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BOUNDS FOR PERPETUAL
AMERICAN OPTION PRICES
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Abstract

We provide bounds for perpetual American option prices in a jump diffusion model in
terms of American option prices in the standard Black—Scholes model. We also investigate
the dependence of the bounds on different parameters of the model.
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1. Introduction

In the standard Black—Scholes model, in which stock prices are modeled by geometric
Brownian motion, the valuation of perpetual American options is well understood. Indeed,
the value of a perpetual American option can typically be determined explicitly by solving the
corresponding free boundary problem (see McKean (1965) for an early reference), or by finding
the smallest concave majorant of the (appropriately transformed) payoff function (see Dayanik
and Karatzas (2003)). However, if incorporating jumps into the stock price dynamics, then
explicit formulae for the value of perpetual options are rare (see Mordecki (2002) for results
on the American put option).

It is well known (see Alvarez (2003)) that prices of perpetual American options in diffusion
models are monotonically increasing in the volatility. In this paper we provide bounds for
American option prices in a jump diffusion model in terms of American option prices in a
standard Black—Scholes model with a sufficiently large volatility.

In Section 2, we introduce the jump diffusion model. Then we state and prove our main result.
It ensures the existence of a volatility so that the corresponding Black—Scholes price exceeds
the jump diffusion price of any American option. Moreover, it characterizes the minimal such
volatility. In Section 3, we investigate the dependence of the minimal volatility on different
parameters of the jump diffusion model.

2. The model and the main result

To model the jumps of the stock price process, let v be a Poisson random measure on
[0, o0) x [0, 1] with intensity measure A df dz for some constant A > 0, and let

v(dt, dz) := v(dt,dz) — Adrdz
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be the corresponding compensated jump measure. Further, assume that W is a standard
Brownian motion which is independent of v, and let (¥7)o<;<o0 be the filtration generated
by W and v augmented by null sets.

The stock price process X is modeled as the unique solution to the stochastic differential
equation

1
dX(t) =rX(t—)dt + o X (t—)dW + X (t—) f ¢ (2)d(dr, dz). 2.1
z=0

Here the constant o > 0 is the volatility of the continuous fluctuations of X, the constant 7 > 0
is the interest rate, and ¢ : [0, 1] — [—1, co) specifies the possible relative jump sizes. The
interpretation of the model is as follows. Jumps occur at the constant rate A > 0. Associated
to each jump of X is a ‘label’ z. If a jump occurs at time ¢ with a label z, then the jump size
is ¢(z) X (t—). We assume that the label space is [0, 1] and that the distribution of labels is
uniform. Note, however, that the label space and the label distribution can be made arbitrary
upon a change of variables. Throughout this article we assume that the function ¢ is measurable
and satisfies

/01 l¢(2)]dz < o0 (22)
and 1
/o (1 4+ ¢(2)° dz < o0, (2.3)
for some ¢ < 0.
Remark. The solution to (2.1) can be written more explicitly as

2 1 N()
X(@) = X(O)exp{(r — % — )L/O d)(z)dz)t +oW() + Z Yk},

k=1

for some sequence {Y;}72 | of independent and identically distributed random variables, where
N@) = .ftt:() lezo v(dt, dz) is a Poisson process with intensity A. The distribution of the Yjs
is connected with the specification of ¢ through the relation

P(Yx =a)=pu({z€[0,1]: ¢(2) <e” —1}),
where p denotes the Lebesgue measure.

Given a measurable payoff function g, the perpetual American option value V in the jump
diffusion model is defined by

V =V(x,g) =supE,(e”""g(X (1)) Lir<o0)), 2.4

where 1, is the indicator function. Here the index indicates that X (0) = x, and the supremum
is taken over all random times that are stopping times with respect to the filtration (¥;)o</<co-

Remark. When introducing jumps, completeness of the model is lost. Consequently there is
a whole range of possible martingale measures that can be used for arbitrage-free pricing of
options. We circumvent the issue of choosing a pricing measure by defining the option price
as in (2.4), thus implicitly assuming that the dynamics of X are specified directly under the
measure used for pricing.
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We will only consider payoff functions g in the class
g :={g: RT — [0, 00) with g(x) < C(1 + x) for some constant C > 0},

i.e. payoff functions of at most linear growth. Since e "X (¢) is a nonnegative martingale,
Problem 1.3.16 and the Optional Sampling Theorem 1.3.22 in Karatzas and Shreve (2000)
imply that the American option price is finite for any g € §.

Below we compare the option price V in the jump diffusion model to the value BS of
a perpetual American option in the standard Black—Scholes model with a volatility y > 0,
possibly different from o. Recall that in the standard Black—Scholes model, the stock price Y
is modeled under the pricing measure by a geometric Brownian motion

dY = rY dt +yY dW.

More explicitly,
2

Y(t) = Y(0) exp{ (r - %)z + yW(t)}.

If g € G is a payoff function, then the corresponding value BS of a perpetual American option
in the standard Black—Scholes model is

BS =BSY(x,g) =supE, (e " g(Y (1)) Lz <o0))-
T

Given a jump diffusion model, i.e. given o, A, and ¢, we are interested in determining a volatility
y > 0 such that

V(x,g) < BS”(x,g) forall x and all payoff functions g € §. 2.5)

In Theorem 2.1, below, we prove the existence of a volatility y satisfying (2.5), and we also
characterize the minimal such volatility as the smallest zero of the function A: (0, c0) —
R U {00} defined by

2 1
h(y) = (“—2 - 1>r(1 + 2—2) + x/ ((1 +o) T 1y 2—2¢> dz.  (2.6)
1% % 0 %

Lemma 2.1. The function h: (0,00) — R U {00} is nonnegative on (0, o), and it satisfies
h(y) — —rasy — oo. Moreover, h is either

(1) finite for all y,
(ii) equal to oo on (0, y') and finite on [y’, 00), for some y' € (0, 00), or
(iii) equal to 0o on (0, y'] and finite on (y', 00), for some y' € (0, 00).
In case (iii) we have
lim h(y) = oo.
Y\
Regardless of which class h belongs to, it is continuous on the set where h < o0.

Proof. Ttis clear that 1 > 0 on (0, o) since both terms are nonnegative (the integrand

2r
(L+¢) 27" — 14 T
Y
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is positive since x — (1 + x)~>/ 7? is a convex function). Next, note that the integrand tends
to 0 pointwise as y tends to co. By (2.3) and dominated convergence, the integral term tends
to 0 and, consequently, 4(y) — —r as y — oo. Moreover, from (2.2) it follows that the only
way to have h(y) = oo is if

1
/ (1 +¢)" 2/ dz = o0
0

Thus, it follows that if A(y) = oo then h(y’) = oo for all y’ < y. Consequently, & has to
belong to one of the classes (i)-(iii). Finally, lim,\, h(y) = oo in case (iii) follows from
monotone convergence, and the continuity on the set where # is finite follows from dominated
convergence.

We now present our main result.

Theorem 2.1. Let a jump diffusion model be given as specified above. Then there exists a
y > 0 such that (2.5) holds. If 6 := inf{y > 0: (2.5) holds} and y = inf{y > 0: h(y) <0},
then & = y and

V(x,8) < BS"(x, g),

for all x and all payoff functions g. Moreover, y > o.

Proof. Since h(oo) :=lim, o h(y) = —r (cf. Lemma 2. 1) there clearly existsa y > 0
with A(y) < 0. Let such a y be given, and let ¢(x) := x =/ 7?. Note that

Ap(x) = h(y)e(x),
where 4 is the integro-differential operator
2,2

—— @ (X) +rxec(x) —ro(x)

Ap(x) == >

1
+ X/O (p(x + ¢x) — (x) — Pxex(x)) dz

associated with the jump diffusion X (here the subindices denote differentiation with respect
to x). Consequently, if 2(y) < 0 then the process e "¢ (X (¢)) is a supermartingale, so optional
sampling yields

Ex(e™ (X (1)) Liz<oc}) < 9(x), 2.7)

for any stopping time 7. Now, define the strictly increasing function F': (0, co) — (0, co) by

F(x) = —— =y,
w(X)

We now claim that, for any function U : (0, co) — [0, 00), the implication
{U > g and the composed function (U/¢) o Flis concave} — U >V 2.8)
holds. To see this we argue as in Dayanik and Karatzas (2003). First, fix a function U with

U > g and such that (U/¢) o F~! is concave, and fix an initial point x € (0, c0). Because
of concavity, there exists an affine transformation L := ¢ F + ¢ such that L(-) > U(:) /(")
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and L(x) = U(x)/¢(x). Note that the constants c¢; and ¢, are both nonnegative since U /¢ is
nonnegative on (0, co0). Consequently, for any stopping time T we have

E; (e g(X(1) Lz <o) < Ex(e7""UX (7)) 1{z<c0})
< Ex(e (X (1) L(X (7)) 1z <o)
=1 Ex (67" X(7) L{r <o) + 2 Bx (67" 90(X (7)) Lz <c0))
< c1x + cp(x)
= @(x)L(x)
=U(x),

where we used (2.7) in the last inequality. Thus,

V(x) = supEx(e™" " g(X (1)) Lr<oc}) < U (),

so the claim (2.8) is proved.
Now note that ¢ (x) = x>/ * and ¥ (x) = x are, respectively, the decreasing fundamental
solution and the increasing fundamental solution of
y2x2
Tuxx +rxuy —ru=0
(see, for example, Chapter II of Borodin and Salminen (2002)). Recall from Dayanik and
Karatzas (2003) that the smallest function U : (0, oc0) — [0, oo) which satisfies U > g and
is such that U/¢ is F-concave is equal to the value BS(-, y) of the American option in the
Black—Scholes model with volatility y. Thus, it follows from (2.8) that V (-, g) < BSY (., g),
which proves the existence of a y for which (2.5) holds.
By continuity of the function & we clearly have i (7) < 0 (with equality in cases (i) and (iii)
of Lemma 2.1). It follows from the above that & < 9. To show that & > 7, choose y € (0, y).
Then h(y) > 0. For C > 0, defining g¢c € § by

gcx) = X2 A C

yields

yix? o,
Tax +rxdy —r |gc(x) <0

(in the distributional sense). Consequently, gc is excessive for the geometric Brownian motion
Y with volatility y, so BSY (-, gc) = gc(-). On the other hand, for any fixed x > 0 we have,
for large C,

1
Agc(x) = h(y)x =27 —)\fo ((x + )27 =€) L tony2itscy 42

if h(y) < oo, which converges to h(y)x 2"/ ¥* > 0as C tends to infinity. Consequently, C can
be chosen so that Agc > 0 in some interval. (Similarly, it is easy to see that if 4(y) = oo then
C can be chosen large enough so that Agc > 0 in an interval.) This implies that V > g¢ in this
interval, so there exist points x with V(x, g¢) > BSY (x, gc). Since y € (0, y) is arbitrary,
we find that & > y. This finishes the proof of 6 = 7.

Finally, it is straightforward to check that 4(y) > Oforall y < o, which implies thaty > o.
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Remark. Note that the proof of Theorem 2.1 shows that 2(y) = 0 if we are in case (i) or (iii)
of Lemma 2.1, and i (7) < 0 if we are in case (ii). Moreover, since the Black—Scholes price
is monotonically increasing in the volatility (see Alvarez (2003)), it follows from the proof of
Theorem 2.1 that the function % has at most one zero. More precisely, & has precisely one zero
(namely ) in cases (i) and (iii) of Lemma 2.1, and it has at most one zero in case (ii).

Theorem 2.1 provides an upper bound for American option prices. A lower bound can also
be obtained for the class of convex contract functions.

Corollary 2.1. Let g € G be convex. Then
BS°(x,g) < V(x,8) < BS”(x, g),
forall x € (0, 00).

Proof. To prove the lower bound, note that the corresponding result for European options
holds (see Theorem 4.1 of Bellamy and Jeanblanc (2000) or Theorem 5.1 of Ekstrom and Tysk
(2005)). By approximating the American option with a sequence of Bermudan options, the
bound carries over to our setting. The approximation details work as in Ekstrom (2004) or
Ekstrom and Tysk (2005), and are therefore omitted.

Remark. We emphasize that the bounds provided in Corollary 2.1 hold for all (convex) payoff
functions g. If studying a particular option, for example the put option with payoff function
g(x) = (K — x)™, then typically tighter bounds can be determined.

3. Sensitivity of the minimal volatility with respect to the jump diffusion parameters

It is natural to expect the minimal volatility p to be large if the jump diffusion model in
some sense is far away from a Black—Scholes model, i.e. if the jump intensity A and the possible
relative jump sizes ¢ are large. Our next result shows that p is increasing as a function of A, ¢,
and 0.

Theorem 3.1. Let two jump diffusion models be given with parameters (o1, L1, ¢1) and
(02, A2, ). Assume that o1 < 03, A1 < Ao, and

$2(2) -1
1) ~

for all z with ¢1(z) # 0. Then the corresponding minimal volatilities Y and v, satisfy y1 < ».

9

Proof. 1tis straightforward to check that the function 2 (y) = h(y, 02, A, ¢) defined in (2.6)
is increasing in o> and A. Indeed,

0 2 yzr + 272
mh(y,o,)\,qﬁ):TZO
and X
0 2r
ot = [(a+e <1+ Zp)a =0
oA 0 Y
This implies that y, being the smallest solution y > 0 of h(y) < 0, is increasing in A and o.
Moreover, the function

2
g@ =1+ 14 Za
Y
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satisfies 4 5
—g@) = 51— (4”72,
da y?

which is positive if @ is positive and negative if a is negative. Consequently, the function 4 is
increasing in ¢ if different ¢ are ordered as in the formulation of the theorem. It follows that
y is increasing also in ¢.

Similarly, if the model is close to the Black—Scholes model, i.e. if the intensity A of jumps
is small, then we expect the minimal volatility y to be close to o.

Theorem 3.2. Assume that (2.3) holds with ¢ = —2r/02. Then, for small intensities A, the
quantity p* — o2 is at most linear in A. More explicitly, there exist constants M > 0 and o > 0
such that 0 < p% — a? < Mx for A € [0, Ao].

Proof. Let
1
2
C:= / ((1 Fo) ot 14 —r2¢) dz.
0 o
It is straightforward to check that if AC < r and y? = 62 + 6?AC/(r — AC), then
2 1
o 2r 2r
h(y) = <—2 — 1>r<1 + —2) + )\./ ((1 +¢)_2r/y2 -1+ —2¢> dz
Y Y 0 4
2

o 2r
(%) %) e
14 14

<0.

Consequently, )72 <024+ 020C /(r — AC) for small intensities A, which finishes the proof.
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