S. Kwok, M. Dopita, and R. Sutherland, eds.

Velocity Fields in 9 Southern Planetary Nebulae

Krzysztof Gesicki

CA UMK, ul. Gagarina 11, Torun, Poland

Agnes Acker

Observatoire de Strasbourg, 11, rue de l'universite, Strasbourg, France

Abstract. In 1997 and 1998 we observed 16 PN with the ESO 1.4 m CAT telescope, in the H α and [NII] lines. We selected 9 PN with fairly symmetric line profiles, these PN we analyzed with the "Torun codes".

The derived expansion velocities are presented in Table 1. Column $v_{\rm exp}$ refers to the value of a constant velocity field, or in case of acceleration (i.e when $\Delta v > 0$), to the mass weighted average velocity. The differences between velocities at the outer and inner nebular radius are given in next column: Δv . In the column $v_{\rm turb}$ we give the values deduced for the turbulent broadening.

We proved that for the PN with [WC]-type nuclei the internal motions are best represented by a constant expansion velocity with superimposed turbulence. On the contrary the non-[WC] PN show no sign of such high turbulence, they present instead a clear evidence of outward acceleration.

The paper "Turbulent nebulae around [WC]-type stars" (Acker et al. 2002), contains the details of the analysis and the extended discussion.

CD 11 1	/TD1 1 1	1 , 1	. 1	7 . 1.
Table 1.	The nebular	data and	the	analysis results
Table 1.	I IIC IICDUIAI	dava and	ULIC	anian yong i counto

PNG	name		planetary nebula				$\operatorname{results}$			
		c.star	diam	$R_{ m out}$	$M_{ m ion}$	$v_{ m exp}$	Δv	$v_{ m turb}$		
		type	arcsec	[pc]	$[{ m M}_{\odot}]$	_	$[\mathrm{km}\mathrm{s}^{-1}]$			
003.1 + 02.9	Hb 4	WC ·	6.7	0.065	0.2	16	0	14		
029.2 - 05.9	NGC 6751	${ m WC}4$	21	0.1	0.15	41	0	15		
027.6 + 04.2	M 2-43	WC8	1.6	0.02	0.04	20	0	10		
327.1 - 02.2	He 2-142	WC9	3.6	0.03	0.03	20	0	7		
352.9 + 11.4	K 2-16	WC11	20	0.05	0.002	34	0	12		
001.5 - 06.7	$\operatorname{SwSt} 1$	wels	1.3	0.007	0.01	17	12	14		
355.9 - 04.2	M 1-30	wels	3.6	0.07	0.22	22	28	0		
345.2-08.8	$\operatorname{Tc} 1$	Of(H)	10	0.05	0.05	20	34	0		
359.2 - 33.5	CRBB1	O(H)	9	0.08	0.18	13	21	0		

Acknowledgments. This work was supported by Polish KBN grant No. 2.P03D.020.17 and by French CNRS JUMELAGE programme

References

Acker et al. 2002, A&A in press