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IDEMPOTENT ENDOMORPHISMS OF AN INDEPENDENCE
ALGEBRA OF FINITE RANK*
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(Received 12th May 1993)

The result of Ballantine [1] to the effect that a singular matrix A is a product of k idempotent matrices if and
only if the rank oil -A does not exceed k times the nullity of A is generalized to endomorphisms of a class of
independence algebras.

1991 Mathematics subject classification: 20M20.

1. Introduction

In 1966 Howie [8] showed that every singular selfmap of the set [n] = {l,2,...,n} is
expressible as a composition of idempotent selfmaps. An analogous result concerning
the expressibility of every singular nxn matrix over a field as a product of idempotent
matrices was proved by J. A. Erdos [3] in 1967.

In any semigroup S generated by its set £ of idempotents there is for each element s a
least k with the property that seEk. Saito [12] gave a formula determining k for any
singular selfmap of [n]—see also Iwahori [10] and Howie [9]—and a corresponding
formula for singular matrices was given by Ballantine [1].

In effect, it was clear that there was a strong analogy between the properties of the
endomorphism monoid of the finite set [n] and those of the endomorphism monoid of
an n-dimensional vector space, an analogy strong enough to prompt Fountain and
Lewin [4, 5] to seek a common framework. The key lay in the idea of an independence
algebra of finite rank, due to Narkiewicz [11] and Gould [6], of which both a set [n]
without structure and a finite dimensional vector space over a field are special cases.
Fountain and Lewin [4] were able to show that every singular endomorphism of an
independence algebra of finite rank is expressible as a product (that is to say, a
composition) of idempotent endomorphisms. Both the Howie theorem and the Erdos
theorem are special cases of this result.

Let V be an n-dimensional vector space over a field F, and let a:V-*V be an
endomorphism (a linear transformation). Denote the image of a by im a and let fix a be
the subspace {xeV:x<x = x}. Let d(a) (the defect of a) be n—dim(ima), and let s(<x) (the
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shift of a) be n — dim (fix a). Ballantine's result [1] can be regarded as saying that a is
expressible as a product of k idempotents if and only if s(a)/d(a) ^ k.

For a wide class of independence algebras A we can define s(a) and d(a) in an
analogous manner. In Section 2 we show that half of Ballantine's result is then true.
Precisely, we denote the set of singlular idempotent endomorphisms of A by E, and
show that if a singular endomorphism a belongs to Ek, then s(a)/d(a) ^ k.

The converse half of Ballantine's result is, however, known to be untrue in the case
where A is simply a set [n] without structure. Here we define

s(<x) = |{x e [n]: xa^x}\, d(a) = n —

and it is clear that the largest possible value of s(a)/d(a) (for a singular a) is n. On the
other hand, it follows from Howie's result [9] that if n is odd then there exist elements a
for whicha<££3("-3)/2.

It is natural therefore to seek to determine in an abstract fashion a class of
independence algebras for which the full Ballantine property holds. We show that it
holds for 'connected' independence algebras, a class of algebras that includes vector
spaces over fields and a number of other less familiar types of algebra but does not
include sets without structure.

2. Preliminaries

We follow the terminology of Fountain and Lewin [4]. We consider an algebra A
(where A ^ 0 ) with a collection (perhaps empty) of finitary operations and denote the
smallest subalgebra of A containing a subset X of A by <Z>. In particular, the
subalgebra <0> is the subalgebra generated by the set of constants (nullary operations)
of A. (By convention, if A has no constants then we allow 0 as a subalgebra.) An
endomorphism of A is a map u.:A-*A which respects all the operations of A. The
composition of two endomorphisms is again an endomorphism, and indeed the set of all
endomorphisms of A is a monoid, denoted by End A. An endomorphism which is also a
bijection is called an automorphism, and the set Aut A of automorphisms of A forms a
group under composition. We denote the set End 4\Aut A of singular endomorphisms
by Sing^. We shall consistently denote the set of idempotents in Sing,, by E.

A subset X of A is called independent i( x$(X\{x}} for every x in X. A basis of A is
defined as a subset X which is independent and is such that (X} = A. The algebra A is
called an independence algebra if it has the properties:

(11) for every independent subset X of A and every u£<X>, the set X u {«} is
independent;

(12) for every basis X of A and for every map a: X-*A there is an endomorphism a
of A such that a\x = a.

The independence algebra A is called strong if:
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(13) for every pair X, Y of independent subsets, <-Jf> r> <y> = < 0 > implies that
X u Y is independent.

Many of the standard techniques of linear algebra can be adapted to this more general
class of algebras. It is convenient to list a number of properties that will be of use later
in the article. Let A be a strong independence algebra with a finite basis.

(14) Every subalgebra B of A has a finite basis, and all bases of B have the same
number of elements; this number is called rank B, the rank of the subalgebra B.

(15) Every set of independent elements in a subalgebra B can be extended to form a
basis of B. If rank B = r, then every set of r independent elements of B is a basis,
and so is every set of r elements generating B.

(16) If X = {xl,x2,...,xk}^A then there is a subset Y of X such that Y is a basis of

(17) If B, C are subalgebras of A and B v C is the smallest subalgebra of A
containing B and C, then

rank (B v C) = rank B + rank C - rank (B n C).

3. Shift and defect

Let a e End A, where A is a strong independence algebra of finite rank n. Then both
ima and fix a { = {xeA:xa = x}) are subalgebras of A. We define s(a), the s/ii/l of a, to be
n — rank(fixa), and d(a), the de/ect of a, to be n — rank(ima). We begin by establishing
some elementary properties of shift and defect which will be of assistance in proving the
main theorem of this section.

If e belongs to the set E of singular idempotents of End A, then im£ = fixe, and so
certainly

d(e) = s(e). (1)

In general, for a in End A we have fix a £ im a, and so

d(<x)^s(<x). (2)

If a,/3eEnd/4 then it is clear that im(a/?) £ im/?; hence

(3)

If ima = (x 1 , x 2 , . . . , x r ) then im(a/?) is generated by {xip,x2P,.-.,xrP} and so has rank
at most r. Thus

d{a). (4)
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It is clear that fix <x n fix/?cfix(a/?). Hence by (17) we have

rank(fix(oc/?)) ^ rank(fix a n fix /?)

= rank(fixa) + rank(fix/?) —rank(fixa v fix/?)

^ rank(fix a) + rank( fix /?) — n,

and from this it follows that

s(«/?)gs(a) + s(/?). (5)

We can now easily establish:

Theorem 1. Let A be a strong independence algebra and let E be the set of singular
idempotents in End A. Ifae Ek then s(oi)/d(<x) ̂  k.

Proof. Suppose that <x = ele2...ek, where eue2,...,skeE. Then

by (5)

by(l)

^kd(a) by (3) and (4),

and the proof is complete.

4. Connected algebras

An independence algebra A of finite rank is called connected if it is strong and if for
any two independent elements x, y in A there exists z in A such that

<*,>>> = <x,z> = <y,z>. (6)

A vector space V over a field F certainly has this property—we simply take z = x + y. By
contrast, the set [n] (with no algebraic structure) does not have the property, for in this
case <x, y> = {x, y}, and the only z for which <x,)'> = <x,z> is the element y itself.

Another example, of a connected independence algebra, attributed to Narkiewicz
[11], is quoted by Gratzer ([7, Exercise 5.26]). Let (R, +,) be a division ring, let (A, +)
be a left module over R, and let Ao be a submodule of A with the property that for all a
in / l 0 and all r # 0 in K there exists b in ,40 such that a = rb. Let T be the set of all n-ary
operations f on A (with n^O) of the form
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n - l

£ (7)
i = 0

where A0,Ai,...,An_iei? and aeA0. When «=0, (7) is to be interpreted as specifying a
constant (0-ary operation) a. Then (A, T) is a connected independence algebra in which
<0> = /4o. The verifications are routine, and the element z required by the condition (6)
is again x + y.

A third example, which we owe to Dr John Fountain, shows that a connected
independence algebra need not have constants. Let A = {a,b,c}, and let o be a binary
relation specified by the table

o

a

b

c

a
a

c

b

b
c

b

a

c
b

a

c

This is not a semigroup: (aob)oc = c, ao(boc) = a. It is, however, not hard to check that
it is a strong independence algebra, in which <x> = {x} for all x, and <x,y>= </4> = ,4
for all x^y, and in which the non-empty independent sets are {a}, {b}, {c}, {a,b}, {a,c}
and {b,c}. Every permutation of {a,b,c} is an automorphism. Singular endomorphisms
are scarcer: if, for example, ace = ba. = t, (where t e A), then

c<x = (a o b)a=(aa) o (fca) = t o t = t

also. Hence the only singular endomorphisms are the constant maps

a b c\ f a b c \ fab c\
a a a)' \b b b)' \c c cj

The algebra is, moreover, connected. Given x ^ y (which implies that {x,y} is indepen-
dent), we take z as the unique element of A\{x,y} and immediately observe that
<x,>>> = <x,z> = <.y,z> = yi.

We shall require the following technical lemma:

Lemma 1. Let A be a connected independence algebra of finite rank, and let
{yi>y2>--->y»zi>z2>--->Zs} be independent, with r^s. Let a e End A and let f <r be such
that yfl = yt for 1 ^ / ^ / . Suppose that

has ranks s + p^r. Then there exist y'f +,,...,y'r in A such that:

1- {y\y-,ys,y'f+i,--,y'r,2l,...,zs} is independent;
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2- <yu...,yf,y'f+1a,...,y'ray = C.

Proof. Since {yi,...,y/} is an independent subset of ^a, . . . ,yr<x), we can find a
subset Y of {yf+!&,...,yr<x} such that {yu. ..,yf} v Y is a basis for {yla,...,yroC).
Relabelling if necessary, we write this basis as

We can now extend this set to obtain a basis

for C, where the elements z,<x have been relabelled if necessary, and where l + m = s-\-p.
For i=l,...,m the set {zi,yl + i} is independent. Hence, since A is connected, there

exists y'i+i such that

Let

Then

= B v <^ + 1,z,> v <.y',+2,z2y v - v <y;+m,zm>

= B v <J>,+ I )z,> v <y, + 2,z2> v - v <y,+m,zm>

= (yl,...,yr,zi,---,zs},

of rank r + s, and so the set

must be independent.
Next, we show that the set

is independent. Since Zje^y^j,/,*^ for i=l,2,...,m, it follows that z1a6<j',+,a,>'[+1a>.
Now the elements
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were chosen so as to generate (yi<x,...,3>,JX>; hence both yl+ia and y\+fl. are in <£)>, and
it follows that z,ae<D>. Since <£>> contains the independent set

it must have rank at least l+m. But |D| = / + m, and so the rank is exactly l + m = s + p.
Thus D is independent. Finally we conclude that <D>, being a subalgebra of C of rank
s+p, is equal to C.

If w e n o w def ine yl
i = y i for i = f+l,...,l a n d i = l + m+l,...,r, w e h a v e a se t

{y'f+i,...,y'r} with the required properties. We are now ready to prove:

Theorem 2. Let A be a connected independence algebra of finite rank n and let
. Denote the set of singular idempotents in End A by E. Then a.sEk if and only if

Proof. In view of Theorem 1, we need only consider the converse half. We prove the
result by induction on k. Certainly if fc= 1, so that s(a)^d(a), we deduce using (2) that
fixa = ima; hence (xa)a=xa for all x in A, and so aeE.

Suppose now that k ̂  2 and that

(k-l)d{a)<s(a)£kd(a). (8)

We write d(ix) = d, rank(fixa) = / (so that s(a) = « - / ) , b = (k-2)d(^0), a = n-f-
(k— \)d. The condition (8) is equivalent to

Choose a basis {yi,...,y/} for fix a, noting that from a = n — f—(k— \)d we have

Thus we can extend to obtain an independent subset {yu...,ys,11,...,za} of ima, and
then extend again to obtain a basis

{.yi> • • • >.V/ + (*-l)</> Z l > • • • > Z a }

of A. Notice that

k- i ^ - z ^ , . . . ,zaa.y =im a,

and so has rank n — d. Let us denote this set by C.
We now apply Lemma 1 to this set C, with r = f + (k— \)d, s = a. The conditions of

the lemma are satisfied, since
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We conclude that there exist elements y'/+i,---,y'f+{k-i)d in ^ such that

and

{ y i > • • • > j ' / i y ' f + 1 > • • • > y'f+<k - 1 M> Z I > • • • > z
a }

is independent. Since a + / + (/c— l)d = n, this set must be a basis of A. Now write

x,= y, for i = l,... ,/,

x / + 1 = Z; for i=l , . . . ,a ,

xf+a+i = y'f+t for i=l,. . . ,(/c-l)d,

and obtain a basis {*!,...,x,,} for /4 such that fixa = (x, Xy>, <x1,.. . ,x/+( I>£ima

and

im a = <x,,..., xf, xf+a + ,a,..., xna>.

For /= I,...,a there is a term 7] such that

Now define eeEnd/4 by

Xj£ = Xj if j = l , . . . , / o r i f j

xr+,e = 7;(Xi,..., xf, xf+a+!,..., xn) for i = 1,..., a.

Since

Tj{X1,. . . , X y , X y + o + 1 , . . . , X n ) 6 \ X j , . . . , X y , X y + a + 1 , . . . , X n )

foreach i, we easily see that e is idempotent.
Next, define ft in End A by

' \xft for j = f + a+l,...,n.

Then im/?£ima and so d(P)^d. Thus
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and so /feE*"1 by the induction hypothesis.
Finally, observe that ep = a; for we have

= XjP = Xj=x/x(j=l,...,f);

— T^X1,...,Xj-,Xf + a + 1,...,Xn)P

= ^ ( J C L ... ,xf, x f + a + xP,..., xj)

...,xf,xf+a+1a,..., xna)

j j j l n).

Thus a G Ek as required.
It is clear that for a singular element a of End A the maximum value of s(a) is « and

the minimum value of d(a) is 1. In the case of vector spaces both bounds are attainable,
but in a more general connected independence algebra A this may fail to be the case.
However, provided the algebra A has a non-empty set of constants we can attain the
bounds. For the following argument we are indebted to Dr John Fountain. Let A
contain at least one constant c. If {xl,x2,...,xn} is a basis of A, define a in End A by
the rule that

x,a = xI + 1,(j = l ,2 , . . . ,n- l ) ) xna = c.

Then im a = <x2,..., xn>, and so d(a) = 1. Also x.a" = c for i = 1,2,..., n. Let z e fix a, where
z is given in terms of the basis by means of some term t:z = t(x1)x2,...,xn). Then

z = za = za" = t(x l a", x2a",..., xna
n)

= t(c,c,...,c)e<0>.

Thus fixa = <0>, of rank 0, and so s(a) = n.
If A, with basis {x!,x2,...,xn}, has no constants, then we can consider a slightly

different endomorphism a given by

Then again d(a) = l, and xia"~1=xn for i= l ,2, . . . ,n. If z = t(x1,x2,...,x(1)efixa, then

z = za" ~' = t(xa, xn >. . . , x j e <xn >;
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hence fixa = <xn> has rank 1. It follows that s(a) = n— 1.
Accordingly we have the following generalization of a result proved by Dawlings [2],

in the linear algebra context:

Corollary 1. Let A be a connected independence algebra with finite rank n, let Sing^
be the semigroup of all singular endomorphisms of A, and let E be the set of indempotents
of SingA. If A contains at least one constant, then A(Sing/1) = n. If A contains no constants
then

For an example of an algebra A with no constants in which A(Sing/1) = n— 1 we need
look no further than the earlier Fountain example quoted earlier, in which n = 2 and
A(Sing/4)=l.

Acknowledgement. We are grateful to Dr John Fountain for many useful comments,
and for pointing out an error in an earlier draft of this paper.
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