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Summary

Previously we performed a 1012-generation mutation accumulation (MA) study in yeast and found
that a surprisingly large proportion of fitness-altering mutations were beneficial. To verify this result
and assess the impact of sampling error in our previous study, we have continued the MA
experiment for an additional 1050 cell generations and re-estimated mutation parameters. After
correcting for biases due to selection, we estimate that 13% of the mutations accumulated during
this study are beneficial. We conclude that the high proportions of beneficial mutations observed
in this and our previous study cannot be explained by sampling error. We also estimate the
genome-wide mutation rate to be 13.7r10x5 mutations per haploid genome per cell generation
and the absolute value of the average heterozygous effect of a mutation to be 7.3%.

1. Introduction

Recent studies in many species have found un-
expectedly high frequencies of beneficial mutations.
Shaw et al. (2002) performed amutation accumulation
(MA) experiment in Arabidopsis thaliana and found
that half of all mutations affecting fitness were
beneficial. Garcia-Dorado (1997) re-analysed the fit-
ness data from three Drosophila MA experiments and
found that the results of one experiment were better
fitted by a model incorporating 10% beneficial mu-
tations than by a model assuming no beneficial
mutations. Kassen&Bataillon (2006) found that when
spontaneous antibiotic mutations in Pseudomonas
fluorescens were analysed in an environment lacking
antibiotics, y2–3% of non-neutral mutations were
beneficial. Perfeito et al. (2007) reported a rate of
beneficial mutation in Escherichia coli that is three
orders of magnitude higher than that estimated pre-
viously, with 1 in 10 mutations that affect fitness esti-
mated to be beneficial. And in a previous MA study,

we found that y6% of mutations affecting yeast
fitness were beneficial (Joseph & Hall, 2004).

While multiple studies have estimated high pro-
portions of beneficial mutations, these estimates may
be inaccurate due to the presence of natural selection
or sampling error. Selection can cause overestimation
of the true parameter by enriching for beneficial
mutations. This bias can be corrected by a variety of
methods. In this study and in a previous study, we
used a correction based on work by Otto & Orive
(1995) to downwardly adjust our initial estimate of
the frequency of beneficial mutations (Joseph & Hall,
2004). Because estimates of this parameter are typi-
cally generated from studies that accumulate few
mutations, they are prone to sampling inaccuracies
that can lead to overestimation or underestimation
of the true parameter value. Inaccuracies due to
sampling error can be reduced by sampling more
mutations.

Here, we investigate how sampling error affects
estimates of the frequency of beneficial mutations
by passaging our MA lines for an additional 1050
generations and re-estimating mutation parameters.
The additional passages allow more mutations to ac-
cumulate, which should reduce the effect of sampling
error. Surprisingly, our new estimate of the pro-
portion of beneficial mutations, 13%, is actually
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two-fold higher than our previous one, though
the confidence intervals are broadly overlapping.
We conclude that while sampling error may influence
parameter estimates in MA experiments, it does
not explain our high estimates of the proportion of
beneficial mutations. Our estimates, in conjunction
with other reports, suggest that the true frequency of
beneficial mutations is reasonably large, on the order
of a few per cent.

We also update our previous estimates of mutation
parameters in diploid yeast. We estimate that the
genome-wide mutation rate for deleterious alleles is
8.8–76r10x5 mutations per haploid genome per cell
generation, and the average absolute value of the
heterozygous effect of a mutation is 7%.

2. Materials and methods

(i) Experimental overview and ancestral strain

A detailed description of the MA procedure can be
found in Joseph & Hall (2004). Briefly, we established
152 genetically identical Saccharomyces cerevisiae
lines from a diploid ancestor. The ancestor was de-
rived from a haploid strain of genotype ade2,
lys2–801, his3–D200, leu2–3.112, ura3–52, ho by
transforming with an HO marker plasmid to induce
diploidization, after which the plasmid was removed.
The ancestor was thus homozygous at all loci except
the mating-type locus, which was aa. The ade2 mu-
tation was used to prevent the accumulation of
mitochondrial petitemutations (Joseph & Hall, 2004),
which has been a problem in previous yeast MA
experiments (Korona, 1999; Zeyl & DeVisser, 2001).
MA lines were propagated independently via single-
cell transfer on YPD solid medium (1% yeast extract,
2% peptone, 2% dextrose and 2% agar) every 2 days
for 200 days, for a total of 2062 cell generations. The
non-competitive fitness of each line was measured
relative to the ancestor by assaying growth in YPD
liquid medium (see below) after 50 transfers (1012
generations ; Joseph & Hall, 2004), and again after
100 transfers (2062 generations; this study). Fitness
measures were used to generate maximum likelihood
(ML) estimates of parameters of spontaneous mu-
tations (Keightley, 1994; Keightley & Ohnishi, 1998).

(ii) Generations of accumulation

We estimated the average number of generations per
transfer from counts of the number of cells per col-
ony, assuming exponential growth. The number of
cells per colony was estimated approximately every
seven transfers by choosing a single colony from each
of the ten randomly chosen MA lines. We then sus-
pended the colony in 1 ml of water and determined
cell density using a haemocytometer (Reichert Bright
Line, 0.1 mm depth).

(iii) Fitness assays

Our protocol for measuring fitness at transfer 100
is nearly the same as that used to measure fitness
at transfer 50 (Joseph & Hall, 2004). The primary
difference is that at transfer 100 we used 5 as opposed
to 10 replicates per line and 20 as opposed to 50
ancestor replicates per plate (see below). The fitness of
each MA line was estimated by comparing its maxi-
mum growth rate to that of the ancestor. Maximum
growth rates were estimated from optical density
measurements obtained using a Bioscreen C Micro-
biological Workstation (Thermo Labsystems).

We began fitness assays by streaking samples of
each MA line and the ancestor from the freezer onto
solid YPD medium and letting them grow for 2 days.
We then inoculated replicate, overnight, liquid cul-
tures from individual colonies growing on the solid
medium. The next morning we transferred 40 ml of
each overnight culture into 2 ml of fresh liquid YPD.
These cultures were allowed to grow for 6 h, at which
time they were in the logarithmic growth phase, and
then a 150 ml aliquot was added to 2 ml of fresh YPD.
A 150 ml sample of the resulting culture was immedi-
ately loaded into a microplate well. Two microplates,
each containing 100 wells, were then placed in a
Bioscreen C microbiological workstation (Thermo
Labsystems), which incubated them at 30 xC with
continuous, intense shaking and recorded the ab-
sorbance of 600 nm light for each well every 10 min
for 46 h. Absorbance readings were log-transformed
and used to generate growth curves (log absorbance
vs. time).

Growth curves were used to estimate the fitness of
each MA line. For every growth curve, a least squares
regression of log absorbance on time was calculated
for a sliding 120 min window. Maximum growth rate
was calculated as the largest slope of the regressions.
The maximum growth rate of each line replicate was
standardized by dividing by the mean maximum
growth rate of the 20 ancestor replicates on the same
microplate. The standardized maximum growth rate
of a replicate was designated as the fitness of that
replicate and the average fitness of the five replicates
of each line was designated as the fitness of the line.
Each ancestor replicate was standardized in the same
manner. Thirty-three lines initially had one or more
replicates that could not be used because of growth
anomalies. We repeated the fitness assay for each of
these lines.

(iv) General statistical analysis

Statistical tests were performed using JMP statistical
software (version 6.0, SAS Institute, Cary, NC). We
estimated the per-generation mutational increase in
genetic variance in fitness, sm

2 , as half the among-line
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variance, determined using ANOVA, divided by
the number of generations (Schultz et al., 1999). We
calculated the mutational heritability for fitness, hm

2 ,
as the per-generation mutational variance divided by
the within-line (environmental) variance (Falconer &
Mackay, 1996). We also determined the mutational
coefficient of variation, CVm, as the square root of
the mutational variance divided by the mean and
multiplied by 100 (Houle et al., 1996).

The number of MA lines that were significantly
different from the ancestor was determined with a
Kruskal–Wallis test. We used this test because
the fitness distributions of the MA lines and ancestor
replicates were not normally distributed (P<0.01
for the ancestor and P<0.00001 for the MA line
distributions, Shapiro–Wilks W) and their variances
were unequal (Levene’s test, P<0.0001). Corrections
for multiple comparisons were performed using both
sequential-Bonferroni correction (Rice, 1989) and a
method introduced by Benjamini & Hochberg (1995).
Sequential-Bonferroni correction (Rice, 1989) mini-
mizes the probability of Type 1 error (false discovery
rate or false positives) and can result in many Type 2
errors (false negatives) as the number of comparisons
increases (Verhoeven et al., 2005). The Benjamini–
Hochberg correction maintains a relatively constant
probability of Type 1 error as the number of com-
parisons increases, thus reducing the number of Type
2 errors.

(v) Fitness at transfers 50 and 100

MA lines that accumulated mutations prior to trans-
fer 50 should still show the effects of those mutations
at transfer 100, and we thus expect a significant
correlation between fitness at transfer 100 and fitness
at transfer 50. Since half of the mutations present at
transfer 100 are expected to have arisen since transfer
50, we expect the correlation to be 0.5 in the absence
of epistasis and beneficial mutations. In order to de-
termine the correlation between fitness measures at
transfers 50 and 100, we fitted our data with a mixed
linear model using restricted ML, with the MIXED
procedure in the SAS software package (version 8.0,
SAS Institute). The mixed linear model allows
among-line and within-line variances in fitness to dif-
fer between the two transfers (using TYPE=UNR),
thus giving an unbiased estimate of the correlation
(Fry, 2004b). We also tested whether the correlation
was significantly different from 1 and 0.5 using the
appropriate PARMS statements.

(vi) Estimates of mutational parameters

As in our previous study, we used log likelihood to
estimate the proportion of mutations that are ben-
eficial (P), the genome-wide mutation rate for alleles

that alter fitness (U) and the absolute value of the
mean heterozygous fitness effect of mutations (E(hs)).
The ML estimates were calculated using a program
provided by Dr Peter Keightley (Keightley, 1994;
Keightley & Ohnishi, 1998). The program estimates
mutation parameters from the fitness values of the
MA lines and the ancestor. The program assumes that
the number of mutations accumulated in each MA
line is Poisson-distributed and that the effects of
mutations follow a reflected gamma distribution with
a fraction P of the mutations having positive
(beneficial) effects. The positive and negative parts of
the distribution are assumed to have the same scale
parameter a and shape parameter b. The mean het-
erozygous fitness effect, E(hs), is equal to b/a.

MA line fitness was used instead of replicate fitness
in the likelihood analysis to avoid excessive computer
time by reducing the size of the data set. In addition,
the mean fitness of groups of five ancestor replicates
was used. The reduced data consisted of 149 MA line
fitness measures (three lines did not regrow from the
freezer, see below) and 46 ancestor fitness measures.

With the reduced data set, we performed a search
of the parameter space by first choosing values of b
and P and then running the program to find the ML
values of a andU. After narrowing in on the region of
the parameter space in which estimates of b, P, a and
U showed high likelihoods, we performed additional
runs of the program in those regions to obtain more
accurate estimates of the ML values of the parameters
and their 95% confidence intervals. Additionally, we
ran an equal effects model for all values of P. Finally,
we repeated these analyses on the data after removing
an MA line carrying a very large-effect deleterious
mutation.

We also estimated the mutation rate and average
effect using the Bateman–Mukai approach (Bateman,
1959; Mukai, 1964). With this approach, the change
in the mean fitness across all MA lines and the among-
line variance are used to generate parameter esti-
mates, but beneficial mutations are not considered. In
addition, variance in mutational effects causes this
method to underestimate the genome-wide mutation
rate and overestimate the average effect of mutations
(Lynch et al., 1999).

(vii) Correction for selection

The number of mutations accumulated during the
experiment is affected by selection during colony
growth. Our experimental design attempted to mini-
mize the efficacy of selection by maintaining a small
effective population size. Even so, deleterious and
beneficial mutations are expected to be under- and
over-represented in the MA lines relative to their
occurrence. This is a problem common to all MA
experiments and results in biased estimates of the
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parameters of mutation. We utilized a method devel-
oped by Otto & Orive (1995) to correct our parameter
estimates. They derived equations to calculate the
number of new-mutant and non-mutant cells in an
individual, starting from a single cell. Their equations
are exactly applicable to within-colony selection. The
number of mutant cells of effect hs, Mhs, present in a
colony after n generations of growth is

Mhs=U
2n(1xU)nx2(1+hs)n

1xUx2hs
: (1)

The probability, Phs, that a mutation with effect hs
will be fixed during a transfer is equal to its frequency
in the colony at the end of colony growth. It is given
by

Phs=
Mhs

2n(1xU)n+Mhs

: (2)

To calculate the bias in the probability of fixation
caused by selection for a mutation of a given effect, we
simply calculate the probability of fixation for that
mutation relative to the probability of fixation for a
neutral mutation, with effect equal to 0. This gives the
relative probability of fixation of a mutation as

Phs

P0
=

Mhs

(2n(1xU)n+Mhs)[1x(1xU)k]
: (3)

Deleterious mutations (hs<0) will have relative fix-
ation probabilities that are less than 1 and beneficial
mutations (hs>0) will have relative fixation prob-
abilities greater than 1.

We used eqn (3) to calculate the bias caused
by selection, assuming different mutation rates, as
a function of the effect of mutation. We then used
the bias calculations to correct our estimates of the
proportion of mutations that were beneficial. The
corrections were done using Mathematica (version
5.2, Wolfram Research, Inc., Champaign, IL).

3. Results

(i) Generations and effective population size

For 98 of the 100 transfers, the average colony size
was estimated to be 1.7r106 cells, which represents
approximately 20.7 generations between transfers, or
one cell division every 139 min. For transfers 23 and
24, the colony size was much smaller, 0.11r106 cells,
representing approximately 16.7 generations between
transfers. Due to lab error, the medium for these two
transfers had a different peptone source, which ac-
counts for the less vigorous growth. Combining these
estimates, transfers occurred every 20.6 generations
and the MA period was 2062 generations. The har-
monic mean population size of our MA lines, which
serves as an estimate of the effective population size, is

10.8 cells per line. There was no trend towards
reduced colony size in the MA lines over the course of
the experiment.

(ii) Fitness distributions

Only 149 out of the 152 MA lines could be regrown
from the freezer, so fitness could only be measured on
these lines. In our previous study, one line did not
regrow from the freezer, and we assumed that we had
inadvertently skipped it when freezing transfer 50.
That line again failed to regrow during this study, as
did two additional lines. All three of these lines
had cells in their freezer stock, indicating that they
had been frozen. We conclude that these lines had
accumulated mutations that made them sensitive to
freezing.

The fitness distributions of the remaining 149 MA
lines and ancestors at transfer 100 are plotted in
Fig. 1B, and the distributions at transfer 50 are shown
in Fig. 1A for comparison. Using sequential Bonfer-
roni to correct for multiple comparisons (Rice, 1989),
a Kruskal–Wallis test indicated that eight lines were
significantly different from the ancestor (a=0.05).
All eight had lower fitness than the ancestor. Using
the Benjamini–Hochberg procedure to correct for
multiple comparisons (Benjamini & Hochberg, 1995),
36 lines were significantly different from the ancestor,
of which 10 (28%) had higher fitness (Table 1).

The summary statistics for the MA line and ances-
tor distributions are shown in Table 2. Over the 2062
generations of MA, the MA lines experienced a
significant decline in mean fitness (Kruskal–Wallis,
P<0.0001) and increase in variance (Levene’s test,
P<0.0001). Further, the mean fitness of the MA lines
at transfer 100 is significantly smaller than the fitness
at transfer 50 (Kruskal–Wallis, P<0.0001). The par-
titioning of variance using ANOVA allowed us to
calculate the within- and between-line variances.
Between-line variance is higher at transfer 100, re-
sulting in a higher estimate of mutational variance. In
spite of higher mutational variance, heritability de-
creased because environmental variance, captured as
within-line variance, also increased between transfers
50 and 100. Some of the increase in mutational
variance is due to one extremely sick line, with a
mean fitness of 0.55. Removal of this line reduces the
estimate of between-line variance by 30%, with a
concomitant decline in heritability (Table 2). Despite
the fitness measures from transfer 100 having a higher
variance and lower mean than at transfer 50, their
coefficient of variation in fitness is quite similar.

The ancestor variance and the MA within-line
variance were both y3.5 times larger at transfer 100
than at transfer 50 (Table 2). We are unable to explain
why these estimates of error variance were greater at
transfer 100 than at transfer 50. The manufacturers of
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the media ingredients assured us that there was no
change in the composition of the ingredients, though
we noticed a change in the consistency of the bacto-
peptone (Difco brand). Alternatively, the 3 years
spent in the x80 xC freezer before the transfer 100
fitness assays may have increased the error variance in
the growth rate of the stored MA lines and ancestor,

perhaps due to physiological changes that were passed
through several cell generations after thawing.

(iii) Fitness at transfers 50 and 100

The MIXED procedure gave a significant correlation
(P<0.0001) between fitness at transfer 100 and fitness
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Fig. 1. Fitness distributions of ancestor groups and MA lines at transfer 50 (A) and transfer 100 (B). At transfer 50, there
are 151 MA lines and 151 ancestor fitness values shown, and each is the mean of ten replicates (data from Joseph & Hall,
2004). At transfer 100, there are 149 MA lines and 46 ancestor fitness values, each representing the mean of five replicates.

Table 1. The number of MA lines that are significantly different at the 5%
level using either sequential Bonferroni correction (Rice, 1989) or a method
introduced by Benjamini & Hochberg (1995) to correct for multiple
comparisons (see text for details)

Sequential Bonferroni Benjamini–Hochberg

Beneficial Deleterious Beneficial Deleterious

Transfer 50 3 (19%) 13 4 (21%) 15
Transfer 100 0 (0%) 8 10 (28%) 26
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at transfer 50. The correlation coefficient is 0.38 with a
standard error of 0.08, and is significantly different
from 1 (P<0.0001), but not from 0.5 (P=0.13). This
is consistent with the predicted slope of less than one,
indicating that the lines accumulated additional mu-
tations during the last 50 transfers that were, on av-
erage, deleterious. For illustration purposes, we plot
the fitness at transfer 100 against transfer 50 for each
of the 149 MA lines in Fig. 2.

(iv) Estimates of mutational parameters

Bateman–Mukai estimates are shown in Table 3.
There is good agreement between estimates at transfer
50 and estimates at transfer 100, especially when the
one line exhibiting very low fitness is removed.

Results from the likelihood analysis are shown
in Fig. 3. The ML estimates (and 95% confidence

intervals) are: proportion of beneficial mutations,
P=0.28 (0.169–0.405); the absolute value of the
average effect, E(hs)=0.073 (0–0.082); and the
genome-wide, haploid mutation rate, U=13.7r10x5

(8.8r10x5 to ‘). The equal effects model gave the
highest likelihood. Several other distributions, in-
cluding the exponential, give likelihoods within two
log units of the maximum. Examples of such dis-
tributions are shown in Fig. 4.

(v) Correcting parameter estimates for selection

Figure 5 illustrates the bias in fixation probability
generated by selection during colony growth, which
is calculated using eqn (3), as a function of the effect
of a mutation. Two points are apparent from the
relationship. First, the effect of selection during
colony growth on relative fixation probability is in-
sensitive to variation in the mutation rate: the three
curves for U=10x3, 10x4 and 10x5 cannot be dis-
tinguished. Secondly, selection causes biases that are
less than two-fold, such that beneficial mutations are
less than twice as common as expected and deleterious
mutations are at least half as common as expected, for
mutations with an absolute effect of y0.1 or smaller.
It is only for mutations of large absolute effect,
greater than 0.1, that bias becomes large.

The bias curve can be utilized to correct estimates
of the average effect and proportion of mutations that
are beneficial (Table 4). The ML estimate of the effect
distribution was an equal effects model, in which all
mutants have the same effect, and so no correction
was needed for the average effect, which thus re-
mained the same at 0.073. The relative frequency of
beneficial and deleterious mutations does require
correction. With an absolute value of average effect of
0.073, deleterious mutations are under-represented by

Table 2. Summary statistics of the distributions of MA lines and ancestor,
and estimates of per-generation mutational increase in genetic variance in
fitness, sm

2 , mutational heritability for fitness, hm
2 , and the mutational

coefficient of variation, CVm, at transfer 50 (T50) and transfer 100 (T100).
Data for transfer 50 are from Joseph & Hall (2004)

Ancestor
(T50 and T100)a

MA lines

T50 T100

Mean 1.0, 1.0 0.994 0.977 (0.980b)
Variance (r103) 0.8, 2.9 1.4 6.4 (5.2b)
Within line (r103) – 0.7 2.8 (2.8b)
Between line (r103) – 0.8 3.8 (2.6b)
sm
2 (r107) – 3.7 9.19 (6.6b)

hm
2 (r104) – 5.8c 3.3 (2.4b)
CVm (%) – 0.061 0.098 (0.083b)

a 1510 replicates at transfer 50 and 238 replicates at transfer 100.
b Estimate with the one extremely sick line removed.
c Heritability was incorrectly reported as 1.1r10x3 in Joseph & Hall (2004).
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Fig. 2. Relationship between fitness at transfer 50 (1012
cell generations) and fitness at transfer 100 (2062 cell
generations) for 149 MA lines.

D. W. Hall et al. 234

https://doi.org/10.1017/S0016672308009324 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672308009324


y35% and beneficial mutations are over-represented
by y70%. We used these percentages to adjust the
relative frequency of deleterious and beneficial mu-
tations (reducing the frequency of beneficials and
increasing the frequency of deleterious). Using this
method, the corrected frequency of beneficial mu-
tations is 13%.

4. Discussion

The primary goal of this study was to update our
earlier estimates of mutational parameters, especially
the frequency of mutations affecting fitness that are
beneficial, and assess the role of sampling error in
our MA experiment. In this section, we present the
updated estimates of yeast mutational parameters and
discuss the implications of the estimated values. In
particular, we again find a high frequency of beneficial
mutations.

(i) Proportion of mutations affecting fitness that are
beneficial

The uncorrected and corrected ML estimates
(P=0.28 and 0.13) indicate that beneficial mutations
are relatively common in our yeast strain. This is in
agreement with our previous estimates (P=0.13 and
0.06; Joseph & Hall, 2004). There are at least four
possible explanations.

First, the beneficial mutation rate may have been
elevated – because the ancestral strain had low fitnes-
s – and thus was far from the optimal phenotype. This
is predicted by Fisher’s geometric model of adap-
tation, which states that the further a genotype lies
from the optimal phenotype, the more likely that a
mutation is beneficial (Fisher, 1930). This is also
consistent with the observation that low fitness yeast
adapts more rapidly than high fitness yeast (Joseph &
Kirkpatrick, 2008). The fitness of our ancestral strain
may have been reduced by mutations that it carries in
five biosynthetic pathways. One of those mutations,
ade2, has previously been shown to reduce maximum
growth rate (Ugolini & Bruschi, 1996, and personal
observation). In addition, our lab strain has not been
adapted to the fitness assay environment. It is thus
quite possible that our starting strain is far from the
optimal phenotype, implying that a relatively high fre-
quency of mutations affecting fitness will be beneficial.

Secondly, we may have accumulated mutations
that are deleterious or neutral in some environments
but beneficial in our fitness assay environment. We
measured fitness in complete medium (YPD) at 30 xC.
Complete medium at 30 xC is a relatively benign en-
vironment, supporting the growth of essentially all
non-lethal genotypes. It has been shown that mu-
tational effects, including effects on growth rate, tend
to be more deleterious in a more stressful environment
(Szafraniec et al., 2001). We have assayed the fitness

Table 3. (A) ML estimates (and 95% confidence intervals) of the genome-wide, haploid mutation rate (U), the
absolute value of the average effect of a mutation (E(hs)) and the proportion of mutations that are beneficial (P)
at transfer 50 (151 MA lines) and transfer 100 (149 MA lines). In the last two columns, separate estimates for the
genome-wide, haploid mutation rate and the average effect of beneficial and deleterious mutations for transfer 100
are shown. Transfer 50 estimates are from Joseph & Hall (2004). Corrected estimates of the parameters,
indicated by an asterisk (*), were generated by performing the Otto & Orive (1995) correction for the effects of
natural selection during colony growth (see text). (B) Bateman–Mukai estimates of the genome-wide, haploid
mutation rate (U) and the absolute value of the average effect of a mutation (E(hs))

(A) ML

Transfer 50 Transfer 100

Transfer 100

Beneficial Deleterious

U (r105) 6.3 (4.6 to ‘) 13.7 (8.8 to ‘) 3.5 (1.8–5.1) 13.2 (8.2 to ‘)
U* (r105) – – 2.0 13.6
E(hs) 0.061 (0–0.077) 0.073 (0–0.082) 0.077 (0.056–0.094) 0.0062 (0–0.086)
E(hs)* – – 0.077 0.0094
P 0.125 (0.008–0.380) 0.28 (0.169–0.405) Set to 1 Set to 0
P* 0.058 0.13 – –

(B) Bateman–Mukai

Transfer 50 Transfer 100

U (r105) 2.4 3.4 (3.8)
E(hs) 0.125 0.165 (0.129)
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transfer 100. (A) The absolute value of the average effect of a mutation, E(hs). (B) The genome-wide, haploid mutation
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of the transfer-50 MA lines in four other environ-
ments, and we find that beneficial mutations are en-
vironment-specific (unpublished data). However, even
in minimal environments we find a high frequency of
beneficial mutations (unpublished data), indicating
that the complete medium used in our fitness assay is
not the only explanation for the high frequency of
beneficial mutations observed.

Thirdly, the effects of mutations may differ across
different stages of the life cycle. We only measured
one component of fitness, diploid growth rate. We
chose this measure because, as a homothallic fungus,
diploidy is the usual ploidy level for yeast, and growth
rate is thought to be an important component of
fitness in microbes (Table 4). There are several other
fitness components that could have been examined,
including sporulation efficiency, haploid growth rate,
mating efficiency and (diploid or haploid) competitive
growth rate. If we had used a fitness measure that
incorporated all components of the yeast sexual cycle,
it is possible that we would have found no evidence
for beneficial mutations. We are currently investigat-
ing this possibility.

Fourthly, dominance may upwardly bias our esti-
mates of the frequency of beneficial mutations. In
many MA experiments, mutations are scored in hap-
loids or in homozygous diploids. In our experiment,
in which mutations arise in an asexual diploid, ac-
cumulated mutations are heterozygous. If deleterious
mutations tend to be more recessive than beneficial
mutations, we will score a higher proportion of
the beneficial than the deleterious mutations. The av-
erage dominance coefficient of random deleterious
mutations in yeast has been estimated as 0.197
(Szafraniec et al., 2003). We know of no estimate for
the dominance coefficient of random beneficial mu-
tations. Overdominance will also upwardly bias our

estimate of the beneficial mutation rate. In our exper-
iment, overdominant mutations will be scored as ben-
eficial because we are scoring heterozygotes. The same
mutations, scored in homozygotes, might very well
be deleterious. Peters et al. (2003) found that 3 of 19
crosses between unmutated and mutated lines showed
evidence of overdominance in Caenorhabditis elegans,
suggesting that overdominant mutations might be
quite common. Fry (2004c) has argued that this
pattern is also consistent with mutant lines containing
both recessive deleterious and partially dominant
beneficial mutations in the lines. If Fry’s explanation is
the reason for apparent overdominance, it suggests
that beneficial mutations tend to have higher domi-
nance, bolstering the previous hypothesis concerning
upward bias due to dominance.

Regardless of the specific explanation, it is clear
that the frequency of beneficial mutations for diploid
growth rate in complete medium is high in our strain.
This implies that our strain should be able to readily
adapt to the fitness assay environment. These data,
coupled with data from other species (see section 1),
suggest that adaptation is unlikely to be limited by
mutation rate in populations of reasonable size. In
addition, the loss of small populations due to genetic
load will also be mitigated by high frequencies of
beneficial mutations (Whitlock et al., 2003).

(ii) Distribution of mutational effects

Our ML estimate of the distribution of mutational
effects is one in which all mutations have the
same average effect ; however, the broad confidence
intervals around the ML estimate reveal that a wide
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variety of distributions fit the data (Fig. 4). The
inability to distinguish among these distributions is
discouraging, because the shape of the distribution has
important implications for a variety of evolutionary
phenomena. For example, small-effect deleterious
mutations are more likely to go to fixation through
drift (Whitlock, 2000) and, in non-recombining regions
of a genome, cause Muller’s ratchet to proceed more
quickly (Gordo & Charlesworth, 2000). Such small-
effect deleterious mutations are common in distri-
butions that are L-shaped, and are essentially absent in
distributions with narrow peaks centred away from
zero (Fig. 4). Both types of distributions are consistent
with our data.

The wide variety of the distributions consistent
with our data may be caused by two factors. First, the
fitness change measured in an MA line is caused by
the accumulation of mutation(s) with particular ef-
fects. As such, we are measuring a fitness effect caused
by a product of two parameters : mutation rate and
mutational effect. However, we are attempting to
estimate each parameter separately. It is perhaps
not surprising that distinguishing many mutations
of small effect from a few mutations of intermediate
effect is difficult. Secondly, it is possible that one or

more of the assumptions of the likelihood program
are violated. It would be interesting to examine how
well the ML program estimates parameters when
particular assumptions are violated. One obvious
assumption to examine is the reflected gamma effect
distribution for deleterious and beneficial mutations.
If beneficial and deleterious mutations have substan-
tially different effect distributions and beneficial mu-
tations are relatively frequent, then the likelihood
program may be unable to distinguish among various
distributions. Addressing these questions requires a
simulation study. Unfortunately, the ML program is
computer-time-intensive when beneficial mutations
are present (Pl0), and so a full assessment is beyond
the scope of this study.

(iii) Genome-wide mutation rate

The ML estimate of the genome-wide mutation rate
for alleles that alter fitness, based on the likelihood
analysis of all MA lines, is consistent with previous
estimates from yeast (Table 4), though the confidence
intervals are extremely broad. We are able to use the
yeast, per base pair, mutation rate to put an upper
bound on our confidence interval. Drake et al. (1998)

Table 4. Some estimates of haploid mutation rates, effects of mutations and mutational heritability from several
MA experiments. The effect of mutations is measured in homozygotes, except where noted. LRS, lifetime
reproductive success; MGR, maximum growth rate; r, growth rate. Table modified from Bataillon (2000)

Taxon
Fitness
component U E(hs) Reference

Drosophila melanogaster Viability 0.35 0.027 Mukai (1964)
Viability 0.47 0.023 Mukai et al. (1972)
Viability 0.14 0.03 Ohnishi (1977)
Viability 0.02 0.1 Garcia-Dorado et al. (1999)
Viability 0.052 0.11 Fry et al. (1999)
Viability 0.29 0.02 Charlesworth et al. (2004)

Arabidopsis thaliana LRS 0.05 0.23 Schultz et al. (1999)
Fruit number 0.06 0.06a Shaw et al. (2002)

Caenorhabditis elegans r 0.0035 0.1 Keightley & Caballero (1997)
r 0.008 0.2 Vassilieva & Lynch (1999)
r 0.024 0.131 Estes et al. (2004)
r 0.0033 0.182 Baer et al. (2005)
r 0.0042 0.126 Baer et al. (2005)
Productivity 0.018 0.369 Estes et al. (2004)
Survival 0.003 0.390 Estes et al. (2004)

Caenorhabditis briggsae r 0.037 0.051 Baer et al. (2005)
r 0.013 0.099 Baer et al. (2005)

Oscheius myriophila r 0.0028 0.219 Baer et al. (2005)
Saccharomyces cerevisiae MGR 0.00006 0.061a Joseph & Hall (2004)

MGR 0.00014 0.073a The present study
r 0.00055 0.086b Wloch et al. (2001)
r 0.000048 0.217a Zeyl & DeVisser (2001)
r – 0–0.049a,c Zeyl & DeVisser (2001)

Escherichia coli r 0.00017 0.012b Kibota & Lynch (1996)

a Mean effect in heterozygotes.
b Mean effect in haploids.
c Data from a mutator line.
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reported that the haploid, genome-wide, base pair
mutation rate in yeast, extrapolating from the per base
pair mutation rate, is 0.0027. Given thaty72% of the
yeast genome encodes genes (Sherman, 2002), and
assuming that at most approximately 3/4 of the mu-
tations in such genes cause an amino acid substitution
(Li, 1997) or regulatory change in the gene, and could
thus be selected, we obtain an upper limit to the hap-
loid, genome-wide mutation rate for alleles that alter
fitness of y0.00146. This upper limit greatly narrows
the confidence intervals of our mutation rate estimate.
The Drake et al. estimate is based on 23 fluctuation
tests performed on two loci (Drake, 1991). Extra-
polating from two loci to the entire genome is a little
unsettling, but no other estimate has been reported.
Keeping the possible weaknesses of our upper limit in
mind, we conclude that the genome-wide mutation
rate for deleterious alleles is between 8.8r10x5 and
146r10x5 mutations per haploid genome per cell
generation. The lower value is close to the lowest
previous estimate in yeast, 4.8r10x5 (Zeyl & De-
Visser, 2001), and the upper value is almost three times
larger than the highest previous estimate, 55r10x5

(Wloch et al., 2001). Placing an upper limit on the
genome-wide mutation rate for alleles that alter fitness
also places a lower limit on the average effect of a
deleterious mutation of y0.004 for our experiment.

The lower mutation rate observed for yeast, relative
to other eukaryotes (Table 4), is likely to be an
artefact of measuring the mutation rate per cell gen-
eration and due to a large proportion of mutations in
yeast behaving neutrally. In multicellular eukaryotes,
the germline goes through several cell generations per
organism generation, and thus the per generation
mutation rate includes several cell generations. For
example, Drosophila melanogaster has approximately
36 cell divisions in the germline per generation (Drost
& Lee, 1995) and the mutation rate for alleles that
alter fitness per cell division is about 0.005 (Lynch
et al., 1999). This value is higher than the value we see
in microbes, even though the number of base pair
substitutions per cell division is similar (Drake, 1991;
Drake et al., 1998). The low genome-wide mutation
rate for alleles that alter fitness may also be explained
by the fact that yeast has numerous genes that can be
mutated without causing a fitness effect, at least in the
rich media used in MA experiments (Winzeler et al.,
1999). Szafraniec et al. (2001) have shown that
stressful environments expose many mutations that
have no effect on fitness in a rich environment, which
would increase mutation rate estimates and estimates
of mutational heritability.

(iv) Mutational heritability, hm
2

The estimates of mutational variance in our MA lines
at transfer 100 were standardized to yield mutational

heritabilities (hm
2 ) of 2.4 or 3.3r10x4, depending on

whether the MA line with the lowest fitness was
excluded. These estimates are smaller than those
obtained at transfer 50, which can be attributed to the
increase in error variance of our fitness measure at
transfer 100. Our estimates are of similar magnitude
to the only other estimate in diploid yeast, 4.8r10x4

(Zeyl & DeVisser, 2001), but smaller than the mu-
tational heritabilities seen in many eukaryotes
(Lynch, 1988). This can be attributed to the low
genome-wide mutation rate in yeast.

(v) Transfer 50 versus transfer 100 parameter
estimates

A goal of this study was to determine whether sam-
pling error influences parameters estimated from MA
experiments. Of particular interest is whether sam-
pling error can explain the unexpectedly large pro-
portion of beneficial mutations that we observed in
a previous study (Joseph & Hall, 2004). In order to
address this, we compared parameters estimated
at transfer 50 (our previous study) to parameter esti-
mates made after 100 transfers (this study).

Our analysis of the MA lines after 100 transfers
makes it clear that sampling error can cause differ-
ences in parameter estimates, but that it cannot ex-
plain the large proportion of beneficial mutations
observed in our MA lines. The uncorrected and cor-
rected ML estimates of P from transfer 100 (P=0.28
and 0.13) are two-fold larger than the estimates from
transfer 50 (P=0.125 and 0.058). While the difference
between these estimates is sizeable, their confidence
intervals are large and overlap substantially (Table 4),
so that we cannot reject the hypothesis that the pro-
portion of mutations accumulated in the MA lines
was the same at both transfers.

We can also address the importance of sampling for
the other estimated parameters. There was a two-fold
difference in the genome-wide mutation rate estimates
from the likelihood analysis involving all MA lines,
but again the confidence intervals show substantial
overlap. The transfer 100 ML estimate of the mu-
tation rate is a good fit to the data from transfer 50
(likelihood ratio test, P>0.1), though the reverse is
not true (likelihood ratio test, P<0.0005). The esti-
mates of the average effect are almost identical at
transfers 50 and 100 (Table 3), implying that this
parameter was not affected by sampling error.

Besides sampling error, there is at least one
alternative explanation for the increase in our esti-
mate of the genome-wide mutation rate at transfer
100 compared to transfer 50. As the number of accu-
mulated mutations increases, multiple deleterious
mutations in the same MA line might exhibit syner-
gistic epistasis, such that later hits are more easily
detected, which would cause our estimate of mutation
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rate at transfer 100 to be larger than that at transfer
50. In D. melanogaster, a re-analysis of previous
experiments revealed accelerating declines in fitness
during MA, consistent with synergistic epistasis (Fry,
2004a). In C. elegans, ML estimates of genome-wide
mutation rate tended to increase with the generation
assayed (Vassilieva et al., 2000), also supporting syn-
ergistic epistasis. Based on our ML estimate of the
genome-wide mutation rate, we estimate that y86
mutations accumulated during the ML experiment.
Assuming that these mutations are independent, the
probability that two or more mutations occur within a
line is 0.11, implying that 16 lines accumulated two or
more mutations. With only 16 of 152 lines predicted
to carry two or more mutations, the opportunity for
synergistic epistasis is limited. If the mutation rate
is actually closer to the upper limit of our mutation
rate confidence interval (146r10x5), then each line
would have accumulatedy6 mutations, giving ample
opportunity for synergism. Synergistic epistasis is
expected to increase the effect of later mutations,
resulting in an increase in the estimate of average
effect from later generations of MA. We did not
observe such an increase. Given the limited oppor-
tunity, and no increase in average effect, we believe
that synergistic epistasis is unlikely to explain our
increased estimate of mutation rate.

Our finding of a significant correlation between
MA line fitness at transfer 50 and at transfer 100, with
a slope less than one, indicates that MA lines con-
tinued to accumulate mutations that were, on aver-
age, deleterious. Correlations between fitness values
for individual MA lines are not reported in the
literature, and so we are unable to compare the value
of our regression to previous work. Keightley &
Bataillon (2000) graph the rank order of MA lines at
two different generations of MA (Fig. 2 in Keightley
& Bataillon, 2000, data from Vassilieva & Lynch,
1999), though they do not report the Spearman cor-
relation coefficient. The relationship between rank
order at transfers 50 and 100 shows similar scatter in
our data, though the Spearman correlation is signifi-
cant (data not shown, r=0.2379, P=0.0035).

In summary, we have updated our previous mu-
tation parameters and have shown that sampling
error may be responsible for altering our parameter
estimates as much as two-fold, which is comparable to
the variation observed in MA experiments started
with different nematode genotypes (Baer et al., 2005).
However, our previous finding of a high proportion of
mutations that affect fitness being beneficial does not
seem to be due to sampling error. Instead, the high
estimate may be due to a maladapted ancestral geno-
type, the benign environment in which we assayed
fitness, the consideration of only one component
of fitness, or differences in dominance coefficients
between deleterious and beneficial mutations.

Distinguishing among these alternatives will require
additional experimentation.
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