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On Deformations of the Complex Structure
on the Moduli Space of Spatial Polygons

Yasuhiko Kamiyama and Shuichi Tsukuda

Abstract. For an integer n > 3, let M, be the moduli space of spatial polygons with n edges. We
consider the case of odd n. Then M, is a Fano manifold of complex dimension n — 3. Let Oy,
be the sheaf of germs of holomorphic sections of the tangent bundle TM,. In this paper, we prove
H1(M,,©pm,) = 0 forall g > 0and all odd n. In particular, we see that the moduli space of deforma-
tions of the complex structure on M, consists of a point. Thus the complex structure on M, is locally
rigid.

1 Introduction

For an integer n > 3, let M, be the moduli space of spatial polygons P =
(a1, ay,...,a,) whose edges are vectors a; € R® of length |a;| = 1 (1 < i < n).
Two polygons are identified if they differ only by motions in R®>. The sum of the
vectors is assumed to be zero. Thus:

(1.1) M, ={P=(aj,...,a,) €(S)":a;+---+a, =0}/SO(3).

For odd n or n = 4, M,, has no singular points. In fact, this is a Fano manifold (i.e.
the anticanonical bundle is ample) of complex dimension #n — 3 [8]. On the other
hand, for even n > 6, M,, has cone-like singular points [5].

In this paper, we assume n to be odd. Since M5 = {point}, we assume that
n > 5. Then many topological properties of M,, are already known. For example, the
cohomology ring H* (M, R) is known in [1], [3], [7], and the intersection pairings
an o B(a, B € H*(M,,R)) are known in [4].

We consider the following problem: Is it possible to deform the complex structure
on M,? Let V be a complex manifold and let ©y be the sheaf of germs of holomor-
phic sections of the tangent bundle TV. Then it is well-known that deformations
of the complex structure on V are parametrized by a subspace of the cohomology
group H'(V, ©y) (see [9]). In particular if H'(V,©y) = 0, then the moduli space
of deformations of the complex structure on V consists of a point. Thus we cannot
deform the complex structure on V. We shall prove that the cohomology H*(V, Oy)
is special when V' = M,,. Let Oy, be the sheaf of germs of holomorphic sections of
the tangent bundle TM,,. Then our main result is the following theorem.

Theorem A For all ¢ > 0 and all odd n, we have

H1(M,,0©\,) =0.
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In particular, the fact H' (M,,, ©),) = 0 tells us the following:

Theorem B For all odd n, the moduli space of deformations of the complex structure
on M, consists of a point. Thus the complex structure on M, is locally rigid.

Remark 1.2 When n = 5, Theorem A is already known. (See Section 3 for detail.)
This paper is organized as follows. In Section 2, we prove Theorem A except the
cases (n,q) = (5,0),(5,1) or (7, 1). In Section 3, we study these cases.

2 Proof of Theorem A for General Cases

In this section, we prove the following:
Theorem 2.1

(i) For all odd n > 7, we have H°(M,,, ©p;,) = 0.
(i) For all odd n > 9, we have H'(M,,, ©y;,) = 0.
(iii) For all ¢ > 2 and all odd n > 5, we have H1(M,,, ©y1,) = 0.

First we prove Theorem 2.1(iii). Recall that M,, is a Fano manifold [8]. That is,
the anticanonical bundle K* = A"~3TM,, is ample, where we write the canonical
bundle by K. Since H1(M,,, ©y;,) = HY(M,, 2" *K*), we have the result by the
Kodaira-Nakano vanishing theorem [2].

In order to prove Theorem 2.1(i) and (ii), we identify M, with the moduli space
of stable points on CP!. In what follows, we fix odd n and set n = 2m + 1. Let
X = (CPY)" and G = PSL(2, C). Then the group G acts diagonally on X. A n-tuple
(x1,...,%,) € X is called stable if it contains no point of CP! with multiplicity > m.
Let X* be the open subset of X consisting of all stable points. Then X* is G-stable,
the quotient p: X* — Y exists and is a principal G-bundle, and Y is biholomorphic
to M,,. In particular, p is an affine morphism and satisfies pSOy: = Oy, where p%
denotes the invariant direct image.

Let g be the Lie algebra of G; let TX (resp. TY) be the tangent bundle of X (resp.
Y), and let ©x (resp. Oy) be its sheaf of germs of holomorphic sections. As p is a
principal G-bundle, the differential dp: TX* — p*TY fits into an exact sequence of
vector bundles over X°:

(2.2) 0—g— TX — p*TY =0,

where g denotes the trivial bundle X* x g over X*.
The long exact sequence of cohomology defined by (2.2) begins with

0 — H'(X*,0x) ® g — HY(X, Ox) — HY(X*, p*Oy) —
— H'(X*,0x) ® g = H'(X%,0x) — H' (X%, p*Oy) — H*(X*, Ox) @ g.

Take G-invariants in this exact sequence. Since p is affine and p¢Oy: = Oy, we have
HI(X*, p*©Oy)¢ = HI(Y, Oy) for all g. Thus, we have an exact sequence

(2.3) 0= (H'(X*, 0x) ®9) = H'(X*,0x)C — H(Y,Oy) —

— (H'(C,05) ®0) ¢ = H'(X, 0x)¢ = H(Y, Oy) — (HX(X', O0x) @ g) .
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Proposition 2.4 The restriction maps H1(X, Ox) — H1(X?, Oxs) and H1(X, Ox) —
H1(X?, Ox:) are isomorphisms for g < m — 2.

Proof We use (b) = (d) of [10, p. 36, Theorem (1.14)]. For X, A and q in the
theorem, we take X = (CP')", A = X — X*and g = m — 1. (Recall that we set
n = 2m+ 1.) Let F be a locally free sheaf on X and we consider (b) of the theorem.
In [10, p. 26], a subvariety of X is defined by S, x(F) = {x € X : codhg, F, <
m + k}. Here codh, Fy denotes the homological codimension of F, over O, (see

[10, p. 22]). Now it i o see that S, (F) = 42 OSksmy h
5 P- . OW 1T 1S eas O See a = ence we nave
P Y ek X k>m+l.

dim(A N Sm+k(3")) < kfor all k. Thus (b) is satisfied in our situation. Then (d) of
the theorem holds. Thus the restriction maps H1(X, J) — H4(X*, F) are bijective for
q < m — 2 and injective for ¢ = m — 1. This completes the proof of Proposition 2.4.

|

Now we apply Proposition 2.4 to (2.3). Since H*(X, Ox) = C, H*(X,©Ox) = g"
and H1(X, Ox) = 0 = H1(X, O) if g > 1, we obtain for m > 3:

0— g% — (a")° — H(Y,0y) > 0 and H'(Y,0y) C (H*(X’,0x) ®g) .

Since g¢ = (") = 0, we have H°(Y, ©y) = 0. Hence Theorem 2.1(i) holds.
Similarly, one obtains H'(Y, ©y) = 0 for m > 4. Hence Theorem 2.1(ii) holds.

3 Proof of Theorem A For n =5 and 7

By Theorem 2.1, it suffices to study H1(M,,, Oy, ) with (n,q) = (5,0),(5,1) or (7,1)
in order to complete the proof of Theorem A. First we study the case n = 5. Forr < 6,
let S, be the surface obtained from CP? by blowing up r points in general position
(the so called Del Pezzo surface of degree 9 — r). Then M5 is biholomorphic to S;.
(See [8, p. 74].) The cohomology H*(S,, ©s,) was determined in [9, p. 225-226] as
8 —2r r§3dimH1(Sr,@5,): 0 r<4
0 > 4, 2r—8 r>5,
and dim H*(S,, ©s,) = 0. In particular, H*(S,, ©s,) = 0 if and only if r = 4.

Now the remaining case is H' (M, ©,y,). By Theorem 2.1(i) and (iii), it suffices to
prove x(Mz, Oy, ) = 0. We shall prove this in more general form.

follows. dim H(S,,Os,) =

Theorem 3.1 For all odd n, we have
X(M,,Oy,) = 0.

In what follows, we prove this theorem using the Hirzebruch-Riemann-Roch for-
mula. As in Section 2, we fix odd # and set n = 2m + 1. First we recall the structure
of H*(M,,R). Fori € {1,...,n}, we define A,; C (R*)" by

0
Api=qP=(a,...,ay) € ()" :a1+---+a,=0anda; = | 0
1
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Let SO(2) act on R? by rotation about the z-axis. Then for odd n, the diagonal
SO(2)-action on (R®)" is free on A,; and we have M,, = A, ;/SO(2). (See (1.1).)
Therefore, A, ; — M,, is a principal SO(2)-bundle. Let {; — M,, be the holomorphic
line bundle associated to A,,; — M,: & = (A,; x C)/S', where we identify SO(2)
with $' and let S" acton A,,; x Cby (P, ) - g = (Pg,a8) ((Pa) € A,; xC,g € §').
We define z; € H?>(M,,, R) to be the first Chern class of the line bundle &;: z; = ¢;(&;)
(1 <i < n). Now we have the following theorem.

Theorem 3.2 ([1], [3], [7]) When n = 2m + 1, the algebra H* (M, R) is generated by
Z1, - . . , 2, with the relations:
i)z = =2
(ii) 1 ;e,(z +2j) = 0, foralli € {1,...,ntand ] C {1,... ,n} such thati & ]
and | J| = m, where | J| denotes the cardinal number.

Next we study the intersection pairings. For a sequence (dy, ..., d,) of nonnega-
tive integers with 37 di = n — 3, we set (g, - 7,) = [,, 2" -+ z%. In partic-
ular for 0 < k < m — 1, we set (p,n) = [}, 2%z, - z,_s_,. By Theorem 3.2(i)
and the action of the symmetric group X, on M, it suffices to determine (p,, ») for

0 < k < m — 11in order to determine (7, - - - 74,) for all sequences. Concerning this,
we have the following:

Theorem 3.3 ([4]) When n = 2m + 1, the numbers (p, ) (0 < k < m — 1) are given
as follows.
o en)
(%)
Finally we recall the description of the total Chern class ¢(TM,,).
Theorem 3.4 ([3]) We have

<pn,2k> = (_1)k

n
o(TM,) = (1 —2) " JJ(1 +2).
i=1
Recall that we have holomorphic line bundles §&; — M,, (1 < i < n). Using the

Hirzebruch-Riemann-Roch formula [2], it is easy to prove the following proposition
from Theorems 3.3 and 3.4.

Proposition 3.5 For1 < i < n, we have

(i) x(My, &) = 0.
(i) x(My, &) = —1.

Now we prove Theorem 3.1. By Theorem 3.4, we have ch(TM,,) = —1—e"—e "'+
Z?:l €. Using the Hirzebruch-Riemann-Roch formula, we have x(M,,Oy,) =
—X(Myy, Op,) — X(My, &) — X (M3, §5) + 32011 x(My,, &). By [6], [8], we have
X(M,;,Op,) = 1. Then we see by Proposition 3.5 that x(M,,Oy,) = -1 — 0 —
(=1) + n- 0 = 0. This completes the proof of Theorem 3.1.
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