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Abstract
Vitamin D is an essential nutrient to be consumed in the habitual dietary intake, whose deficiency is associated with various disturbances. This
study represents a validation of vitamin D status estimation using a semi-quantitative FFQ, together with data from additional physical activity
and lifestyle questionnaires. This information was combined to forecast the serum vitamin D status. Different statistical methods were applied to
estimate the vitaminD status using predictors based on diet and lifestyle. Serum vitaminDwas predicted using linear regression (with leave-one-
out cross-validation) and random forest models. Intraclass correlation coefficients, Lin’s agreement coefficients, Bland–Altman plots and other
methods were used to assess the accuracy of the predicted v. observed serum values. Data were collected in Spain. A total of 220 healthy
volunteers aged between 18 and 78 years were included in this study. They completed validated questionnaires and agreed to provide blood
samples to measure serum 25-hydroxyvitamin D (25(OH)D) levels. The common final predictors in both models were age, sex, sunlight expo-
sure, vitamin D dietary intake (as assessed by the FFQ), BMI, time spent walking, physical activity and skin reaction after sun exposure.
The intraclass correlation coefficient for the prediction was 0·60 (95 % CI: 0·52, 0·67; P< 0·001) using the random forest model. The magnitude
of the correlation was moderate, which means that our estimation could be useful in future epidemiological studies to establish a link between
the predicted 25(OH)D values and the occurrence of several clinical outcomes in larger cohorts.
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Vitamin D or cholecalciferol is a nutrient involved in a wide vari-
ety of physiological processes, including Ca and phosphorus
homeostasis and bone metabolism regulation(1,2). Vitamin D
nuclear receptor is widely distributed among a great range of tis-
sues in the human body, with diverse functions such as immune
system and neuroendocrine system regulation and cardiometa-
bolic control(3).

In humans, the main source of vitamin D is cutaneous
exposure to sun radiation, which elicits the conversion of

7-dehydrocholesterol to vitamin D in the skin(2). Another source
that has become essential in Northern countries, where the sun-
light becomes insufficient in winter months, is vitamin D supple-
mentation(2). The dietary consumption comes habitually from
natural sources (e.g. fish, eggs), fortified products (e.g. dairy
products, cereals) and supplementation(2). The European
Food Safety Authority has defined adequate dietary values for
vitamin D for all population groups(4,5). Thus, for infants aged
7–11 months, a vitamin D intake of 10 mcg/d (400 μg) has been
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recommended. The recommended intake for older children
and adults up to 70 years is 15 mcg/d (600 μg). Finally, for adults
older than 70 years old, the threshold has been set at 20 mcg/d
(800 μg)(4,5). An irregular or inadequate intake can lead to
chronic deficiency. The most common way to define vitamin
D status in humans is serum levels of 25-hydroxyvitamin D
(25(OH)D) determination(6). However, unnecessary blood
testing is not beneficial and leads to important economic costs
that must be taken into account(6).

Although vitamin D deficiency threshold is not clearly
defined, it seems that the most accepted cut-off point may be
serum concentration below 30 nmol/l (< 15 ng/ml), whereas
vitamin D insufficiency includes serum concentrations between
30 and 50 nmol/l (15–20 ng/ml)(2,5,7,8).

Therefore, it may be difficult to determine an accurate preva-
lence of vitamin D deficiency worldwide. However, some coun-
tries have described a prevalence of 60 % (Western Europe) and
36 % (the USA), among adults(9). Pregnant women and new-
borns seem to show the highest risk of vitamin D deficiency,
as well as obese and elderly people(10). Over the past decade,
there has been a substantial increase of blood sample requests
to determine levels of serum vitamin D, resulting in a significant
cost burden on the different health care systems(11). This trend
may be the result of an increasing recognition of the role that
vitamin D plays in musculoskeletal disorders and other physio-
logical processes (CVD, neoplastic processes, obesity, type 2
diabetes mellitus, mental health disorders or autoimmune dis-
eases)(12). A screening strategy to help predicting serum vitamin
D levels and therefore, identify those individuals that could be at
risk of vitamin deficiency may be valuable, given that previous
research has identified that vitamin D status is associated with
different socio-demographic and lifestyle factors(13–17). These
predictors include vitamin D dietary intake, use of supplements,
sun exposure, age, adiposity, physical activity, time spent out-
doors, blood draw season and among others(13–17). Several stud-
ies have developed predictive models to foretell vitamin D
deficiency in adults, beingmost of these published articles based
on populations from the USA, the Netherlands or Australia(18–21).
Other analyses have been conducted in specific groups such as
older women with a higher risk of fracture(22), pregnant
women(23,24) or children(25,26). In addition, there is a current trend
of developing predictive models based on machine learning
algorithms(27–29). Machine learning is an alternative statistical
method that can lead to improved and steady predictions in con-
trast with other standard models(27). However, there is not much
evidence on how accurately these models predict 25(OH)D sta-
tus in Mediterranean populations. Indeed, as sunlight is one of
the principal sources of vitamin D, and this may vary depending
on latitude, geographical location or even a different lifestyle,
those predictive models may not be suitable for the Spanish
population.

This study aimed to offer an alternative predictive model
based on different statistical models (linear regression and
machine learning models) to forecast 25(OH)D serum levels
from self-reported questionnaires about dietary and lifestyle
habits from a sample of Southern Europeans. In other words, this
study intends to provide a good and easy to use guide, which
could be used instead of blood sampling.

Methods

Study population

This study was conducted in two different samples of Spanish
populations. The first group based on 100 subjects was collected
from students and workers from the University of Navarra,
whereas the second group was a sample of 120 people recruited
through different health care centres from Zaragoza, all of them
Caucasian. At first, 150 subjects from Zaragoza were randomly
invited to join the study, from which thirty declined the invita-
tion, whereas nearly half of the individuals who received the
invitation from the University of Navarra refused to participate.
The unique inclusion criteria adoptedwere being over the age of
18 and willingness to provide blood samples and to complete a
battery of questionnaires. None of the participants had a history
of cancer, severe kidney disease or pregnancy at the time of the
study. Blood samples were extracted from all participants to
determine their 25(OH)D levels, especially during winter and
spring months, mostly in May. They also completed question-
naires including an FFQ(30), leisure-time physical activity(31)

and other questionnaires(32).
Sample size was determined according to a study based on

French population(16). Considering an alpha risk of 0·05, a power
of 80 % and a common standard deviation of 10 in a two-sided
test, the sample size was calculated to be 220. The drop-out rate
was considered to be 10 %.

Diet was assessed according to a well-designed, validated
and semi-quantitative FFQ(30) which contains 136-item informa-
tion about participants’ usual food intake in the past year. For
each item, common portion sizes were specified, and consump-
tion frequencies were divided into nine categories ranging from
‘never or almost never’ to ‘more than six servings per day’.
A dietitian updated the nutrient database by using the latest avail-
able information included in the food composition tables in
Spain, after processing all the questionnaires. Nutrient intake
scores were calculated using an ad hoc computer programme,
which was developed specifically for this purpose. The sum
of the frequency of a given food item consumption multiplied
by the nutrient composition of the specified food portion was
calculated. This questionnaire also includes information about
supplementation intake, sun exposure, history of sunburns
and the use of solar protective measures(30). Intake of vitamin
D supplementation was calculated using the frequency of daily
consumption of vitamin D supplementation multiplied by the
amount of vitamin D of each pill derived from the brand of vita-
min D supplementation or multivitamin supplement provided
for each participant. Additionally, data regarding physical activ-
ity were collected through another questionnaire – also vali-
dated(31). It contains information about anthropometric
measures (weight, height, waist and hip perimeter), level of
physical activity, time spent walking and doing up to seventeen
other activities.When quantifying the amount of physical activity
carried out during leisure time, each activity was weighted using
its proportional number of metabolic equivalents (MET). This
was done using the Compendium of Physical Activities,
assigning a metabolic rate index (MET score) for each activity.
Time spent on each activity (according to time per week and
months per year) was multiplied by its corresponding MET
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score. Afterwards, all MET scores for each activity and participant
were added so as to obtain a global value of MET-h/week for
each volunteer. It should also be noted that participants of the
study showed great variability in the length of time spent on lei-
sure activities during weekends as a consequence of the lack of
routine, which may cause an overestimation of the time spent in
each activity. For this reason, all activities carried out during the
weekend were disregarded, as they did not improve the statisti-
cal significance of the prediction. Information about alcohol
consumption, history of chronic diseases as well as a brief ques-
tionnaire about Mediterranean diet adherence were also
assessed. This study was conducted according to the guidelines
laid down in the Declaration of Helsinki, and all procedures
involving research study participants were approved by the
Research Ethics Committee from Aragon (PI20–425). Written
informed consent was obtained from all subjects.

Laboratory analysis

Plasma 25(OH)D levels from Zaragoza’s sample were deter-
mined by electrochemiluminescence immunoassay (Elecsys®
Vitamin D total II). The immunoassay employs a competitive
protein-binding assay, which uses vitamin D-binding protein
for detection of 25-OH Vitamin D. Serum vitamin D status from
Pamplona’s sample was determined by chemiluminescent
microparticle immunoassay. Both assays are intended for the
quantitative determination of total 25-hydroxyvitamin D in
human serum. Both methods are standardised in accordance
with the Vitamin D Standardization Program. The 25-hydroxyvi-
tamin D values ranged between 14·1 and 232 nmol/l as mea-
sured by the Reference Method, ID-LC-MS/MS (provided by
the Vitamin D Standardization and Certification Program with
assigned values by the RMP at CDC), showing a correlation
coefficient of 0·98. The sponsor defined the limit of detection as
7·5 nmol/l (3 ng/ml) and the limit of quantitation as 12·5 nmol/l
(5 ng/ml). The potential cross reactivity with 24,25(OH)D2
showed a mean of 12·4 % for non-normalised samples and
13·7 % for normalised samples. They are equivalent and no sta-
tistically significant differences have been found between
them(33).

Statistical analysis

Twodifferent statistical analyseswere carried out using both stat-
istical software STATA version 14 and R version 4.0.5. Regarding
data validation of FFQ and physical activity questionnaire as
serum vitamin D predictors, the relationship between the main
independent variables (amount of dietary vitamin D, hours of
sunbathing per week, etc.) and serum vitamin D as a continuous
dependent variable was established.

A first data analysis was carried out in STATA using multiple
linear regression, as a classical model. The first variable to be
studied was vitamin D dietary intake. Values of vitamin D
ingested from diet and vitamin supplements were joined in
the same variable. This variable was adjusted for total energy
intake (kcal) by the residuals method specifically for each sex,
in order to avoid a possible bias. Subsequently, the following
variables were included in the model: age and sex; BMI, which
was calculated from self-reported weight and height (kg/m2);

skin reaction after sun exposure (mild or severe reaction); time
spent on daily walks (minutes per day) and summer sun expo-
sure (hours per day). In order to estimate the last variable, a
weighted average of the weekly sun exposure during summer
was performed. Winter sun exposure was withdrawn due to
the lack of statistical significance.

After adjusting linear regression models of serum vitamin D
according to the variables listed above, beta coefficients were
obtained and included in a predictive equation for serum vita-
min D levels. Thus, successive equations were generated, each
one closer to a correlation of 1 than the previous. Afterwards, a
sensitivity analysis of these results was carried out through
leave-one-out cross validation to obtain impartial estimations
which were independent from the data that were used to derive
the coefficients (training set), thus avoiding over-fitting (exces-
sive adjustment after validating the predictive equation using
the same subjects already involved to create it). This method
consists in performing n linear regression models (one per par-
ticipant in the study, n 220). Each model is applied to a sample
of n-1 participants, where the regression coefficients for the dif-
ferent predictors obtained in each regression are applied only
to the individual who remained outside the regression model.
Thus, each subject will have a coefficient based on the pre-
dicted model for the remaining 219 participants. This method
avoids over adjustment and achieves a predictive equation
for each individual that comes from their own independent
sample.

Another sensitivity analysis was performed using R software,
where two comparable datasets called training set and testing
set, which contained 110 individuals each, were randomly gen-
erated and no significant differences were found between them
(P> 0·05). The training set was used to develop the predictive
models, and the testing set was used to validate them and evalu-
ate the root mean square error (RMSE), in order to choose the
best predictive model. Several machine learning models have
been tested for the purposes of this study, including random for-
est (RF), regression trees and linear regression models with auto-
matic selection of predictors.

Multiple linear regression allows generating a linear model
in which the value of the dependent variable (y) is determined
from a set of independent variables called predictors (x1, x2,
x3 : : : ). Predictors’ selection was carried out using stepAIC func-
tion. A RF model is made up of a set of individual decision trees,
each trained with a random sample extracted from the original
training data by bootstrapping. This implies that each tree is
trained with slightly different data. In each individual tree,
the observations are distributed by bifurcations (nodes) gener-
ating the structure of the tree until it reaches a terminal node(34).
The prediction of a new observation is obtained by adding the
predictions of all the individual trees that make up themodel. In
addition, we get the ‘Variable Importance /Gini Index’ values
for the forest, which can be used for making sense of the model
but not as a multiplication factor(34). Finally, regression trees are
the subtype of prediction trees that are applied when the
response variable is continuous. In general terms, in the train-
ing of a regression tree, the observations are distributed by
bifurcations (nodes) generating the structure of the tree until
it reaches a terminal node. The tree prediction is the response
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variable’s mean of the training observations that are at the same
terminal node.

In all threemodels, the same strategywas applied to the train-
ing dataset, and results were repeatedly validated with cross-val-
idationmethods (K-fold cross-validation). This process consisted
of dividing the data randomly into k groups of approximately the
same size, k-1 groups were used to train the model and one of
the groups was used as validation. This process was repeated k
times using a different group as validation in each repetition. The
process generated ‘k’ error’s estimations and their average was
used as the final estimation. The main advantage of K-fold CV
is its ability to achieve an accurate prediction of the test error,
thanks to a better balance between bias and variance. Once
the model was generated, it was externally validated with the
dataset called test, obtaining a prediction error (RMSE) that will
determine the quality of the model.

The degree of reproducibility of these models was also veri-
fied. The way to confirm it was by performing a classification by
quintiles of measured and predicted 25(OH)D values and we
measured the percentage of misclassification in opposite quin-
tiles. Also, the intraclass correlation coefficient was calculated.
Additionally, Bland–Altman graphs were built to assess the cor-
relation between predicted vitamin D values and observed
serum vitamin D values. Each point represents the difference
between the values provided by the prediction model and the
real values of vitamin D measured in serum (y axis), according
to the mean between both of them (x axis). Finally, in order to
assess the discrimination ability of both prediction models, we
calculated the area under the receiver operating characteristic
(ROC) curve (AUC), so that the models could be used as a diag-
nostic tool. This analysis was performed for several cut-off points
due to the current debate when it comes to determining which
threshold for vitamin D values is the best one to define
deficiency(35).

Results

This study included a total sample of 220 healthy volunteers from
Spain. The sample was composed of individuals aged between
18 and 78 years, of whom 56 % were female and 44 % male (see
Table 1). The mean value of serum vitamin D was 52·8 nmol/l
(SD: 19·8). Dietary intake of vitamin D showed a mean value
of 8·0 (SD: 5·1) mcg/d, being fatty fish (61·7 %) the major source
of vitamin D. Only sixteen individuals took vitamin D supple-
mentation. Additionally, the parallel test and training data analy-
sis divided the whole sample into two similar datasets with no
significant differences (online Supplementary Table S1).

After comparing all the RMSE obtained from all the different
models tested, the one that seemed to predict more accurately
serum vitamin D status was the RF model, which showed the
lowest RMSE of 6·79, and so it was further develop (online
Supplementary Table S2). Additionally, the linear model showed
an RMSE of 7·17 and 7·46 after leave one out-cross validation.
The variables used to develop the linear predictive model were
age, sex, vitamin D ingested from diet and supplement sources
adjusted by the total energy intake, summer sun exposure, BMI,
daily time spent walking, skin reaction after sun exposure and

total physical activity (measured in MET-h/week). Although vita-
min D intake does not show a significant correlation with serum
vitamin D status, the variable was included in both models since
scientific evidence describes a direct association between both
of them(5). The impact of alcohol consumption, time hanging
out with friends, Ca intake (mcg/d) and adherence to
Mediterranean diet were also studied. However, no statistically
significant relationship (P> 0·05) was observed in relation to
vitamin D values. The estimated equation for the linear predic-
tion model has been included in Table 2. After leave-one-out
cross-validation, coefficients remain similar (online
Supplementary Table S3). RF model included slightly different
variables: age, sex, total amount of vitamin D ingested and
adjusted for the total energy intake (kcal), BMI (kg/m2), summer
sun exposure (h/d), daily time spent walking and hanging out
with friends (h/d), skin reaction after sun exposure, alcohol con-
sumption (g/d) and physical activity (MET-h/week) (online
Supplementary Fig. S1). Ca intake (mcg/d) and adherence to
Mediterranean diet were also studied, but no significant
improvement was seen in the model. Therefore, these two last
variables were withdrawn to simplify the prediction.

We classified measured and predicted 25(OH)D values by
quintiles, from which only 3·2 % were placed in opposite quin-
tiles by the linear model, whereas 0·9 % of the values were mis-
classified in opposite quintiles by RF’s model (online
Supplementary Table S4).

Table 1. Demographic and lifestyle characteristics of participants included
in the sample (n 220)

Variable (units) Mean
Standard
deviation p25 p75

Age (years) 35·1 16·7 22·0 52·0
Serum vitamin D (nmol/L) 52·8 19·8 39·5 65·0
Vitamin D from diet (mcg/d) 8·0 5·1 4·3 11·3
Vitamin D supplementation

(mcg/d)*
1·82 2·24 0·33 3

Energy adjusted dietary Vit. D
intake (mcg/d)†

8·1 5·2 4·3 11·3

Summer sun exposure (h/d)‡ 1·2 1·6 0 2·0
BMI (kg/m2)§ 23·2 4·1 20·4 24·7
Physical activity (MET-h/wk) 38·6 30·7 14·1 51·3
Alcohol intake (g/d) 6·6 9·3 1·7 9·1
Walking time (min/d)|| 54·6 36·0 25·0 90·0
Hanging out with friends (h/d)¶ 1·5 1·2 0·6 1·9
Variable Proportion (%)

%
Sex Women 56

Men 44
Skin reaction after sun

exposure**
Mild reac-

tion
74·5

Severe
reaction

25·5

* Only sixteen individuals took vitamin D supplementation and the values showed in
the table reflect the mean intake (mcg/d) among consumers of vitamin supplements.

† Dietary vitamin D and supplementation, energy-adjusted by residual method (mcg/
d).

‡ Average sun exposure time in summer during the week in the last year (h/d).
§ BMI.
|| Average walking time (min/d).
¶ Average time going out with friends during the week (h/d).
** Skin reaction in childhood or adolescence after sun exposure for at least 2 h without

sun cream.
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The intraclass correlation coefficient was 0·60 (95 % CI: 0·52,
0·67, P< 0·001) for the RF’s model and 0·31 (95 % CI: 0·18, 0·42,
P< 0·001) for the linear prediction models.

Figure 1 shows two graphs, the linear correlation graph from
the linear prediction models involving the whole sample after
adjustment by the leave-one-out cross-validation. The second
graph shows the correlation between vitamin D serum values
and RF model prediction. In addition, Bland–Altman graphs
(see Fig. 2) show that most of the points (at least 95 %) lie
between the tolerance limits. Lin’s concordance correlation coef-
ficient, which measures absolute agreement, was found to be
0·60 (95 % CI: 0·54, 0·65, P< 0·001) for RF’s prediction and
0·31 (95 % CI: 0·22, 0·39, P< 0·001) for the linear prediction vali-
dated model.

Finally, the AUCwas also calculated for several cut-off points.
If vitamin D values below 37·5 nmol/l (15 ng/ml) were consid-
ered deficient, the AUC would be 0·69 (95 % CI 0·59, 0·77;
P< 0·001) for the linear prediction model and 0·69 (95 % CI
0·57, 0·82; P< 0·001) for RF’s prediction (Fig. 3). Considering
the lower limit 50 nmol/l (20 ng/ml), the linear model showed
an AUC= 0·65 and the RFmodel AUC’s was 0·67.When a thresh-
old of 62·5 nmol/l (25 ng/ml) was set, AUC were 0·62 and 0·67,
respectively.

Discussion

This study aimed to build an approach concerning a predictive
model of serum vitamin D using seven different variables from a
self-reported questionnaire based on two different statistical
approaches, multiple linear regression and RF.

The magnitudes of the correlation found in this study were
moderate for the multiple linear regression model and strong
for RF’s prediction model. In other words, after making adjust-
ments to include several variables, it may be possible to estimate
vitamin D levels in epidemiological studies, and therefore pro-
spectively study the long-term impact on health in similar
cohorts. These findings agree with previously published litera-
ture in which different machine learning models, including RF,
seemed to perform better prediction due to a better goodness-
of-fit(27,28). What is more, RF model has been proposed as a more
appropriate model to deal with small sample size or ‘large p
value’ issues, in comparison with other models such as linear
regression(34).

Another noticeable finding was the low association between
the values of vitamin D ingested from diet and the values mea-
sured in blood, which could be explained by the sample’s low
dietary intake levels and the type of population from which
the sample was taken. The USA National Academy of
Medicine recommends a daily vitamin D intake of 15 mcg for
children and adults up to 70 years of age and 20 mcg for adults
over 70(5). However, the mean intake of vitamin D intake in this
study (including diet and supplementation) was 8·10 ± 5·17
mcg/d.

Relationship between alcohol intake and serum 25(OH)D
remains unclear as no significance correlation was found in
the linear regression model, although RF’s prediction model
showed a relevant association between the two variables. AT
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systematic review, which examined such association, reported
conflicting findings(36). Thus, a positive association was reported
in fifteen studies, whereas an inverse association was described
in eighteen papers and no association in another sixteen publi-
cations. However, the authors concluded that most of the stud-
ies, which observed a positive association, weremore recent and
showed more consistent methodology, than the others(36,37).
Another study found that vitamin D deficiency was associated
with no alcohol consumption in the past 12 months(21). The
authors concluded that as alcohol consumption was associated
with greater social interaction and consequently, higher sunlight
exposure, people who consume alcohol may be less likely to
show insufficient levels of serum 25(OH)D(21).

In addition, Bland–-Altman graphs were important to evalu-
ate the differences at several magnitudes of the observed and
predicted vitamin D. These differences might allow us to inves-
tigate any possible relationship betweenmeasurement error and
the true value. Despite the fact that most of the dots are included
between the limits of agreement, the graphs show a proportional
variability, there is a slight negative bias across lower ranges of
vitamin D, whereas at higher 25(OH)D concentrations there is a
tendency towards positive bias, even a slight dispersion.
Moreover, there is a rather large range between the limits of
agreement, whichmay affect the estimation’s accuracy. For these
reasons, sensitivity analysis such as the exclusion of outliers and
the comparison between extreme quintiles should be taken into
consideration in future studies when vitamin D prediction will
be used.

Our model showed that the best predictive cut-off point for
vitamin D was 37·5 nmol/l (15 ng/ml), which showed an AUC
of 0·69. This means that 69 % of the participants were properly
classified. Our findings are in agreement with the rest of those
previously carried out on the validation of diet and exercise
questionnaires for predicting vitamin D values. The highest sen-
sitivity’s values were described by Annweiler et al.(38) who
observed 98 % (AUC= 0·93) and 87 % (AUC= 0·86) to identify
higher cut-off points of serum 25(OH)D,< 75 nmol/l and 50
nmol/l, respectively. Cut-off points below 25 nmol/l showed a
sensitivity of 64·9 % and an area under the curve of 0·38.
Deschasaux et al.(16) found an area under the curve of 0·70 after
considering values below 20 ng/ml as threshold for vitamin D
deficiency. In this context, Sohl et al.(19) developed a model to
predict values of serum 25(OH)D below 50 nmol/l and 30
nmol/l and reported areas under the curve of 0·71 and 0·80,
respectively. Moreover, Tran et al.(20) developed a model with
two cut-off points of serum 25(OH)D< 25 nmol/l and< 50
nmol/l for Australian older adults and found an area under the
curve of 0·82 and 0·73, respectively. Another study carried out
in NewZealand showed an AUCof 0·72 in the detection of serum
25(OH)D< 40 nmol/l(21). Other populations were also studied,
such as Japanese adults(39), where a sensitivity of 61 % and speci-
ficity of 79 % (AUC= 0·75) were able to detect values of serum
vitamin D under 50 nmol/l, and a Brazilian older community(40),
where an AUC of 0·68 was found. An advantage of the present
study (compared with previous ones) is the application of more
appropriatemethods to estimate the prediction’s validity, such as
the intraclass correlation coefficient, the Lin concordance

coefficient or the Bland–Altman graph. Jensen et al.(23) also cal-
culated a Cohen’s weighted kappa coefficient of 0·3. They clas-
sified individuals by quintiles ofmeasured and predicted 25(OH)
D values, fromwhich 69·9 %were placed in the same or adjacent
quintile and only 1·9 % were placed in opposite quintiles.
Another study cross-classified measured and predicted
25(OH)D status and found that 59·8 %–66·5 % were placed in
the same or adjacent quintile, concluding that their model could
be used to rank individuals by their vitamin D status(18).

Among the limitations of this study, it is important to note
that the number of participants was limited and the sample
homogeneous to assess any clear correlation for variables such
as ethnicity and skin colour with vitamin D values. Therefore,
this model is likely to be generalisable only to similar healthy
cohorts, although approaches could be taken to develop sim-
ilar models in other populations. Furthermore, the sample
included healthy adults with a sufficient mean of serum vitamin
D status, leading to a selection bias, which determines that the
model is better detecting individuals with sufficient levels of
vitamin D than insufficiency. However, this fact has not influ-
enced the selection of vitamin D determinants, as they have
proved to be similar to other cohorts with lower levels of serum
vitamin D(20,39). In this line, the results obtained may not pro-
vide a precise identification of the individuals at higher risk
and may not be suitable for particular groups such as pregnant
women and children, in which specific prediction models
should be used to reach adequate outcomes, as they show dif-
ferent metabolic and physiological processes. In this sense, this
study may be more useful in the epidemiological and research
fields, rather than the clinical setting. In addition, the answers to
questionnaires were self-reported by participants; so, such
answers could suffer from classification bias, although in this
case it would be a non-differential bias, because the partici-
pants did not know their own vitamin D levels at the time they
filled the questionnaires. Another important fact is that a single
blood measure cannot be considered as a true gold standard of
long-term average 25(OH)D concentration. Furthermore, an
important amount of the blood samples were obtained in
spring. This fact could have influenced serum vitamin D values,
as winter sun exposure seemed to be lower than in summer,
observing as a result lower values of serum vitamin D than
the average (median of 51·38 nmol/l). In addition, there are
some variables that may play an important role in estimating
vitamin D levels, such as latitude of residence or type of cloth-
ing, which were not analysed.

A strong point of our study is the inclusion of different pre-
dictive models and their comparison. Most of the published
studies have developed models based on linear regression,
especially logistic regression. However, prediction of vitamin
Dmade by RF and other machine learning models have proved
to be effective. Another positive impact our study may bring is
avoiding unnecessary blood tests and vitamin supplementa-
tion, neither of them risk-free practices. Although blood sam-
pling of 25(OH)D is the most accurate way of measuring
serum vitamin D, our methods provide a rapid, computer-
based and not expensive tool to include subjects in future
studies.
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Conclusion

Themodel that best predicted serum vitamin D levels was the RF
model, which showed a magnitude of the correlation that can be
rated as strong, in comparison to the MLR model, which showed
a moderate correlation. For this reason, both predictive models
could be useful in future epidemiological studies to assess the
risk of suffering from different diseases within a larger cohort.
This approach is justified when we consider that there is recent
evidence that vitamin D does play a significant role in several
physiopathological processes, not only in Ca homeostasis but
also in the regulation of both the immune and inflammatory sys-
tems, as well as in neuroendocrine and cardiovascular functions.
Furthermore, the use of predictive models such as the current
could avoid invasive procedures, such as unnecessary blood
tests, as well as the overprescription of vitamin supplements.
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