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The Solutions of Mathieu's Differential Equation:
Representation by Contour Integrals, and Asymptotic
Expansions.

By Dr JOHN DOUGALL.

(Read 2nd May 1924.. Received 7th September 1926.)

1. I t is an obvious remark that the Mathieu functions, being
the harmonic functions of the elliptic cylinder, must be closely
related to the Bessel functions, the harmonic functions of the
circular cylinder. Reference has been made to some aspects of
this relationship in two earlier communications,* to which the
present paper may be regarded as a sequel.

To any theorem in Mathieu functions, there may be expected
to correspond a theorem, probably simpler, in Bessel Functions.
There will not usually be much difficulty in passing from the
general to the special case; the converse problem may be much
more formidable. It is a case of the latter kind with which the
present paper deals, and in this instance the generalization turns
out to be comparatively simple though not, I think, trivial or
obvious.

The Bessel Functions can be represented by definite integrals
in several well-known ways. One of these representations, which
Bessel, Jacobi and Hankel all had a hand in developing, expresses
a solution of Bessel's equation

d w 1 dw / , s2 \ .
- r i + —-7- + (1 - - T ) W = 0
dz2 z dz \ z2/

in the form f
(" - iy-idt,

* The Solution of Mathieu's Differential Equation, Proc. Edin. Math.
Soc., Vol. XXXIV (1915-16) ;

The Solutions of Mathieu's Differential Equation, and their Asymptotic
Expansions, Proc. Edin. Math. Soc, Vol. XLI (1922-23).

These papers will be referred to as I and II ; and 1(1), e.g., will be used for
"Equation (1) of Paper I."

t GRAY, JUTBEWS and MACROBERT, Bessel Functions, 2nd Edition,
Chap. V, §2;

WHITTAKEK and WATSON, Modern Analysis, 3rd Edition, Chap. XVII,
§ 17. 3.

https://doi.org/10.1017/S0013091500034374 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500034374


58

the integral being taken round a suitable contour; and it is this
integral which is most convenient, and has been most used, for the
purpose of obtaining the asymptotic expansiois of the solutions.
The object of the analysis given below is to find an analogous
representation for the solutions of Mathieu's equation. In the
result, the analogy is complete so far as the factors z' and «•'*' are
concerned; but the remaining factor is a good deal more complex
than the simple function (f — 1)'-* which occurs in the above
integral; it is found initially in the form of a power series with a
finite radius of convergence, and an essential step in the investiga-
tion (the only step calling for any sort of ingenuity) is to determine
the " continuation " of this function over the whole plane. Once
this has been done it is a simple matter to get contour integrals
for the solutions defined in the earlier papers. These reduce to
the integrals for the Bessel Functions as a special case.

The asymptotic series for the solution of the second kind follows
at once, and is identical with the one obtained in the 1922 paper.

2. The differential equation is

^ + (i«c2c2 cosh 2a - «2)w = 0.

When we put <r = Me"- / 2t, this becomes (with k = ^KC)

<Pu 1 du / s2

da" a-
du / s2 *4\
-r - I1 +~i+^r)M = o (l)
d<T \ a2

 IT* JIn the previous papers (e.g. II , §15) solutions of (2) have been
defined which, ignoring reference to k and », we may write

00 *

n — -

J( - ft AT) = V(2 /T) «-*» 2 X ( » - / » ) °"2'
n = - oo

£( ft io-) = (Jx/sin 2/XTT) {J( - /», «r) - e-s

= ^/(ir/2) e - > {X (n - f») o*«-
sin 2/i.ir

- X(" +
As pointed out at II, §24, the Bessel functions J,(ia-), J"_,(tV),
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G, (icr) may be regarded simply as the special cases of the above
three functions corresponding to the value 0 for k.

3. We first express the coefficient x (n + /*)> which occurs in
(2), as a complex integral.

By II, (14),

X(» + W - n(2n + 2/* + J) + II(2n+ 2/i + J + 1) + • " '

which, by means of the properties of the Beta function * is easily
expressed in the form

X (« + /*) =

2 sin(2,x - | ) 77 Jo n(2n) 1 II (2/x - £)

r ( i + >
the meaning of the notation I being that the path of integration

Jo
starts at t = 0, encircles the*point t = 1 in the positive direction,
and returns to the starting point (fig. 1); the initial amplitude
of 1 - t is 0.

Pig. 1

Denote the function multiplying <2"/II (2n) within the integral
sign by F(t), so that

and

* Of. WHITTAKEB and WATSON, Modern Analysis, Chap. XII, §§12. 22,12. 43.
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On writing [L — £ for z in I I (33), we obtain

(5)
where

- 1)+ £jX(/* - 2) + (7)

4. The nature of the convergence of the series (3), (6) and (7)
is of essential consequence for what follows. Since, by II (31),
as p —> co ,

^ ,» ( l / i r ) cos2 /Mr2- 'n (p - 1), (8)

the series (3) has a radius of convergence 2; so that the series
defines the function F(t) within the circle | 1 - t | = 2 .

As for (6), the coefficient of tr''l(2p)! is x (A* - P - i)> andi by
II (-J3), when p-»oo ,

X (,* - p - \) X (2/V) cos 2/«r II (2/» - 2/i - J ) ;

so that the circle of convergence of (6) is the circle \ t \ = 1 .
In (7), however, the coefficient of t-"~l/(2n - 1)! is x (A1 ~ n)>

which is .simply a multiple of the coefficient of o--in + -» in the
series (2) which defines J(ix, i<r). The function SI (t) is therefore
holomorphic.
The asymptotic value of x (/* - n) asn-»oo, is easily proved
(n being a positive integer) by I, § 5, and II, § 2, to be

X (i») ,4- }

x ( - , i ) n 2 » - 2 / * + J ) -

5. From (3) it follows that t = 1 is a singular point of F(t);
and we can prove in a moment that t = — 1 is another. For, by
(5) and (3),

212(0

M

this formula continues/^(O over the area of the circle | < + 1 | = 2.
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The formulae (3), (9) and (5) respectively represent F (t) over
the three circles shown in fig. 2, having their centres at 1, - 1
and 0.

Pig. 2

It will be seen presently that F(t) has no singularity at a finite
distance besides t = 1 and t — - \.

6. With a view to finding a formula representing F(t) over
the region outside the circle \ t \ = 1 , consider the complex
integral.

the path being straight, parallel to the imaginary axis, and crossing
the real axis where z = «; e is taken so that — 1 < « < 0, and so
that the path avoids any zero of sin (Jz - 2/t + J) TT.

We shall show, provided

0 < amp t < ir, and \ I \ > 0,

that the integral converges, and that the form of the integrand
at infinity is such that we can equate the integral to (i) 2tV. sum
of residues at poles to right of path, when | t \ < 1, (ii) 2wr. sum
of residues at poles to left of path, when \ t \ > 1.
In the first place, for any large z to the left of the path we
have (II (12) and II , §7)

and, to the right of the path (II (23)),

5 Vol. 44
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Hence, for the asymptotic value of the integrand when z—» 06 , we
have

(i) to left of path :
, N n ( - * - i ) 1

( to-
II (2/u. - $ - a) sin (\z - 2/.

(ii) to right of path :

( t ,H.y - L -
^ ' n(«) sin^a

In both cases the ratio of the two II functions is given at once by
the asymptotic formula

II (it + a) 2; it" II (it),

which holds if M - » ao in any direction except the negative direction
of the real axis; and, if te ~ '"/2 = re**, and s = a; + iy, where
r, #, x, y are real, then

(<e - *'/2): = (reie)x + ** = r*» e"0 r1«- »9.

The factor e-»8 is taken care of by the sine in the denominator of
the integrand, if | 6 | < \TT ; and the factor r" by the proviso
that r > 1 when x < 0, and r < 1 when x > 0; and one, or both,
of these exponential factors will outweigh any factor of the form
z" arising from the ratio of the II functions.

On the path itself, since x is constant, obviously we need only
have I t I > 0. The assertion about tbe integral (10) is there-
fore proved.

7. We can now continue F(t) into the region \ I \ > 1, by
applying the residue theorem to the integral (10).

(«) « I * I < 1,
integral /2iir = sum of residues at poles to right: and

(i) at a = 0, 1, 2, ... residues are

( ( M - *> + F 2 X ( / i ~ f ) +

fc-iJ + ljxO.-2)+ -
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(ii) at \z = 2/i - \ + v, or z = i/x - 1 + 2n, where n is any
integer, residue is

IT (4/* - 1 + 2n) sin (4/* - l)jr £ costur
(_)2ie-2 <"'

x ( » /*)11(4/* - 1 + 2w)AV ™

On the right of the path, residues of the form (ii) occur for
values of n such that 4/t - 1 + 2n > « ; and it is clear from
the remark at the end of § 4 that this series of residues con-
verges whether | t \ < 1 or not.

(6) If | t | > 1,
integral /2»V = ( - ) sum of residues at poles to left: and
these residues are as in (a) (ii), but with 4/i - 1 + 2 n <_*;
and in this case we must have \t\ > 1, the fraction
X ( - « - /*)/n (4/x - 1 + 2n) being proportional to a power of
n, asymptotically, when n —> — oo .

Thus the function represented by the integral (10) for all
values of I such that 0 < arg< < IT, and \ t \ > 0, is given by the
series of (a), (i) and (ii) when \ t \ < 1; and by the series (6),
when | t | > 1. I t follows that the function of t given by
(i) + (ii) of (a) when | t | < 1 continues, through the semicircle
above the real axis which has t = 1, t — - 1 for ends of a diameter,
into the function given by (b), when \ t \ > 1. Further, as has
been noted, the form (a) (ii) holds in both regions, so that this
statement about continuation will still be true when we subtract
this series (a) (ii) from both sides. Hence, finally, in the notation
of §3 the function

\ E ^ ) + • ocos 2/x7r v ' s in 2ft.Tr

given in the space | t | < 1 by (6) and (7), continues, through the
upper half of the circle on 1, — 1 as diameter, into the space
| t | > 1, in the form

oo tin -1 + in

(l + 2n)A V r /8in4j«r

Since 12 (t) is holomorphic, this result gives also at once the con-
tinuation of E{t) and of F(t) (§3).
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Clearly the function F(i) is now completely defined. Thus,
within the unit circle \ t \ < 1, (6), (7) and (5) give initial
determinations of E(t) and F(t) without ambiguity; and the effect
of a turn round t = 1, or t = — 1, is seen at once from (3), or (9).
By means of combinations of these turns, in the positive or negative
direction, and the continuation defined at (11) and (12), we can
follow the values of F(t) for any path of the variable, starting
from the initial determination, say Fo (t), within the unit circle.

8. We are now in a position to construct the definite integral
representations we set out to obtain.

We have to transform

as a first step (4) will allow us to form a convenient expression for
the part of this sum arising from positive values of n. Thus

- x ( n + A1)0"2"4"5"
0

cos lu.~

This integral may be divided into two, each involving e- at, to the
exclusion of «'*; for, on changing t into - t,

f(1 + > e't F(t)dt
Jo

becomes, by (9)

- I e~ "' \ — + -̂ 1 ffT?; T :

- - \^'1 + )e-" {F(t) + 2Q(t)}dt,
Jo

f ( - i + )
= - e-'*F(t)dt,

Jo

since il (t) is holomorphic.

...)dt
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Hence

n = 0

COS2//7T Jo

(-1 - ,
e-'tF(e)dt (13)

the notation meaning* that the path of integration starts at 0,
encircles the point - 1 in the negative direction and returns to
0, then encircles the point 1 in the positive direction and returns
to 0 (fig. 3); also the argument of 1 - t is 0 at the middle of the
path, i.e. when the moving variable returns to 0 for the first time ;
in other words, each of the powers of 1 - t has then the value 1,
so that F(t) = x 0* - £)•

Pig. 3

9. We have still to supplement (13) by an expression for

2°

This we can obtain by prolonging the path in fig, 3 to infinity from
both ends, as in fig. 4, leaving the right hand side of (13) other-
wise unaltered; the direction of the path at a great distance being
taken so that vt is real and positive.

Fig. 4

' "WniTTAKEn and WATSON, Modern Analyst; § 12. 43.
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To prove this, consider what F(t), starting as /"„(<) (end of §7)
at the middle of the path in fig. 3, becomes at the ends of
that path.

The positive turn round t = 1 gives at the final point, by (3),

As for the turn round t = - 1, it follows from (9) that at the
initial point of the path in fig. 3,

F(t) = - e*'»'{F0(t) + 2S2(<)} -

Since we may suppose the two paths from 0 to co in fig. 4 to be
indefinitely close, the combined partial integrals * from these two
paths give

i.e. simply <r2* I il (t) dt,
Jo

the two continuations of Fa(t) annulling each other when we
subtract.

On putting in the series for fl (t) from (7), and integrating term
by term, this becomes

h x ( / x ' 2 > + ••• ) d th
xG" - 2)

»= - 1

as was stated at the beginning of this j
Instead of (13) we now have

00

2 X ( « .

the path being as in fig. 4.

* It is easy to show from (12) that the integrals of t- °'F(t) over the two
infinite paths, which were added to fig. 3 to give fig. 4, exist. Cf. Modern
Analysis, § 5. 32
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On multiplying (14) by e'> J {i/tr), we obtain a contour
integral for J(fi, i<r).

I t is obvious that the two paths inserted from 0 to QO in fig 4.
might be varied. An interesting contour is obtained by taking
them above, instead of below, the point 1.

10. There is of course a corresponding integral for «/( - fi, i<r),
i.e. practically, for

1 x ( n - /x)o-2»-V,

over the same path ; we have only to change /x into - fi throughout
in (14).

But there is also another quite different integral for this series,
in which the integrand of (14) is retained exactly as it stands, but
the path is changed; this new integral can be combined readily
with (14), so as to give a single integral for the difference

2 x ( n - f)<r**" 2" ~ 2 X(n + /*)o-2lt + 2",
n — - oo 4i = - o o

which is, in effect, the solution G (/*, to-).
The new path referred to is: from infinity, round both - 1
and 1 positively, and back to infinity (fig. 5). Over all this path

Fiff. 5

we can suppose \ t \ > 1, and therefore use the expression for F(t)
obtainable at once from the result at (11) and (12) of §7, which,
with (5), gives

F(t) = - Q (I) - i cot 2/iir fi (t)

if - -lip.* oo ti/i - 1 + 2n

+ sin 2/XTT „ Jl B II (4p - 1 + 2n) X ( ~ U ~ N '
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Now, as at (14), multiply by
cos 2/

«-*',and integrate

term by term on the right, over the path of fig. 5 (cf. § 9). Since
0 (() is holomorphic, the terms involving this function contribute
nothing. Also, since the result of § 7 was deduced on the under-
standing that 0 < arg t < IT, the argument of t at the initial part
of the path must be taken as 0; hence

)

= e*{>" 2i sin 4/«r / o-V + 2n .

We thus obtain, on changing the sign of n in the summation,

F(t)dt
cos 3/u

= - 2 x ( n - .(15)
H =; - 00

the path of integration being as in fig. 5. This is the second
integral we proposed to find for the J function.

11. Now add (14) and (15). The two paths of integration,
figs. 4 and 5, are shown side by side in fig. 6. Over the parts

Fig. 6

dotted the contributions from the two separate integrals annul
each other, and we are left with the path in fig. 7. Thus, changing

Pig. 7
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signs, we have

>: x ( n - / * ) < r 2 n " 2 * - 2 x
n = - o o

over the path in fig. 7; 0 being the initial argument of crt, and
- v that of <r(l - <).

The integral for <?(/*, to-) is obtained from (16) by multiplying
both sides by J (ir/2) «- */•*/ sin 2/XJT.

The path might obviously be reduced at once to one with a
single turn round 1, with a mere change of coefficient; indeed,
since the particular value we take for [i has not been defined, we
can always take fi so that, in (3), the real part of 2/x - | is greater
than — 1, and we can then reduce the integral to an ordinary
integral from 1 to oo .

12. Formula (16) leads at once to the asymptotic formula for
the 6 function; and corresponding formulae for the J functions
follow at once (II, §21). So far as the mechanical details are
concerned, the method is simply to substitute for F(t) in (16) its
expansion (3) round the point t = 1, and then integrate term by
term. It need scarcely be said that, as an analytical process, this
is quite illegitimate; but Poincare' showed that the resulting
series, though divergent, has a valuable interpretation; he called
it an asymptotic series for the function.*

Now, in fig. 7, supposing to fix ideas that o- is real and positive,
the argument of 1 - t is initially - ir, and finally 3 ir; so that

over the path of fig. 7,

= - ( - 1 )P 2e*> sin 4/«r. a- »" - * -J> «- ' .

* Of. e.g. A. R. FOBSTTH, Theory of Differential Equations, Part III,
Vol. IV, §§ 101-107.
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Thus the right hand member of (16), when treated as described
above, gives the series

p = 0

so that, by (2), we obtain

2 ( - l)P Bp<r-f -

<r)XZ 7(JT/2)«-'•*'e-* 2 ( - l)p£pa--P-i, (18)
p=0

the same result as I I (87).

The form (18) holds so long as - 3JT/2 < argcr < 3s-/2 ; in fact,
when the path in (16) is taken as straight, it may be turned round
so long as it does not pass through the point t = - 1, i.e. so long
as - 7r < arg <r < it; and such a path will continue to serve so
long as the real part of at remains positive, i.e. for a further
range of + ff/2 for arg <r.

13. The chief interest of the foregoing results being their
relationship to the analogous theorems for the Bessel Functions, it
may be interesting to write down the degenerate forms of some of
the functions and integrals which appear in this analysis.

When k = 0, the equation for /x is (I, §§ 2, 6, 7)
cos 2/i.Tr = cos sir

or 2/* = 2N ± s,

where If is any integer.
We get the well known Bessel Function results by taking 2/i = $
simply; but the results obtained by giving N another value than 0
are not the same as these, and will be found worth looking at; they
will not, however, be further considered here.

We take, then, 2/* = *.
Again, by I (43) and I I (10), since <j> (z) reduces to its first term,
we have

X (*) = J (ir/2) / 2" n (z + ^) U(z- is),
so that

x (•» + M) = J (T/2) / 2*-+• n (n + «) n («).

Thus 2 x(M + /*

2 v'(ir/2)o*» + »/2»» + ' n ( n + s)U(n);
n = 0
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and, by (2), when k - 0,

itr) = «••*/* 2 <r2» + ' / 2s» + ' I I ( n + «) n ( n )
* = 0

- ./. (to),

the Bessel Function ; and therefore, by (2)

it SIH a<»

= G1, («r).

Next, when A = 0, by II, § 3,

so that, by (3),

- - B

2) = ... = 0,
so that a (t) = 0.

The path of fig. 3 closes; (13) and (14) become identical, giving

J, (i<r) = t - « j r - 8 2 - » - 1 I I ( - « - J)<r».

f ( - i - , l + )
e- '«(l - C)'-idt,

Jo

the well known result.
The continuation of F(t) in (12), and the integral and asymptotic
series for the Bessel Function G, («r) also follow at once.
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