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Abstract A thin Lie algebra is a Lie algebra L, graded over the positive integers, with its first homo-
geneous component L; of dimension two and generating L, and such that each non-zero ideal of L lies
between consecutive terms of its lower central series. All homogeneous components of a thin Lie alge-
bra have dimension one or two, and the two-dimensional components are called diamonds. Suppose the
second diamond of L (that is, the next diamond past Li) occurs in degree k. We prove that if k > 5,
then [Lyy] = 0 for some non-zero element y of L. In characteristic different from two this means y is a
sandwich element of L. We discuss the relevance of this fact in connection with an important theorem
of Premet on sandwich elements in modular Lie algebras.
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1. Introduction

A thin Lie algebra is a graded Lie algebra L = ;- L; with dim(L1) = 2 and satisfying
the following covering property: for each i, each non-zero z € L; satisfies [zL1] = L;11.
This implies at once that homogeneous components of a thin Lie algebra are at most
two-dimensional. Those components of dimension two are called diamonds, hence L is a
diamond, and if there are no other diamonds then L is a graded Lie algebra of maximal
class, see [12, 14]. However, we adopt the convention of explicitly excluding graded Lie
algebras of maximal class from the definition of thin Lie algebras. We also require thin
Lie algebras to be infinite-dimensional in this paper.

Thus, a thin Lie algebra must have at least one further diamond past Li; we let Ly,
be the earliest, and call it the second diamond. It turns out that k can only be one of
3,5, q, or 2¢ — 1, where ¢ is a power of the characteristic p when this is positive. This
was proved in [1], but a revised proof is given in [18]. The case of characteristic two,
where only 3 and 2¢ — 1 can occur, is harder and was settled only in [7]. In particular,
only 3 and 5 can occur in characteristic zero. Among the various possibilities for k, it is
tempting to call the cases where k is 3 or 5 the classical cases, as opposed to the values
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q and 2q — 1, which are distinctly modular. The interpretation we provide in § 3 of our
main result, Theorem 1, will lend further weight to this informal distinction. Note that
in the theory of modular Lie algebras one calls classical those simple Lie algebras which
are analogues of the simple Lie algebras of characteristic zero, including the exceptional
ones.

Thin Lie algebras with &k equal to 3 or 5, subject to a further restriction dim(Ls) =1
in the former case, and excluding some small positive characteristics, were shown in [13]
to belong to (up to) three isomorphism types, associated with p-adic Lie groups of the
classical types A; and As (see [17] for matrix realizations of those groups). In contrast,
the values ¢ and 2¢ — 1 for k£ occur for two broad classes of thin Lie algebras, of which
various families were built from certain non-classical finite-dimensional simple modular
Lie algebras, but also to other thin Lie algebras obtained from graded Lie algebras of
maximal class through various constructions. General discussions of those two classes of
thin Lie algebras may be found in [4] and [11], respectively.

The original motivation for the study of thin Lie algebras came from group theory.
A pro-p group G is called thin if |G/y2(G)| = p?, and every open normal subgroup H
lies between two consecutive terms of the lower central series of GG, in the sense that
~i(G) > H > v;+1(G) for some i. It is not hard to see that a pro-p group G is thin if
and only if the graded Lie ring L associated with its lower central series is a Lie algebra
over the field IF,, of p elements and satisfies the analogous condition on its graded ideals.
In turn, the latter is easily seen to be equivalent to L being a thin Lie algebra over F,,.
According to [13], the second diamond of the thin Lie algebra associated with a thin pro-p
group may only occur in degree 3, 5 or p. A well-known example of thin pro-p group is
the Nottingham group over the field I, with p odd. Its associated thin Lie algebra has
the second diamond in degree p and, more generally, a diamond in each degree congruent
to 1 modulo p — 1, see [8]. Those results prompted investigations of thin Lie algebras as
objects of independent study.

Our main result establishes a general fact for thin Lie algebras that was previously
shown to hold for various special subclasses in ad hoc manners.

Theorem 1. Let L be a thin Lie algebra with second diamond Ly, where k > 5. Then
there is a non-zero element y of Ly such that [Lyy] = 0.

Here we use the left-normed convention for iterated Lie products, hence [abc] stands
for [[ab]c], and so [Lyy] = 0 is another way of saying (ady)? = 0, where ad denotes the
adjoint representation of L.

We will prove Theorem 1 in § 2, in an incremental way: we will gradually refine
our hypotheses on L to obtain partial results, working our way up to the assumption
k > 5 of Theorem 1, and for each intermediate result there will be remarks showing
by examples the necessity of the particular hypotheses assumed or motivating the next
step.

According to a definition of Kostrikin, for p # 2, the conclusion of Theorem 1 says
that y is a sandwich element (or simply a sandwich). Kostrikin introduced sandwich
elements in the context of the Burnside problem, see [16]. Four decades later, they played
an important role in the classification theory of finite-dimensional simple modular Lie
algebras in [20], especially for small characteristics (five and seven in this context). One
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remarkable property of sandwich elements, noted by Kostrikin and proved by Premet in
[19], is that their presence in a finite-dimensional modular Lie algebra characterizes those
simple Lie algebras which are not classical.

Although our thin Lie algebras are infinite-dimensional, a connection with finite-
dimensional Lie algebras occurs via a loop algebra construction originating from [22],
which has then been used in several papers to build thin Lie algebras from finite-
dimensional Lie algebras, simple or close to simple, with respect to certain cyclic gradings.
In § 3, we discuss the relevance of the presence of a sandwich element in this context,
and the connection with Premet’s result.

For the sake of this Introduction, we outline the example of the thin Lie algebra L
associated with the Nottingham group, which has second diamond in degree p. A real-
ization of L was given in [8] as a loop algebra of the p-dimensional Witt simple algebra
W = W(1;1) over F,, which is simply Der(F,[X]/(X?)). Because W has a grading over
the integers, and a Z-graded basis E; for —1 <i <p—2 (with E; = X**1d/dX, say),
degree reasons show E,_s is a sandwich element of W if p > 3 (whence W is not classical
if p > 3). In fact, in this case, the sandwich element y of L referred to in Theorem 1 is
closely related to the element E,_o of .

2. A sandwich element in thin Lie algebras

A sandwich element of a Lie algebra L is a non-zero element ¢ € L such that (adc)? =0
and (adc)(ad z)(adc) =0 for all z € L. The latter requirement (from which the name
originates) is superfluous in characteristic different from two, as it follows from the former
due to [ulzcd]] = [uzee] — 2[uczce] + [ucez] for u, z € L.

In the context of thin Lie algebras, it turns out that a non-zero element y of Cr,, (L2)
satisfies [Lyy] = 0 in most cases, as our Theorem 1 states, and so y is a sandwich ele-
ment if the characteristic is not two. This fact was crucial in the theory of graded Lie
algebras of maximal class of [14] and [12], making a theory of constituents possible,
although the sandwich point of view was not explicitly mentioned there. In particular,
[14, Lemma 3.3] can be restated as follows: if L is a graded Lie algebra of maximal class,
with the centralizer Cp, (Ls) spanned by an element y, with [L;_1y] =0 and [L;y] # 0
for some 4, then [L;+1y] = 0, whence [L;yy] = 0. A remarkable consequence of this fact is
[Lyy] = 0, which means (ady)? = 0, and so y is a sandwich element if the characteristic is
not two.

Our main goal in this section is showing that such a non-zero element y of Cp, (L)
is frequently a sandwich element also in a thin Lie algebra L, under certain assump-
tions which we introduce and justify along the way. If L has second diamond L3, then
Cr,(L2) =0, hence we must take dim(L3) =1 as minimal assumption for our discus-
sion, and then dim(CL1 (Lg)) = 1. Taking then for y a non-zero element of Cp,, (L2) and
extending to a basis x, y of L1, as we do without further mention in this section, we have
[zyy] = 0.

When L has characteristic two, we limit ourselves to the following simple observation,
which (abundantly) covers the case of characteristic two in Theorem 1.

Proposition 2. Let L be a thin Lie algebra of characteristic two, with dim(L3) = 1,
and let y span Cp,(Ls). Then [Lyy] = 0.
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Proof. Because (ad y)? is a derivation of L, its kernel is a subalgebra. However, because
[zyy] = 0, both generators x and y of L belong to the kernel, and hence that is the whole
of L. O

We will show that Proposition 2 extends to arbitrary characteristic if we include a
further hypothesis dim(L5) = 1. Together with dim(L3) = 1, this amounts to requiring
that the second diamond of L occurs later than Ls, as we assumed in Theorem 1. A jus-
tification for that hypothesis will emerge as we gradually work towards a proof. We start
with suitably extending the conclusion [L;yy] = 0 of [14, Lemma 3.3], which was about
graded Lie algebras of maximal class, to certain homogeneous components of any thin
Lie algebra L with dim(Ls) = 1.

Lemma 3. Let L be a thin Lie algebra with dim(Lg) =1, and let y span Cr,(Ls).
Let L; be a homogeneous component with [L;y] # 0, and suppose L;_1 has a non-zero
element w with [uy] = 0. Then [L;yy] = 0. Moreover, L; and L;.o have dimension one.

Proof. Because of the covering property, L; is spanned by [uz], and hence has
dimension one. From

0 = [ufzyy]] = [uzyy] — 2uyzy] + [uyyz] = [uzyy] (2.1)

it follows that [L;yy] = 0. Because [uzy] # 0 by hypothesis, the covering property implies
that L;;o is spanned by [uzyzx], and hence has dimension one. a

The following immediate consequence of Lemma 3 resembles the formulation of
[14, Lemma 3.3] more closely.

Corollary 4. Let L be a thin Lie algebra with dim(L3) = 1, and let y span Cr,,(Ls2).
If L;_1 has a non-zero element centralized by y, and L; has none, then L;; has such an
element as well.

Equivalently, in a thin Lie algebra with dim(L3) = 1, at least one of any two consecutive
homogeneous components has a non-zero element centralized by y. Corollary 4 is often
useful as a simple but weaker replacement for Lemma 3. However, we need the full strength
of Lemma 3 in order to deduce the following consequence.

Corollary 5. Let L be a thin Lie algebra with dim(L3) =1, and let y span
Cr,(L2). Suppose dim(L;) = 2 for some j > 1. Then dim(L;_1) =1 and [L;_1yy] = 0.
In particular, L; contains a non-zero element centralized by y.

Proof. Because of the covering property L;_; cannot contain any non-zero element
centralized by y. Hence L;_o does contain a non-zero element u with [uy] = 0. Conse-
quently, v = [uz] spans L;_1, and [vyy| = 0 according to Lemma 3. Because dim(L;) = 2,
the element [vy] of L; is non-zero and is centralized by y as desired. (]

In particular, Corollary 5 implies that two consecutive components in a thin Lie algebra
L with dim(Ls) =1 cannot both be diamonds. Thus, the distance between any two
consecutive diamonds, by which we mean the difference of their degrees, is at least two.
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An easily proved consequence of this fact is that any thin Lie algebra L with
dim(L3) = 1 remains thin under base field extensions. By contrast, this property fails
for a thin Lie algebra L with two diamonds occurring as consecutive homogeneous com-
ponents. This latter fact was never explicitly recorded but was in essence understood since
[13], through an explicit calculation showing that the covering property is a quadratic
condition in this case, rather than linear. We briefly digress from our main goal to state
that result formally, and express its proof in a coordinate-free way.

Proposition 6. Let L be a thin Lie algebra having two consecutive homogeneous
components which are both diamonds. Then L ceases to be thin after a suitable quadratic
field extension.

Proof. For any graded Lie algebra L = @;°, L; we may consider the linear maps v; :
L; — Homp(L1, Lj11) obtained by restriction from the adjoint representation. When
L is thin with L; and L;4; both diamonds, the covering property for the homogeneous
component L; means that 1;(L;) is a two-dimensional subspace of Homp (L1, Lj41) such
that every non-zero element is a surjective linear map. Upon composing with a linear
bijection L1 — L1, whose choice is immaterial, we may view that as a two-dimensional
subspace of Homp (L1, L1) where every non-zero element has non-zero determinant. In
terms of the associated projective spaces, P((/)j (Lj)) is then a one-dimensional projective
subspace of the three-dimensional projective space P(Homp(Ll7 Ll)), disjoint from the
non-degenerate quadric given by the zeroes of the determinant map. This condition will
be violated under a suitable quadratic extension of the base field of L. [

The same argument in the proof of Proposition 6 also shows that a thin Lie algebra
over a quadratically closed field (a field without extensions of degree two) cannot have
two diamonds occurring as consecutive homogeneous components. In fact, the thin Lie
algebras studied in [6, 15], where all homogeneous components except Lo are diamonds,
require their base field to have a quadratic field extension.

Returning to our main line of investigation, Corollary 5 is relevant in assigning types
to diamonds of a thin Lie algebra. The type of a diamond L; is a scalar in the underlying
field, or possibly the symbol oo, which describes certain relations holding in degree j + 1.
When this is done properly (that is, including fake diamonds, see Remark 13 below),
the Lie product of a thin Lie algebra (and hence its isomorphism type) is completely
determined by specifying all degrees where diamonds occur, and their types. In various
notable instances of thin Lie algebras, diamonds occur at regular distances, and their
types follow a periodic pattern, such as an arithmetic progression. Attaching types to
diamonds needs to be done in different ways according to whether the second diamond
occurs in degree ¢ or 2g — 1, and was originally introduced in [10] and [9], respectively.
However, in both cases, necessary conditions for a diamond L; to be assigned a type were
dim(L;_1) =1 and [L;_1yy] = 0 (the latter being one of the relations assumed in degree
j+1). Corollary 5 now ensures that those conditions hold in any thin Lie algebra with

Now we use Lemma 3 to prove that if L is thin with dim(Lz) = 1, then [L;yy] = 0 for
all one-dimensional components L;.
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Lemma 7. Let L be a thin Lie algebra with dim(Lg) =1, and let y span Cr,(Ls).
Suppose [L;yy] # 0 for some j. Then dim(L;) = 2.

Proof. Note that j > 2. If L;_; had a non-zero element centralized by y, then because
[L;y] # 0 by hypothesis, Lemma 3 would apply with ¢ = j and yield [L;yy] = 0, a con-
tradiction. Therefore, L;_; does not have any non-zero element centralized by y. Then
because of Corollary 4 each of L;j_5 and L; has such an element. In particular, because
[L;y] # 0, we must have dim(L;) = 2. O

Thus, the task of proving [Lyy] =0 in a thin Lie algebra L has now been reduced
to showing [L;yy| = 0 for the diamonds L;. We pause to note that L having any two
diamonds at distance two implies [Lyy] # 0. In fact, if L; and L;o are diamonds, in
a thin Lie algebra L with dim(Lz) = 1, then the covering property implies [L;y] # 0:
the map 1; of the proof of Proposition 6 is always injective because of the covering
property, but it would not be surjective if we had [L;y] = 0, and this is impossible here
by dimension reasons as dim(L;;1) = 1. Consequently, we have [L;y] = L;;1, and then
[L;yy] = [Lj+1y] # 0 because [Lj1+1y] and [L;+1y] span the diamond Ljo.

The following remark describes one special thin Lie algebra with dim(Ls) = 1 having
certain diamonds at distance two.

Remark 8. The proof of [13, Theorem 2(a)] implies that in characteristic either zero
or larger than five there is a unique (infinite-dimensional) thin Lie algebra L having
second diamond Ls. That result, which predates the study of thin Lie algebras per se,
only claims uniqueness for the graded Lie algebra L associated with the lower central
series of a infinite thin pro-p group with second diamond in weight 5, for p > 5. However,
its proof applies to any thin Lie algebra L with second diamond Ls, for p > 5 or p = 0.
A construction for that thin Lie algebra L was also given in [13], and that is valid in
every characteristic except for characteristic two. The diamonds of L occur in each degree
congruent to +1 modulo 6, and so as noted above one has [L;_1yy] # 0 for each i multiple
of six. Uniqueness of L fails in characteristic three because 5 = 2¢ — 1 with ¢ = 3, and in
characteristic five because we may have 5 = ¢ then, and so lots of other thin Lie algebras
enter those cases (see Remark 12).

Our next remark describes how in characteristic three one can produce uncountably
many thin Lie algebras with dim(L3) = 1 having several diamonds at distance two.

Remark 9. According to [14, Section 9], for each power ¢ of the (positive) characteris-
tic, there are uncountably many infinite-dimensional graded Lie algebras of maximal class
M with precisely two distinct two-step centralizers and constituent sequence beginning
with 2¢, ¢, g. As shown in [9, Section 5], each such M has a maximal subalgebra L which
becomes thin under a new grading, and its diamonds start with Ly, Log—1, L3q—2, Lig—3-
In characteristic three and taking ¢ = 3 those diamonds are L1, L5, L7, Lg. Consequently,

[Lsyy] # 0 and [L7yy] # 0.

The thin Lie algebras of the above remarks suggest that we might be able to obtain
more information on the earliest diamond L; with [L;yy] # 0 than on an arbitrary one,
hence we will do that in preparation for a proof of Theorem 11.
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Lemma 10. Let L be a thin Lie algebra with dim(Lg) = 1, and let y span Cr, (L2).
Suppose [Lyy] # 0, and let j be minimal such [L;yy] # 0. Then L;_5 and L;j_3 are one-
dimensional and centralized by y.

Proof. According to Lemma 7, we have dim(L;) =2, and hence dim(L;_1) =1
because of Corollary 5. Note that j > 3. Let ¢ be any non-zero element of L;_3. Then
[tyy] = 0 and [tzyy] = 0 by minimality of j, and hence

0 = [t[ryy]] = [teyy] — 2[tyzy] + [tyyx] = —2[tyxy].

Because of Proposition 2, we are not in characteristic two, and so we conclude [tyxy] = 0.
But then [tyz] = 0, because L;_; contains no non-zero element centralized by y. The cov-
ering property now implies [ty] = 0, otherwise [tyx] and [tyy], which both vanish, would
have to span L;_;. Because ¢t was an arbitrary non-zero element of L;_s, Corollary 5
implies dim(L;_3) = 1. Finally, L;_» has dimension one because it is spanned by [tz].
But we know that L;_ o contains a non-zero element centralized by y, and hence
[Lj—2y] = 0. O

We are ready to prove the harder analogue of Proposition 2 for odd characteristics,
thus completing a proof of Theorem 1. As our discussion leading to Remark 8 shows, we
need an additional assumption to ensure that no diamonds occur at distance two. As it
turns out, assuming dim(Ls) = 1 will do, which is another way of asking that the second
diamond of L occurs past Ls.

Theorem 11. Let L be a thin Lie algebra of odd characteristic, with dim(Lz) =
dim(Ls) = 1, and let y span C, (Lz). Then [Lyy] = 0.

Proof. Besides the relation [yzy] = 0, which serves to define y up to scalar multi-
ples, in L we also have [yzzy] =0 and [yzzzy] = 0. In fact, the former claim follows
from 0 = [yz[yz]] = [yzyz] — [yxay] = —[yzzy]. As a consequence, [yxzz| spans Ly. To
prove the latter claim, assuming [yzazy] # 0 for a contradiction, it will span Ly because
of our hypothesis dim(Ls) = 1. Then because 0 = [yzx[zyy]] = [yrrayy] — 2[yxzyry] +
[yreyyzx] = [yxxzyy], we find [Lsy] = 0. Consequently, [yzrzazyz] spans Lg, and we
also have [yzzzzy] = 0. By combining these two facts and computing 0 = [yzzzay] =
—[ylyzxzz]] = 4[yzzayx], we obtain the desired contradiction.

Now suppose for a contradiction that [Lyy] # 0, and let j be minimal such that
[L;yy] # 0. We will use the equations [yzzy] =0 and [yzzzy] =0 to obtain a contra-
diction. Let ¢ be a non-zero element of L;_3. According to Lemma 7 we have [ty] =0
and [tzy] =0, and L;_ is spanned by v := [tzz]. Furthermore, dim(L;) = 2, and hence
[vyy] = 0 according to Corollary 5. The calculations

0 = [v[zyy]] = [vzyy] — 2[vy2y],
and
0 = [tlyzzry]] = [tlyrraly] = 3[trryry] — [trzzyy] = —[veyy] + 3[vyry],

taken together imply [vzyy] = [vyxzy] = 0. Because [vz] and [vy] span L;, we obtain
[L;yy] = 0, which provides the desired contradiction. O
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We discuss the extent to which hypothesis dim(Ls) = 1 of Theorem 11 is necessary.
As we recalled in Remark 8, over a field of characteristic p > 5 that hypothesis serves to
exclude a single exception, given by the unique thin Lie algebra with second diamond
Ls, identified in [13, Theorem 2(a)] and described in Remark 8. However, if we omit the
hypothesis dim(Ls) = 1 of Theorem 11 in characteristic p = 3, its conclusion [Lyy] =0
is violated by uncountably many thin Lie algebras with second diamond L5 and third
diamond L7, which we described in Remark 9. The following remark focuses on the
borderline case p = 5.

Remark 12. We discuss how far Theorem 11 may be extended to include thin Lie
algebras of characteristic five, with second diamond L5 and an additional assumption.
Countably many thin Lie algebras with second diamond L, were constructed in [4], for
any power ¢ of the odd characteristic. In particular, when ¢ = 5, this gives us a countable
family of thin Lie algebras with second diamond Ls. However, all those thin Lie algebras,
which have third diamond Lo,y = Lg (possibly fake, see Remark 13 below), do satisfy
the conclusion [Lyy] = 0 of Theorem 11.

In fact, one can prove that [Lyy] = 0 holds for any thin Lie algebra L of characteristic
five satisfying dim(Lg) = 1, dim(Ls) = 2, and [L7y] = 0. (Here the hypothesis [L7y] = 0
implies that neither L7 nor Lg is a diamond, and hence the third diamond of L does not
occur earlier than Lg.) A proof of this fact follows the general inductive strategy employed
in [2], but is not a formal consequence of results stated in [2], where some generality was
sacrificed in favour of a simpler exposition. In fact, part of that simplification in [2] relies
on using our Theorem 11.

Remark 13. We mentioned fake diamonds a couple of times in this section, in marginal
comments to our main discussion. When assigning types to diamonds of a thin Lie algebra
L with second diamond L, (see [10]) or Log—1 (see [9]), it is convenient for descriptive
purposes to allow certain one-dimensional homogeneous components to be called fake
diamonds (of type 0 or 1 in the former case, and of type 0 in the latter). In some situations,
it may even make sense to allow the second diamond of L to be fake; this may, in fact,
be viewed as the source of serious complications in characteristic two, see [4, Remarks
3.6 and 5.3], and [7] for their resolution. For the avoidance of doubt, each reference to
unqualified diamonds of a thin Lie algebra in the present paper is to genuine diamonds,
that is, two-dimensional homogeneous components.

3. Thin loop algebras and the sandwich element

We conclude this paper with a discussion of the significance for thin Lie algebras of an
important property of sandwich elements. Classical simple Lie algebras do not have sand-
wich elements, see [21, p. 124]. By contrast, confirming a conjecture of Kostrikin, Premet
proved in [19] that every finite-dimensional simple Lie algebra, over an algebraically closed
field of characteristic p > 5, which is not classical, must have sandwich elements (that is,
have strong degeneration).

The connection of this characterization of classical Lie algebras with (infinite-
dimensional) thin Lie algebras comes from the fact that several of the latter have been
constructed as loop algebras of certain finite-dimensional simple Lie algebras, or close to
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simple. In the simplest setting, one starts from a finite-dimensional simple Lie algebra
S over a field F, with a cyclic grading S = @keZ/NZ Sk, and considers the Lie algebra

S ® F[t] over F, where t is an indeterminate. Its subalgebra L = @, ,S; @ t*, where
k =k + NZ, is naturally graded over the positive integers, and is called a loop algebra
in this context. In certain cases, one needs a slightly more general construction involving
also a derivation of S (such as that of [4, Definition 2.1]), but that is inconsequential for
our present observation.

It was proved in [13] that a thin Lie algebra L (of characteristic not 2 or 3) having
second diamond L3 and dim(L4) = 1 belongs to one of (up to) two isomorphism types,
and a thin Lie algebra L (of characteristic not 2, 3 or 5) with second diamond Lj is
unique up to isomorphism (see also Remark 8). Each of those thin Lie algebras can be
realized as a loop algebra of a classical simple Lie algebra of type A; or As.

Now, the fact that those thin Lie algebras of [13] are loop algebras of classical simple
Lie algebras implies that there cannot be any non-zero element y € Ly with (ady)? = 0,
because such y would have the form y = ¢ ® ¢t for some sandwich element ¢ of S, which
cannot exist. For the same reason, if a thin Lie algebra L (say of characteristic p > 5)
with second diamond past Ls is a loop algebra of a simple Lie algebra S, then S cannot
be classical, because L has a sandwich element y according to Theorem 11, and hence so
does S.

In fact, all constructions of thin Lie algebras with second diamond ¢ or 2¢ — 1 as loop
algebras which were given in several papers [3-5, 8, 11] start from non-classical simple
Lie algebras of various types. The occurrence of non-classical simple Lie algebras in those
constructions was hardly surprising in itself, because the expected structure of such thin
Lie algebras L given by corresponding uniqueness results showed that the dimension of
S ought to be a power of p or one or two less in the various cases. However, the sandwich
element y did provide guidance in identifying the appropriate cyclic grading of .S employed
in those constructions.
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