t) ∼ uLt, namely,

h(t) = αβg�θ t2, (2.9)

where α has been measured both experimentally and numerically, and ranges from 0.03 to
0.07 (Boffetta & Mazzino 2017).
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Transition from shear-dominated to RT turbulence

The same analysis can be conducted from an alternative point of view. Assuming that
shear initially dominates turbulent mixing, the governing parameters are �U and t, and in
this phase self-similarity leads to h(t) ∼ �Ut. The ratio between the buoyancy and inertial
forces is described by the bulk Richardson number Ri = βg�θh(t)/�U2. By imposing
Ri = 1, one obtains tc = t|Ri=1 = �U/(βg�θ). For later times, the only relevant factors
are βg�θ and t, so that the self-similarity of the flow implies h(t) ∼ βg�θ t2 and uL =√

βg�θh(t), which represents the free-fall velocity.
When studying this flow configuration, past research focused on traditional

non-dimensional quantities, namely, the large-scale Reynolds number Re = uLh(t)/ν,
the Rayleigh number Ra = βg�θh(t)3/(νk) and the Richardson number Ri =
βg�θh(t)/�U2. All these parameters are time-dependent and are thus not suitable
for describing the overall behaviour of the system given a set of dimensional flow
parameters (initial conditions, boundary conditions and fluid properties). By considering
the functional relation between dimensional quantities, namely, h = f (�U, βg�θ, k, ν, t),
in light of our phenomenological theory, we apply the Buckingham-Π theorem using �U
and tc as characteristic scales, and reduce the problem to the following relation between
non-dimensional quantities:

h
hc

= f̂
(

Rec,
ν

κ
,

t
tc

)
, (2.10)

where tc is the cross-over time defined in the previous section, hc = �Utc is the order of
magnitude of the corresponding turbulent mixing layer cross-over thickness (assuming
shear scaling from early times), Rec = �Uhc/ν is the large-scale Reynolds number
at transition and Pr = ν/κ is the Prandtl number. The non-dimensional mixing layer
thickness, h/hc, coincides with the bulk Richardson number:

h(t)
hc

= h(t)
tc�U

= h(t)βg�θ

�U2 = h(t)�ρg

ρ�U2 = Ri, (2.11)

because β�θ = �ρ/ρ. Note that in the Boussinesq approximation �ρ/ρ = 2A, where A
is the Atwood number.

The classical mixing layer thickness Reynolds number can be expressed as Re = Rec Ri,
while the Rayleigh number is Ra = Rec Pr Ri. In contrast to the standard approach, in our
formulation Ri is the dependent variable. We can therefore formulate the problem in terms
of the following non-dimensional variables:

t∗ = t
tc

, x∗ = x
hc

, u∗ = u
�U

, p∗ = p

ρ0�U2 , θ∗ = θ

�θ
, (2.12a–e)

which transform the momentum equation (2.1), continuity equation (2.2) and scalar
transport equation (2.3) to

∂u∗

∂t∗
+ u∗ · ∇u∗ = −∇p∗ + 1

Rec
∇2u∗ + θ∗e3, (2.13)

∇ · u∗ = 0, (2.14)

∂θ∗

∂t∗
+ u∗ · ∇θ∗ = 1

Rec Pr
∇2θ∗. (2.15)

A critical aspect that we clarify with our theory concerns the existence of the
shear-dominated turbulent phase. By assuming that the shear initially dominates, we assert
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that our theory holds under the condition that the turbulence is already fully developed
in the shear-driven regime. The reason why this is a necessary condition lies in the fact
that our theory requires the global flow behaviour to be governed from early times by
large-scale flow parameters only, i.e. to be independent of the viscous scales. Considering
(2.10), this condition requires that the cross-over Reynolds number Rec be much larger
than the shear-driven transition-to-turbulence Reynolds number, Res. The latter is the
Reynolds number at which the mixing layer reaches a fully developed turbulent state in
the absence of stratification. The value of Res is documented to depend on various factors,
namely: (i) the velocity ratio, (ii) the density ratio, (iii) the initial shear-layer profile and
in particular (iv) the shape and nature of the instability. It can vary over a wide range
(3000–17 000) (Bernal & Roshko 1986; Koochesfahani & Dimotakis 1986). In the case
of uniform density, the temporal mixing layer limit is the one for which the shear-driven
transition-to-turbulence Reynolds number is generally smaller (Breidenthal 1981), so that,
in our case, we can in principle rely on the lower limit.

3. Direct numerical simulations

The temporal mixing layer is simulated by imposing periodic boundary conditions in
the streamwise and spanwise directions, while a free-slip condition is imposed on the
lower and upper walls. The streamwise velocity profile and the scalar concentration
field are initialised with step functions u = �U sign(z)/2 (Rogers & Moser 1994) and
θ = �θ/2(sign(z) + 1)), respectively. Equations (2.1), (2.2) and (2.3) are solved with
a fourth-order-accurate finite-volume spatial discretisation scheme and a third-order
Adams–Bashforth scheme for time integration (Verstappen & Veldman 2003; Craske &
van Reeuwijk 2015). We fixed Pr = ν/κ = 1 for all the simulations. We also fixed �U = 1
and �θ = 1, and changed the control parameter Rec to act on the kinematic viscosity ν

and on the coefficient β. As shown in § 2, Rec is indeed the only control parameter for this
problem. We checked a posteriori that a sufficiently wide range of t/tc were explored, in
order to be certain to observe the transition between shear-dominated and RT turbulence.
In addition to the non-dimensional parameters discussed in § 2, table 1 also lists the ratio
tc/t0, where t0 is the time at which the mixing layer would reach a developed turbulent
state in the absence of stratification, i.e. β = 0. In particular, t0 is the time at which
the following two conditions are met: (i) Reλ ≥ 50 and (ii) a ∼ k−5/3 spectrum with at
least one decade of wavenumber separation being visible. The first three most stratified
simulations (SL1, SL2 and SL3) were initialised with laminar initial conditions. In these
cases, the cross-over Reynolds number is small, so that the transition to turbulence is
triggered directly by RT. The time t0 required for shear-dominated transition to turbulence
to occur was evaluated by performing a simulation with no buoyancy (SNB) and the same
viscosity as in SL1, SL2 and SL3. For the three less stratified cases ST4, ST5 and ST6,
Rec is significantly higher, meaning that the transition to turbulence is expected to occur
earlier than the transition from shear to RT turbulence. In these cases we decided to switch
on the buoyancy term at t0, that is, when the turbulence has already developed because of
shear. This is equivalent to initialising the simulations with an already shear-triggered
turbulent flow. This precaution, which can be realised in numerical simulations only,
ensures shear-dominated turbulence at t0, avoiding, at the same time, the ambiguity
between shear turbulent mixing and early nonlinear RT instability, which characterised
the previous experiments conducted with comparable shear and buoyancy forcing. The
latter reasoning allows us to overcome the problem of having moderately high shear
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Label LxLyLz NxNyNz Rec = �U3/(βg�θν) tc/t0 tend/tc

SL1 963 21603 1.06 × 103 0.04 19.63
SL2 963 21603 4.00 × 103 0.15 7.81
SL3 963 21603 7.99 × 103 0.30 5.21
ST4 962 × 192 10802 × 2160 6.25 × 104 3.33 2.30
ST5 962 × 192 10802 × 2160 6.95 × 104 3.58 5.99
ST6 962 × 192 10802 × 2160 1.04 × 105 5.00 1.60
SNB — 963 21603 ∞ ∞ 0

Table 1. Simulation parameters: Li and Ni denote the size and the number of grid points along the ith direction,
respectively; Rec is the Reynolds number corresponding to the cross-over time; t0 is the time at which the flow
with shear only would reach a fully developed turbulent state (i.e. Reλ ≥ 50 and a clear scale separation in the
turbulent spectra); tc is the cross-over time as predicted by (2.7); tend is the total time of each simulation.

Reynolds numbers, which imposes both experimental-facility limitations and constraints
on the computational power requirements of direct numerical simulations. Table 1 also
lists the ratio between the total simulation time tend and the cross-over time tc, showing
that all the simulations reach the buoyancy-dominated phase.

4. Results and discussion

To check the tendency of the flow to attain asymptotically the RT-like structure, we rely on
the following argument: consider the Nusselt number Nu = 〈w′θ ′〉h(t)/(k�θ), i.e. the ratio
between the total turbulent scalar transport and the diffusive transport (the angled brackets
indicate the average within the mixing layer), and the Reynolds number Re = uLh(t)/ν. By
assuming RT-like scaling uL = βgθ t and h ∼ βg�θ t2, we obtain the following relations:

Nu ∼ Ra1/2Pr1/2, Re ∼ Ra1/2Pr−1/2, (4.1a,b)

where Ra = βg�θh(t)3/(νκ) is the Rayleigh number (a dimensionless measure of the
density difference). This state is sometimes referred to as the ultimate state of convection
in the case of Rayleigh–Bénard (RB) convection (Kraichnan 1962); it is expected to
appear at very large Rayleigh numbers, when boundary layers break down and the scalar
and momentum mixing is driven by large-scale contributions (Lohse & Toschi 2003).
While this regime hardly emerges in RB turbulence because of the important role played
by the boundaries, in RT configurations it is clearly manifest (Boffetta et al. 2012).
Thus, these scaling laws are a good method for checking the tendency of the flow
to reach RT turbulence. From here on, we consider the temperature integral thickness
hθ = ∫ +∞

−∞ 4θ(1 − θ) dz (Vladimirova & Chertkov 2009) as a proxy for the mixing layer
thickness h(t). We chose this quantity instead of the momentum thickness (which is usually
employed in mixing layer theory) because the latter is suitable for shear mixing layers
only, while the temperature thickness is still suitable for quantifying the mixing width in
both limits. We recall that in our simulations, the Prandtl number Pr = κ/ν is fixed at 1.
Figure 1 shows clearly that all the simulated cases converge asymptotically to the scaling
(Nu, Re) ∼ Ra1/2, regardless of the initial stratification.

Different characteristic quantities of the flow can be analysed to discern between shear-
and buoyancy-driven turbulence. The most direct way to quantitatively check the validity
of our theory is to analyse the turbulent kinetic energy (tke) balance. We chose the integral
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(b)(a)

Figure 1. Ultimate state scaling as a check for the turbulence to reach the buoyancy-dominated regime:
(a) Nu vs Ra; (b) Re vs Ra; Pr is fixed at 1.

tke balance (integrated over the wall-normal direction), because this does not depend on
the definition of the mixing layer thickness h(t). The tke integral balance is written

∂E
∂t

+ ε = PB + PG, (4.2)

where E = ∫ +∞
−∞ (u′ · u′)2/2 dz is the tke per unit mass, ε = ν

∫ +∞
−∞ (∇u′)2 dz is the

viscous dissipation, PB = βg
∫ +∞
−∞ w′θ ′ dz is the buoyancy production and PG =

− ∫ +∞
−∞ w′u′∂zū dz is the gradient production; the overline represents the horizontal

average. Initially, when shear dominates (t < tc), tke is mainly produced by PG, i.e.
the ratio between the buoyancy and the shear production is smaller than unity. In this
phase, the gradient production balances the dissipation rate (∂E/∂t + ε ∼ PG). For later
times, buoyancy overcomes shear, i.e. the dissipation rate is balanced by buoyancy as
in pure RT turbulence (∂E/∂t + ε ∼ PB). In more detail, when t < tc, we expect that
uL ∼ �U and h(t) ∼ �Ut for both PB and PG. Indeed, the buoyancy production term
is expected to be passively transported by the shear velocity without any relevant influence
of the buoyancy force. For later times, we expect the variation of the streamwise mean
velocity to be shear-dominated, i.e. ∂ ū/∂z ∼ �U/h(t). The latter assertion is reasonable,
because in temporal mixing layers (v̄, w̄) = (0, 0), while in pure RT turbulence ū = 0. The
streamwise mean velocity derivative is thus expected to be mostly affected by the shear
velocity scale. Concerning the wall-normal turbulent flux, we assume that u′ ∼ �U and
w′ ∼ βg�θ , such that u′w′ scales as �U(βg�θ)t, i.e. the Reynolds stress tensor remains
anisotropic for longer times. We found this to agree well with our data (inset of figure 2a).
Note that this is not the case for pure RT turbulence, in which the mean shear is absent. The
scale of variation of the mean streamwise velocity can be identified using any measure of
the mixing layer thickness. However, it is not needed to derive the scaling of PG, because
it drops out after integration along the wall-normal direction. Consequently, we obtain the
following scalings for the shear and buoyancy tke production:

PG ∼
{

�U3 if t  tc,
(βg�θ)�U2t if t � tc,

PB ∼
{

(βg�θ)�U2t if t  tc,
(βg�θ)3 t3 if t � tc,

(4.3a,b)

which implies that the flux Richardson number Rif = PB/PG ∼ t for t  tc and
PB/PG ∼ t2 for t � tc. Figure 2(a) shows that our phenomenological prediction
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Figure 2. Temporal scalings of the turbulent kinetic energy: (a) ratio between the buoyancy and gradient tke
production (i.e. the flux Richardson number Rif ) integrated over the wall-normal direction, with the inset
showing the scaling of u′w′ at the centreline; energy spectra normalised with the (b) shear and (c) RT scalings
for all the simulations (see (4.4)); the line thickness is proportional to the non-dimensional time.

reasonably matches the data in the limits of t  tc and t � tc. As predicted, the
shear-dominated phase clearly appears only in ST4, ST5 and ST6, for which Rec is high,
and thus the transition from laminar to self-similar turbulence is shear-dominated. In the
strongly stratified cases (SL1, SL2 and SL3), the shear-dominated turbulence is suppressed,
because the buoyancy term already prevails during the transition to turbulence (low
Rec). A noteworthy consideration is that, considering even the simulations in which the
shear-driven turbulence is inhibited, the flux-Richardson number scaling still holds when
considering only the turbulent phase.

Another argument relies on the temporal scaling of the energy spectra. By considering
K41 inertial scaling (Kolmogorov 1941, 1962; Obukhov 1941a, b, 1962), one can derive
two different scaling behaviours for the second-order structure function or, equivalently,
the energy spectra. In terms of energy spectra, RT and shear turbulence are expected
to scale equally with the wavenumber k, but differently with time (see Boffetta &
Mazzino (2017) for a complete discussion on the energy spectra temporal scaling in
three-dimensional RT turbulence). Simple power counting leads to the following spectral
scalings:

E(k) ∼
{

�U4/3t−2/3k−5/3 if t  tc,
(βg�θ)4/3 t2/3k−5/3 if t � tc,

(4.4)

Figure 2(b,c) shows that shear/RT scaling holds for early/late times, respectively. Indeed,
all the curves tend to stabilise on RT-like spectra for later non-dimensional times (thick
line), and the shear scaling holds for early non-dimensional times (thin line), while
becoming unreliable for later non-dimensional times (thicker line).

Finally, the two regimes can also be distinguished by analysing the bulk Richardson
number h(t)/hc and the mixing layer growth rate δh(t)/δt. In the shear-dominated phase a
linear spreading of the mixing layer is expected, while when buoyancy prevails the mixing
region grows quadratically. In other words, the mixing layer growth rate is expected to be
constant in the shear-dominated phase and linear in the RT phase. Despite the fact that this
method is the one usually adopted to distinguish between the two regimes, it often does
not provide clear evidence of the dominance of shear over buoyancy, and vice versa. The
reason is that the tendency of the mixing layer to grow linearly or quadratically is not a
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Figure 3. Bulk Richardson number (a) and bulk Richardson number growth rate (b); the inset shows ST4, ST5
and ST6 in linear space; note that the bulk Richardson number growth rate is a non-dimensional measure of
the mixing layer thickness growth rate, because hθ is proportional to Ri.

direct measure of the predominance of one forcing over the other, but only a consequence,
that is, not directly causally correlated to the phenomena (in support of this argument,
one may consider the early nonlinear phase of RT). Figure 3(a) shows that, as expected,
Ri grows linearly for t  tc and quadratically for t � tc. Figure 3(b) shows δh(t)/δt for
ST4, ST5 and ST6, where an initial constant-like behaviour, which becomes linear near
t = tc is appreciable, while SL1, SL2 and SL3 show only a linear trend, meaning that the
shear-dominated turbulent phase is suppressed. The inset of figure 3(b), shows the growth
rate in linear space for ST4, ST5 and ST6, highlighting the transitional phase between
shear-dominated and RT turbulence.

Having shown that the cross-over time tc correctly scales the bulk and the flux
Richardson numbers, one may be interested in the exact value of the non-dimensional
time at which the transition effectively occurs, t/tc|T . To estimate t/tc|T we adopt
the following procedure for Ri, Rif and tcδRi/δt. Firstly, we fit the phenomenological
asymptotic predictions for t  tc and t � tc into the early and late-time data of Ri, Rif
and tcδRi/δt. This is done systematically, by increasing the distance from t/tc = 1 until
the constant fitting coefficients no longer change. Then, the transitional time is estimated
as the intersection between the two fitted asymptotic laws. For instance, by considering the
bulk Richardson number, we expect Ri = bshear (t/tc)1 at early times and Ri = bRT (t/tc)2

for later times; bshear and bRT are evaluated using the aforementioned fitting procedure, and
the transitional time is obtained as t/tc|T = bshear/bRT . Table 2 lists the values of t/tc|T for
each of the considered observables, together with their corresponding values at each of the
transitional times. We report also the value of the gradient Richardson number evaluated at
the centreline (Rig = (−g/ρ∂ρ̄/∂z)/(∂ ū/∂z)2 at z = 0) and the corresponding transitional
time.

We frame our results in the context of past research. By analysing the results of Akula
et al. (2013, 2017), we evaluate the control parameter Rec to identify experiments that are
likely to include a shear-dominated turbulent regime. A notable case is experiment A2S2,
in which Rec � 17 000. Akula et al. (2017) evaluated the transitional location by analysing
the mixing layer growth rate and then estimated Rig at the centreline at that location.
We can thus compare their value of Rig at the transition with line three, column four of
table 2: Akula et al. (2017) obtained Rig = 0.17 in experiment A2S2, which is almost equal
to our estimate (Rig = 0.18). Again, considering the mixing layer growth rate, experiment
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t/tc|T Ri(t/tc|T) Rif (t/tc|T) Rig(t/tc|T, z = 0)

Ri 4.66 0.40 0.34 0.79
Rig 5.82 0.42 0.42 0.99
tc δRi/δt 2.47 0.21 0.42 0.18
Rif 3.81 0.64 0.28 0.65

Table 2. Transitional time for each observable and the corresponding Richardson numbers. Column one lists
the transition times t/tc|T for the bulk, gradient (at the centreline), increment and flux Richardson numbers.
Columns two to four list the values of Ri, Rif (z = 0) and Rig at the corresponding transitional time in column
one.

A2S2 transitions from shear-dominated to RT turbulence at t/tc|T = 2.09, which is close
to the value 2.47 listed in table 2 (column one, line three). This further confirms that
the cross-over time tc correctly predicts the transition from shear- to buoyancy-dominated
turbulence for sufficiently high Rec (turbulence already developed in the shear-dominated
phase). Moreover, tc is shown to correctly scale the time even when the shear-dominated
phase is suppressed, provided that only the fully developed turbulent phase is considered.

5. Concluding remarks

In this work, we have systematically analysed the problem of transition from
shear-dominated to Boussinesq RT turbulence through theory and the use of direct
numerical simulations. Our phenomenological approach allows us to predict a cross-over
time tc � �U/(βg�θ) at which an initially shear-dominated turbulent flow transitions
to RT turbulence. The direct numerical simulations confirmed the validity of our theory,
in particular in terms of the flux Richardson number, a direct measure of which factor
dominates the turbulence (buoyancy or shear). Moreover, using the Buckingham-Π
theorem, we clarified in which conditions the shear-dominated turbulence is suppressed
(low values of Rec). This latter aspect is particularly noteworthy, because it highlights the
fact that only when the turbulence is fully developed at early times is it reasonable to expect
the flow to show universal behaviour (i.e. the transition at a unique non-dimensional time).

In § 4, we derived a scaling law for the flux Richardson number that is in good agreement
with the data. This follows from the non-trivial scaling u′w′ ∼ �U(βgθ)t, i.e. that the
Reynolds stress tensor remains anisotropic also for longer times. This scaling is expected
to have implications for turbulence modelling, because in pure RT turbulence u′w′ is
always equal to zero. For instance, it follows from our framework that the eddy viscosity
is not constant in time and should feature an explicit dependence on the growing impact of
stratification also for later times when the unstable stratification dominates the turbulence.

At the end of § 4 we framed our work in the context of past research. By comparing our
results with the experiment of Akula et al. (2017), we observe that at large Rec, there may
be a well-defined value of t/tc|T (approximately 2.5) as well as of the transitional gradient
Richardson number (approximately 0.18). In other words, while for small values of Rec
we expect a more complex dependency of t/tc|T and Rig(t/tc|T , z = 0) on the control
parameter Rec (and eventually on the nature of the perturbation), at finite but large Rec a
unique and universal value of t/tc|T (or Rig(t/tc|T , z = 0)) may exist. This fact is crucial,
given that the Reynolds numbers are usually large in many natural environments as well
as in industrial applications. The detailed study of this aspect is left to future work.
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