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On Deformations of the Complex Structure
on the Moduli Space of Spatial Polygons

Yasuhiko Kamiyama and Shuichi Tsukuda

Abstract. For an integer n ≥ 3, let Mn be the moduli space of spatial polygons with n edges. We

consider the case of odd n. Then Mn is a Fano manifold of complex dimension n − 3. Let ΘMn

be the sheaf of germs of holomorphic sections of the tangent bundle TMn. In this paper, we prove

Hq(Mn,ΘMn ) = 0 for all q ≥ 0 and all odd n. In particular, we see that the moduli space of deforma-

tions of the complex structure on Mn consists of a point. Thus the complex structure on Mn is locally

rigid.

1 Introduction

For an integer n ≥ 3, let Mn be the moduli space of spatial polygons P =

(a1, a2, . . . , an) whose edges are vectors ai ∈ R3 of length |ai | = 1 (1 ≤ i ≤ n).

Two polygons are identified if they differ only by motions in R3. The sum of the

vectors is assumed to be zero. Thus:

Mn = {P = (a1, . . . , an) ∈ (S2)n : a1 + · · · + an = 0}/ SO(3).(1.1)

For odd n or n = 4, Mn has no singular points. In fact, this is a Fano manifold (i.e.

the anticanonical bundle is ample) of complex dimension n − 3 [8]. On the other

hand, for even n ≥ 6, Mn has cone-like singular points [5].

In this paper, we assume n to be odd. Since M3 = {point}, we assume that

n ≥ 5. Then many topological properties of Mn are already known. For example, the

cohomology ring H∗(Mn,R) is known in [1], [3], [7], and the intersection pairings
∫

Mn
α · β
(

α, β ∈ H∗(Mn,R)
)

are known in [4].

We consider the following problem: Is it possible to deform the complex structure

on Mn? Let V be a complex manifold and let ΘV be the sheaf of germs of holomor-

phic sections of the tangent bundle TV . Then it is well-known that deformations

of the complex structure on V are parametrized by a subspace of the cohomology

group H1(V,ΘV ) (see [9]). In particular if H1(V,ΘV ) = 0, then the moduli space

of deformations of the complex structure on V consists of a point. Thus we cannot

deform the complex structure on V . We shall prove that the cohomology H∗(V,ΘV )

is special when V = Mn. Let ΘMn
be the sheaf of germs of holomorphic sections of

the tangent bundle TMn. Then our main result is the following theorem.

Theorem A For all q ≥ 0 and all odd n, we have

Hq(Mn,ΘMn
) = 0.
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In particular, the fact H1(Mn,ΘMn
) = 0 tells us the following:

Theorem B For all odd n, the moduli space of deformations of the complex structure

on Mn consists of a point. Thus the complex structure on Mn is locally rigid.

Remark 1.2 When n = 5, Theorem A is already known. (See Section 3 for detail.)

This paper is organized as follows. In Section 2, we prove Theorem A except the

cases (n, q) = (5, 0), (5, 1) or (7, 1). In Section 3, we study these cases.

2 Proof of Theorem A for General Cases

In this section, we prove the following:

Theorem 2.1

(i) For all odd n ≥ 7, we have H0(Mn,ΘMn
) = 0.

(ii) For all odd n ≥ 9, we have H1(Mn,ΘMn
) = 0.

(iii) For all q ≥ 2 and all odd n ≥ 5, we have Hq(Mn,ΘMn
) = 0.

First we prove Theorem 2.1(iii). Recall that Mn is a Fano manifold [8]. That is,

the anticanonical bundle K∗ = Λn−3TMn is ample, where we write the canonical

bundle by K. Since Hq(Mn,ΘMn
) ∼= Hq(Mn,Ω

n−4K∗), we have the result by the

Kodaira-Nakano vanishing theorem [2].

In order to prove Theorem 2.1(i) and (ii), we identify Mn with the moduli space

of stable points on CP1. In what follows, we fix odd n and set n = 2m + 1. Let

X = (CP1)n and G = PSL(2,C). Then the group G acts diagonally on X. A n-tuple

(x1, . . . , xn) ∈ X is called stable if it contains no point of CP1 with multiplicity > m.

Let Xs be the open subset of X consisting of all stable points. Then X s is G-stable,

the quotient p : Xs → Y exists and is a principal G-bundle, and Y is biholomorphic

to Mn. In particular, p is an affine morphism and satisfies pG
∗
OXs = OY , where pG

∗

denotes the invariant direct image.

Let g be the Lie algebra of G; let TX (resp. TY ) be the tangent bundle of X (resp.

Y ), and let ΘX (resp. ΘY ) be its sheaf of germs of holomorphic sections. As p is a

principal G-bundle, the differential dp : TXs → p∗TY fits into an exact sequence of

vector bundles over Xs:

0→ g→ TXs → p∗TY → 0,(2.2)

where g denotes the trivial bundle Xs × g over Xs.

The long exact sequence of cohomology defined by (2.2) begins with

0→ H0(Xs,OXs )⊗ g→ H0(Xs,ΘXs )→ H0(Xs, p∗ΘY )→

→ H1(Xs,OXs )⊗ g→ H1(Xs,ΘXs )→ H1(Xs, p∗ΘY )→ H2(Xs,OXs )⊗ g.

Take G-invariants in this exact sequence. Since p is affine and pG
∗
OXs = OY , we have

Hq(Xs, p∗ΘY )G = Hq(Y,ΘY ) for all q. Thus, we have an exact sequence

0→
(

H0(Xs,OXs )⊗ g
)G
→ H0(Xs,ΘXs )G → H0(Y,ΘY )→(2.3)

→
(

H1(Xs,OXs )⊗ g
)G
→ H1(Xs,ΘXs )G → H1(Y,ΘY )→

(

H2(Xs,OXs )⊗ g
)G
.
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Proposition 2.4 The restriction maps Hq(X,OX) → Hq(Xs,OXs ) and Hq(X,ΘX) →
Hq(Xs,ΘXs ) are isomorphisms for q ≤ m− 2.

Proof We use (b) ⇒ (d) of [10, p. 36, Theorem (1.14)]. For X, A and q in the

theorem, we take X = (CP1)n, A = X − Xs and q = m − 1. (Recall that we set

n = 2m + 1.) Let F be a locally free sheaf on X and we consider (b) of the theorem.

In [10, p. 26], a subvariety of X is defined by Sm+k(F) = {x ∈ X : codhOx
Fx ≤

m + k}. Here codhOx
Fx denotes the homological codimension of Fx over Ox (see

[10, p. 22]). Now it is easy to see that Sm+k(F) =

{

∅ 0 ≤ k ≤ m

X k ≥ m + 1.
Hence we have

dim
(

A ∩ Sm+k(F)
)

≤ k for all k. Thus (b) is satisfied in our situation. Then (d) of

the theorem holds. Thus the restriction maps Hq(X,F)→ Hq(Xs,F) are bijective for

q ≤ m− 2 and injective for q = m− 1. This completes the proof of Proposition 2.4.

Now we apply Proposition 2.4 to (2.3). Since H0(X,OX) = C, H0(X,ΘX) = g
n

and Hq(X,OX) = 0 = Hq(X,ΘX) if q ≥ 1, we obtain for m ≥ 3:

0→ g
G → (g

n)G → H0(Y,ΘY )→ 0 and H1(Y,ΘY ) ⊆
(

H2(Xs,OXs )⊗ g
)G
.

Since g
G = (g

n)G = 0, we have H0(Y,ΘY ) = 0. Hence Theorem 2.1(i) holds.

Similarly, one obtains H1(Y,ΘY ) = 0 for m ≥ 4. Hence Theorem 2.1(ii) holds.

3 Proof of Theorem A For n = 5 and 7

By Theorem 2.1, it suffices to study Hq(Mn,ΘMn
) with (n, q) = (5, 0), (5, 1) or (7, 1)

in order to complete the proof of Theorem A. First we study the case n = 5. For r ≤ 6,

let Sr be the surface obtained from CP2 by blowing up r points in general position

(the so called Del Pezzo surface of degree 9 − r). Then M5 is biholomorphic to S4.

(See [8, p. 74].) The cohomology H∗(Sr,ΘSr
) was determined in [9, p. 225–226] as

follows. dim H0(Sr,ΘSr
) =

{

8− 2r r ≤ 3

0 r ≥ 4,
dim H1(Sr,ΘSr

) =

{

0 r ≤ 4

2r − 8 r ≥ 5,

and dim H2(Sr,ΘSr
) = 0. In particular, H∗(Sr,ΘSr

) = 0 if and only if r = 4.

Now the remaining case is H1(M7,ΘM7
). By Theorem 2.1(i) and (iii), it suffices to

prove χ(M7,ΘM7
) = 0. We shall prove this in more general form.

Theorem 3.1 For all odd n, we have

χ(Mn,ΘMn
) = 0.

In what follows, we prove this theorem using the Hirzebruch-Riemann-Roch for-

mula. As in Section 2, we fix odd n and set n = 2m + 1. First we recall the structure

of H∗(Mn,R). For i ∈ {1, . . . , n}, we define An,i ⊂ (R3)n by

An,i =







P = (a1, . . . , an) ∈ (S2)n : a1 + · · · + an = 0 and ai =





0

0

1











.
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Let SO(2) act on R3 by rotation about the z-axis. Then for odd n, the diagonal

SO(2)-action on (R3)n is free on An,i and we have Mn = An,i/ SO(2). (See (1.1).)

Therefore, An,i → Mn is a principal SO(2)-bundle. Let ξi → Mn be the holomorphic

line bundle associated to An,i → Mn: ξi = (An,i × C)/S1, where we identify SO(2)

with S1 and let S1 act on An,i ×C by (P, α) · g = (Pg, αg)
(

(P, α) ∈ An,i ×C, g ∈ S1
)

.

We define zi ∈ H2(Mn,R) to be the first Chern class of the line bundle ξi : zi = c1(ξi)
(1 ≤ i ≤ n). Now we have the following theorem.

Theorem 3.2 ([1], [3], [7]) When n = 2m + 1, the algebra H∗(Mn,R) is generated by

z1, . . . , zn with the relations:

(i) z2
1 = · · · = z2

n.

(ii)
∏

j∈ J(zi + z j) = 0, for all i ∈ {1, . . . , n} and J ⊆ {1, . . . , n} such that i 6∈ J

and | J| = m, where | J| denotes the cardinal number.

Next we study the intersection pairings. For a sequence (d1, . . . , dn) of nonnega-

tive integers with
∑n

i=1 di = n − 3, we set 〈τd1
· · · τdn

〉 =
∫

Mn
zd1

1 · · · z
dn
n . In partic-

ular for 0 ≤ k ≤ m − 1, we set 〈ρn,2k〉 =
∫

Mn
z2k

1 z2 · · · zn−2k−2. By Theorem 3.2(i)

and the action of the symmetric group Σn on Mn, it suffices to determine 〈ρn,2k〉 for

0 ≤ k ≤ m− 1 in order to determine 〈τd1
· · · τdn

〉 for all sequences. Concerning this,

we have the following:

Theorem 3.3 ([4]) When n = 2m + 1, the numbers 〈ρn,2k〉 (0 ≤ k ≤ m− 1) are given

as follows.

〈ρn,2k〉 = (−1)k

(

m−1
k

)(

2m−1
m

)

(

2m−1
2k+1

) .

Finally we recall the description of the total Chern class c(TMn).

Theorem 3.4 ([3]) We have

c(TMn) = (1− z2
1)−1

n
∏

i=1

(1 + zi).

Recall that we have holomorphic line bundles ξi → Mn (1 ≤ i ≤ n). Using the

Hirzebruch-Riemann-Roch formula [2], it is easy to prove the following proposition

from Theorems 3.3 and 3.4.

Proposition 3.5 For 1 ≤ i ≤ n, we have

(i) χ(Mn, ξi) = 0.

(ii) χ(Mn, ξ
∗

i ) = −1.

Now we prove Theorem 3.1. By Theorem 3.4, we have ch(TMn) = −1−ez1−e−z1 +
∑n

i=1 ezi . Using the Hirzebruch-Riemann-Roch formula, we have χ(Mn,ΘMn
) =

−χ(Mn,OMn
) − χ(Mn, ξ1) − χ(Mn, ξ

∗

1 ) +
∑n

i=1 χ(Mn, ξi). By [6], [8], we have

χ(Mn,OMn
) = 1. Then we see by Proposition 3.5 that χ(Mn,ΘMn

) = −1 − 0 −
(−1) + n · 0 = 0. This completes the proof of Theorem 3.1.
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