QUADRILATERAL-TREE PLANAR RAMSEY NUMBERS XIAOLAN HU, YUNQING ZHANG ${ }^{\boxtimes}$ and YANBO ZHANG

(Received 30 July 2017; accepted 3 October 2017; first published online 30 January 2018)

Abstract

For two given graphs G_{1} and G_{2}, the planar Ramsey number $P R\left(G_{1}, G_{2}\right)$ is the smallest integer N such that every planar graph G on N vertices either contains G_{1}, or its complement contains G_{2}. Let C_{4} be a quadrilateral, T_{n} a tree of order $n \geq 3$ with maximum degree k, and $K_{1, k}$ a star of order $k+1$. We show that $P R\left(C_{4}, T_{n}\right)=\max \left\{n+1, P R\left(C_{4}, K_{1, k}\right)\right\}$. Combining this with a result of Chen et al. ['All quadrilateralwheel planar Ramsey numbers', Graphs Combin. 33 (2017), 335-346] yields exact values of all the quadrilateral-tree planar Ramsey numbers.

2010 Mathematics subject classification: primary 05C55.
Keywords and phrases: quadrilateral, tree, planar Ramsey number.

1. Introduction

In this paper, all graphs are simple and finite. Let $G=(V(G), E(G))$ be a graph. The numbers of vertices and edges in G are called the order and size of G, respectively. The neighbourhood $N_{G}(v)$ of a vertex v is the set of vertices adjacent to v and the degree $d_{G}(v)$ of v is $\left|N_{G}(v)\right|$. Let $\Delta(G)$ and $\delta(G)$ be the maximum degree and minimum degree of G, respectively. A vertex of degree 1 is also said to be a leaf, and a leaf adjacent to v is also called a leaf neighbour of v. The complement of G is denoted by \bar{G}. Let $K_{1, n-1}$, P_{n}, C_{n} and K_{n} be a star, a path, a cycle and a complete graph of order n, respectively. (C_{4} is also called a quadrilateral.)

For two given graphs G_{1} and G_{2}, the planar Ramsey number $\operatorname{PR}\left(G_{1}, G_{2}\right)$ is the smallest integer N such that every planar graph G on N vertices either contains G_{1}, or its complement contains G_{2}. The planar Ramsey number was introduced by Walker [7] in 1969 and is the usual Ramsey number $R\left(G_{1}, G_{2}\right)$ with the ground set restricted to planar graphs. It is easy to see that $P R\left(G_{1}, G_{2}\right) \leq R\left(G_{1}, G_{2}\right)$. Since many problems in graph theory become more tractable when restricted to the plane, we might hope that determining $\operatorname{PR}\left(G_{1}, G_{2}\right)$ is tractable. Calculating $R\left(K_{m}, K_{n}\right)$ is a very challenging problem as it increases exponentially. However, based on the four colour theorem and

[^0]Grümbaum's 3-colourings theorem [3], Steinberg and Tovey [6] determined all values of $\operatorname{PR}\left(K_{m}, K_{n}\right)$. For the Ramsey number for C_{4} versus a tree, Burr et al. [1] showed that $R\left(C_{4}, T_{n}\right)=\max \left\{4, n+1, R\left(C_{4}, K_{1, k}\right)\right\}$, where T_{n} is a tree of order n with maximum degree k, which transfers the problem of determining the values of $R\left(C_{4}, T_{n}\right)$ to calculating the values of $R\left(C_{4}, K_{1, k}\right)$. Unfortunately, the exact values for $R\left(C_{4}, K_{1, n}\right)$ are far from being known (see [8, 9]). It is shown in [5] that $R\left(C_{4}, K_{1, n}\right) \leq n+\lfloor\sqrt{n-1}\rfloor+2$ for $n \geq 2$ and in [1] that $R\left(C_{4}, K_{1, n}\right) \geq n+\sqrt{n}-6 n^{11 / 40}$ for sufficiently large n.

In this paper, our aim is to determine $\operatorname{PR}\left(C_{4}, T_{n}\right)$. The main result is as follows.
Theorem 1.1. Let T_{n} be a tree of order $n \geq 3$ with maximum degree k. Then $P R\left(C_{4}, T_{n}\right)=\max \left\{n+1, P R\left(C_{4}, K_{1, k}\right)\right\}$.

Theorem 1.1 tells us that the values of $P R\left(C_{4}, T_{n}\right)$ depend essentially on the values of $\operatorname{PR}\left(C_{4}, K_{1, k}\right)$, where $k=\Delta\left(T_{n}\right)$. Can we determine all the values of $P R\left(C_{4}, K_{1, n}\right)$? Define $\delta\left(n, C_{4}\right)=\max \left\{\delta(G) \mid G\right.$ is a planar graph of order n without $\left.C_{4}\right\}$. Recently, Chen et al. [2] determined the values of $\delta\left(n, C_{4}\right)$ for all n.

Theorem 1.2 [2]. Let $n \geq 4$ be an integer. Then

$$
\delta\left(n, C_{4}\right)= \begin{cases}1 & \text { if } n=4, \\ 2 & \text { if } 5 \leq n \leq 9 \\ 3 & \text { if } 10 \leq n \leq 43 \text { and } n \notin\{30,36,39,42\}, \\ 4 & \text { otherwise } .\end{cases}
$$

Now define

$$
f(n)= \begin{cases}4 & \text { if } n=2 \\ n+3 & \text { if } 3 \leq n \leq 6 \\ n+4 & \text { if } 7 \leq n \leq 39 \text { and } n \notin\{26,32,35,38\} \\ n+5 & \text { otherwise }\end{cases}
$$

Then by Theorem 1.2, we compute

$$
\begin{gathered}
\delta\left(f(n), C_{4}\right)= \begin{cases}1 & \text { if } n=2, \\
2 & \text { if } 3 \leq n \leq 6, \\
3 & \text { if } 7 \leq n \leq 39, \\
4 & \text { otherwise } .\end{cases} \\
\delta\left(f(n)-1, C_{4}\right)= \begin{cases}2 & \text { if } 2 \leq n \leq 6, \\
3 & \text { if } 7 \leq n \leq 39 \\
4 & \text { otherwise } .\end{cases}
\end{gathered}
$$

Since $\delta(G)+\Delta(\bar{G})=|V(G)|-1$ for any graph G, it follows that $\bar{\Delta}\left(f(n), C_{4}\right)=n+1$ if $n \in\{26,32,35,38\}$ and $\bar{\Delta}\left(f(n), C_{4}\right)=n$ otherwise, and so $\operatorname{PR}\left(C_{4}, K_{1, n}\right) \leq f(n)$. Moreover, $\bar{\Delta}\left(f(n)-1, C_{4}\right)=n-2$ if $n \in\{2,27,33,36,39\}$ and $\bar{\Delta}\left(f(n)-1, C_{4}\right)=n-1$ otherwise, and so $P R\left(C_{4}, K_{1, n}\right) \geq f(n)$. So we have the following corollary.

Corollary 1.3. Let $n \geq 2$ be an integer. Then $\operatorname{PR}\left(C_{4}, K_{1, n}\right)=f(n)$.
By Theorem 1.1 and Corollary 1.3, we can completely determine all the quadrilateral-tree planar Ramsey numbers.

2. Preliminaries

In this section, we first introduce some operations on graphs, then give several lemmas that will be used in the proof of Theorem 1.1.

For any $S \subseteq V(G)$, let $G[S]$ denote the subgraph induced by S in G, and $G-S$ the graph obtained from G by deleting all the vertices of S. When $S=\{v\}$, we simplify $G-\{v\}$ to $G-v$. Let $G-u v$ denote the graph obtained from G by deleting the edge $u v \in E(G)$. For $X, Y \subseteq V(G)$, we define $(X, Y)_{G}=\{u v \in E(G) \mid u \in X, v \in Y\}$. Let $G[X, Y]$ be a bipartite graph with vertex set $X \cup Y$ and edge set $(X, Y)_{G}$.

In [1], Burr et al. considered Ramsey numbers for C_{4} versus some special trees and obtained $R\left(C_{4}, P_{n}\right)=n+1$ for $n \geq 3$ and $R\left(C_{4}, F\right) \leq 2(q+1)$ for any forest F of size q without isolated vertices. Since $P R\left(G_{1}, G_{2}\right) \leq R\left(G_{1}, G_{2}\right)$, we have the following two results.

Lemma 2.1. Let $n \geq 3$ be an integer. Then $P R\left(C_{4}, P_{n}\right) \leq n+1$.
Lemma 2.2. Suppose that F is a forest of size q without isolated vertices. Then $P R\left(C_{4}, F\right) \leq 2(q+1)$.

The following 'folklore lemma' gives a sufficient condition for a graph to contain all trees of given order.

Lemma 2.3. Let G be a graph with $\delta(G) \geq n-1$. Then G contains all trees of order n.
In 1935, Hall [4] gave a necessary and sufficient condition for the existence of a matching in a bipartite graph $G[X, Y]$ which covers every vertex in X.

Lemma 2.4 [4]. A bipartite graph $G=G[X, Y]$ has a matching which covers every vertex in X if and only if $\left|N_{G}(S)\right| \geq|S|$ for all $S \subseteq X$, where $N_{G}(S)$ is the set of all neighbours of the vertices in S.

3. Proof of Theorem 1.1

Let T_{n} be a tree of order $n \geq 3$ with maximum degree k, and let $x \in V\left(T_{n}\right)$ be a vertex of degree k. Set $p=\max \left\{n+1, P R\left(C_{4}, K_{1, k}\right)\right\}$.

First we show that p is a lower bound for $\operatorname{PR}\left(C_{4}, T_{n}\right)$. Observe that $P R\left(C_{4}, T_{n}\right) \geq$ $\operatorname{PR}\left(C_{4}, K_{1, k}\right)$. On the other hand, $\operatorname{PR}\left(C_{4}, T_{n}\right) \geq n+1$ because $K_{1, n-1}$ is a planar graph of order n without C_{4} and there is no tree of order n in its complement. Therefore $P R\left(C_{4}, T_{n}\right) \geq \max \left\{n+1, P R\left(C_{4}, K_{1, k}\right)\right\}$.

Next we show by induction on n that $P R\left(C_{4}, T_{n}\right) \leq \max \left\{n+1, P R\left(C_{4}, K_{1, k}\right)\right\}$. If $n=3$ or 4 , then T_{n} is a path or a star and the result holds by Lemma 2.1. Assume that $n \geq 5$ and that the result holds for all smaller values of n. Let G be a planar graph of
order p without C_{4}. We will show that \bar{G} contains T_{n}. Since the result holds for paths and stars, we may assume that $3 \leq k \leq n-2$.

Let $v \in V(G)$ with $d_{G}(v)=\delta(G)$. Then v is a vertex of maximum degree in \bar{G}. Set $S=N_{\bar{G}}(v)$ and $\bar{\Delta}=|S|$. Since $p \geq P R\left(C_{4}, K_{1, k}\right)$, we have $\bar{\Delta} \geq k$.

Case 1: $\bar{\Delta} \geq n$.
Let $F=T_{n}-x$. Then F is a forest of order $n-1$ with $n-k-1$ edges. If $n \leq 2 k$, then $2(n-k) \leq n$. By Lemma 2.2, $\bar{G}[S]$ contains all forests of size $n-k-1$ without isolated vertices, so $\bar{G}[S]$ contains F. Since $\bar{\Delta} \geq n$ and v is adjacent to all the vertices in S in \bar{G}, it follows that $\bar{G}[S \cup\{v\}]$ contains T_{n}. Now assume that $n \geq 2 k+1$. If $k \geq 4$, then $P R\left(C_{4}, K_{1, k}\right) \leq k+5 \leq 2 k+1 \leq n$ by Corollary 1.3. If $k=3$, then $P R\left(C_{4}, K_{1,3}\right)=6<n$. So in either case, $P R\left(C_{4}, K_{1, k}\right) \leq n$. Thus F is contained in a tree T^{\prime} of order $n-1$ with $\Delta\left(T^{\prime}\right) \leq k$. Consequently, $P R\left(C_{4}, F\right) \leq P R\left(C_{4}, T^{\prime}\right) \leq \max \left\{n, P R\left(C_{4}, K_{1, k}\right)\right\}=n$ by the induction hypothesis. Thus $\bar{G}[S]$ contains F. Since $\bar{\Delta} \geq n$ and v is adjacent to all the vertices in S in \bar{G}, it follows that $\bar{G}[S \cup\{v\}]$ contains T_{n}.
Case 2: $\bar{\Delta} \leq n-1$.
We consider two subcases according to the relationship between $\bar{\Delta}$ and k.
Subcase 2.1: $\bar{\Delta} \leq 2(k-1)$.
Since $\bar{\Delta} \leq 2(k-1)$, we have $\bar{\Delta} \geq 2(\bar{\Delta}-k+1)$. By Lemma $2.2, \bar{G}[S]$ contains all forests of size $\bar{\Delta}-k$ without isolated vertices. Let T^{\prime} be a tree of order $\bar{\Delta}+1(\leq n)$ obtained from T by successively deleting leaves other than those which are adjacent to x and let $F^{\prime}=T^{\prime}-x$. Then F^{\prime} is a forest of order $\bar{\Delta}$ with $\bar{\Delta}-k$ edges. Thus, $\bar{G}[S]$ contains F^{\prime}. Since v is adjacent to all the vertices in S in \bar{G}, it follows that $\bar{G}[S \cup\{v\}]$ contains T^{\prime}. Since $p \geq n+1$ and G contains no C_{4}, the tree T^{\prime} can be extended to T in \bar{G}.
Subcase 2.2: $\bar{\Delta} \geq 2 k-1$.
In this case, $2 k-1 \leq \bar{\Delta} \leq n-1$, so $2 k \leq n$. Let

$$
W=\left\{v \in V\left(T_{n}\right) \mid v \text { has a leaf neighbour of } T_{n}\right\}
$$

Since T_{n} is not a star, we have $|W| \geq 2$.
First we assume $|W|=2$. Then T_{n} is a tree obtained from two disjoint stars by joining their centres with a path. Let T^{\prime} be a tree obtained from T_{n} by deleting x and all leaf neighbours of x, and let $T^{\prime \prime}$ be a tree of order $\bar{\Delta}-k$ obtained from T^{\prime} by successively deleting leaves (but keeping the vertex which is adjacent to x). Since T^{\prime} is a tree of order $n-k$ and $\bar{\Delta}-k \leq n-k-1$, we have $\Delta\left(T^{\prime \prime}\right) \leq k-1$. Let T^{*} be the tree obtained from $T^{\prime \prime}$ by adding x and all leaf neighbours of x in T_{n}. Then $\left|V\left(T^{*}\right)\right|=\bar{\Delta}$.
Claim 1. $\bar{\Delta} \geq P R\left(C_{4}, T^{\prime \prime}\right)$.
Proof of Claim 1. For $3 \leq k \leq 4$, we have $P R\left(C_{4}, K_{1, k-1}\right) \leq k+2 \leq 2 k-1 \leq \bar{\Delta}$ by Corollary 1.3, so $P R\left(C_{4}, T^{\prime \prime}\right) \leq \max \left\{\bar{\Delta}-k+1, P R\left(C_{4}, K_{1, k-1}\right)\right\} \leq \bar{\Delta}$ by induction. For $k \geq 5$, we have $P R\left(C_{4}, K_{1, k-1}\right) \leq k+4 \leq 2 k-1 \leq \bar{\Delta}$ by Corollary 1.3, and again $P R\left(C_{4}, T^{\prime \prime}\right) \leq \max \left\{\bar{\Delta}-k+1, \operatorname{PR}\left(C_{4}, K_{1, k-1}\right)\right\} \leq \bar{\Delta}$ by induction.

By Claim $1, \bar{G}[S]$ contains $T^{\prime \prime}$. Since v is adjacent to all the vertices in S in \bar{G}, it follows that $\bar{G}[S \cup\{v\}]$ contains T^{*}. Since $p \geq n+1$ and G contains no C_{4}, we see that T^{*} can be extended to T_{n} in \bar{G}.

Now we assume $|W| \geq 3$. Let $a, b, c \in W$ and let a_{1} be a leaf neighbour of a, b_{1} a leaf neighbour of b and c_{1} a leaf neighbour of c. Assume without loss of generality that a is a vertex of W with $d_{T}(a)$ as large as possible. Then $3 \leq k \leq n-3$. If $T^{\prime}=T-\left\{a_{1}, b_{1}, c_{1}\right\}$, then T^{\prime} is a tree of order $n-3$ with maximum degree at most k.

Claim 2. $P R\left(C_{4}, T^{\prime}\right) \leq p-3$ unless $n=7, p=8, k=3$ and T^{\prime} is a $K_{1,3}$.
Proof of Claim 2. For $k=n-3$, we have $n=6$ because $2 k \leq n$ and so $k=3$ and $p=\max \left\{7, \operatorname{PR}\left(C_{4}, K_{1,3}\right)\right\}=7$. In this case, T^{\prime} is a $K_{1,2}$ and $\operatorname{PR}\left(C_{4}, T^{\prime}\right)=4=p-3$. For $k=n-4$, we have $n=7$ or 8 as $2 k \leq n$. If $n=7$, then $k=3$ and

$$
p=\max \left\{8, P R\left(C_{4}, K_{1,3}\right)\right\}=8 .
$$

In this case, T^{\prime} is a $K_{1,3}$ or a P_{4}. If T^{\prime} is a $K_{1,3}$, then $\operatorname{PR}\left(C_{4}, T^{\prime}\right)=6=p-2$ by Corollary 1.3. If T^{\prime} is a P_{4}, then $P R\left(C_{4}, T^{\prime}\right)=5=p-3$ by Lemma 2.1. If $n=8$, then $k=4$ and $p=\max \left\{9, \operatorname{PR}\left(C_{4}, K_{1,4}\right)\right\}=9$. In this case, $a=x$ by the choice of a and T^{\prime} is a tree of order 5 with maximum degree 3 . Thus

$$
P R\left(C_{4}, T^{\prime}\right)=\max \left\{6, P R\left(C_{4}, K_{1,3}\right)\right\}=6=p-3
$$

by induction. For $k \leq n-5$, we have $P R\left(C_{4}, K_{1, k}\right)=k+3 \leq n-2$ if $3 \leq k \leq 6$, and $P R\left(C_{4}, K_{1, k}\right) \leq k+5 \leq 2 k-2 \leq n-2$ if $k \geq 7$. Then

$$
P R\left(C_{4}, T^{\prime}\right) \leq \max \left\{n-2, P R\left(C_{4}, K_{1, k}\right)\right\}=n-2 \leq p-3
$$

by induction.
If $\delta(\bar{G}) \geq n-1$, then \bar{G} contains T_{n} by Lemma 2.3, so we assume $\delta(\bar{G}) \leq n-2$, and so $\Delta(G) \geq 2$. Let u be a vertex of maximum degree of G and let u_{1}, u_{2} be two neighbours of u. Let $G^{\prime}=G-\left\{u, u_{1}, u_{2}\right\}$. Then G^{\prime} is a planar graph of order $p-3$ without C_{4}.

First we assume $\overline{G^{\prime}}$ contains T^{\prime}. Set $\{w\}=V\left(G^{\prime}\right)-V\left(T^{\prime}\right)$. Let $X=\{a, b, c\}$ and $Y=\left\{u, u_{1}, u_{2}, w\right\}$. Consider the bipartite graph $\bar{G}[X, Y]$. Note that G contains no C_{4}, and so $|N(S)| \geq|S|$ for any $S \subseteq X$. By Lemma $2.4, \bar{G}[X, Y]$ has a matching covering every vertex in X. Then T^{\prime} together with this matching is a T in \bar{G}.

Next assume $\overline{G^{\prime}}$ contains no T^{\prime}. Then $n=7, p=8, k=3$ and T^{\prime} is a $K_{1,3}$ by Claim 2. In this case, $V(T)=\left\{x, a, a_{1}, b, b_{1}, c, c_{1}\right\}$ and $E(T)=\left\{x a, x b, x c, a a_{1}, b b_{1}, c c_{1}\right\}$. Note that G^{\prime} is a planar graph of order 5 without C_{4}, so $\Delta\left(\overline{G^{\prime}}\right)=2$. Let w be a vertex of maximum degree of $\overline{G^{\prime}}$ and w_{1}, w_{2} two neighbours of w in $\overline{G^{\prime}}$. Set $\left\{w_{3}, w_{4}\right\}=V\left(G^{\prime}\right)-\left\{w, w_{1}, w_{2}\right\}$. Then $w w_{3}, w w_{4} \in E(G)$. Since G contains no C_{4}, then $w u_{1} \in E(\bar{G})$ or $w u_{2} \in E(\bar{G})$, say $w u_{1} \in E(\bar{G})$. Hence the subgraph induced by $\left\{w u_{1}, w w_{1}, w w_{2}\right\}$ is a $K_{1,3}$. Let $X=\left\{u_{1}, w_{1}, w_{2}\right\}, Y=\left\{u, u_{2}, w_{3}, w_{4}\right\}$. Consider the bipartite graph $\bar{G}[X, Y]$. Since G contains no C_{4}, we have $|N(S)| \geq|S|$ for any $S \subseteq X$. By Lemma $2.4, \bar{G}[X, Y]$ has a matching covering every vertex in X. Then $K_{1,3}$ together with this matching is a T in \bar{G}.

This completes the proof of Theorem 1.1.

References

[1] S. Burr, P. Erdős, R. J. Faudree, C. C. Rousseau and R. H. Schelp, 'Some complete bipartite graphtree Ramsey numbers', Ann. Discrete Math. 41 (1988), 79-89.
[2] Y. J. Chen, Z. K. Miao and G. F. Zhou, 'All quadrilateral-wheel planar Ramsey numbers', Graphs Combin. 33 (2017), 335-346.
[3] B. Grünbaum, 'Grötzsch's theorem on 3-colorings', Michigan Math. J. 10 (1963), 303-310.
[4] P. Hall, ‘On representatives of subsets', J. Lond. Math. Soc. 10 (1935), 26-30.
[5] T. D. Parsons, 'Ramsey graphs and block designs I', Trans. Amer. Math. Soc. 209 (1975), 33-44.
[6] R. Steinberg and C. A. Tovey, 'Planar Ramsey numbers', J. Comb. Theory Ser. B 59 (1993), 288-296.
[7] K. Walker, 'The analog of Ramsey numbers for planar graphs', Bull. Lond. Math. 1 (1969), 187-190.
[8] X. M. Zhang, Y. J. Chen and T. C. E. Cheng, 'Polarity graphs and Ramsey numbers for C_{4} versus stars', Discrete Math. 340 (2017), 655-660.
[9] X. M. Zhang, Y. J. Chen and T. C. E. Cheng, 'Some values of Ramsey numbers for C_{4} versus stars', Finite Fields Appl. 45 (2017), 73-85.

XIAOLAN HU, School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, PR China
e-mail: xlhu@mail.ccnu.edu.cn
YUNQING ZHANG, Department of Mathematics, Nanjing University, Nanjing 210093, PR China
e-mail: yunqingzh@nju.edu.cn
YANBO ZHANG, College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, PR China e-mail: ybzhang@163.com

[^0]: The first author is partially supported by NSFC under grant number 11601176 and NSF of Hubei Province under grant number 2016CFB146; the second author is partially supported by NSFC under grant numbers 11671198 and 11571168 ; the third author is partially supported by NSFC under grant number 11601527. (c) 2018 Australian Mathematical Publishing Association Inc.

