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Abstract: A local potential approach to nonlinear dynamo models which allows the 
use of variational techniques to investigate the problem of stability is introduced. The 
method applies at least to quasi-kinematic dynamo models, i.e. to models which include 
the back-reaction of the magnetic field on the fluid motion in a simplified way. A spe­
cial application leads to a previously investigated one-dimensional dynamo model which 
shows a coexistence of a periodic solution (limit cycle) with two stable steady solutions 
of opposite polarities. The inclusion of some small-amplitude noise leads to interesting 
transition phenomena which may be of relevance to explain the behaviour of astrophysi-
cal dynamos. A simple dynamical system with a two-dimensional phase-space is used for 
illustration. 

1. Introduction 

The kinematic dynamo theory can be regarded as a theory which investigates 
the stability of hydrodynamic configurations in electrically conducting media with 
respect to small magnetic fields B. In other words, the stability of the state B = 0 
is analyzed. If this state free of magnetic field proves to be unstable only the full set 
of coupled magnetohydrodynamic equations can give an answer to the question 
which state is realized then. Again the problem of stability is important. Only 
solutions of the magnetohydrodynamic equations which are stable with respect to 
small (hydrodynamic and magnetic) perturbations are relevant for a description 
of long-living magnetic configurations in astrophysical objects. 

Most of the results presented so far in the field of nonlinear dynamo theory be­
long to a kind of models which may be called quasi-kinematic mean-field dynamo 
models. In these models the back-reaction of the magnetic field on the fluid mo­
tion is described by more or less well-founded assumptions about the dependence 
of hydrodynamic functions on the (mean) magnetic field. As kinematic dynamo 
models these models lead to differential equations for the magnetic field alone, i. e. 
the velocity field - including its dependence on the magnetic field - is considered 
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as given. These models are characterized thus by a disproportion in the degree 
of physical accuracy: they represent the electrodynamics quite accurately but are 
rather crude with respect to the hydrodynamics. Nevertheless a lot of interesting 
bifurcations to steady, periodic, and quasiperiodic solutions have been found for 
such models (e.g. Brandenburg et al., 1989; Schmitt and Schussler, 1989; Jennings 
et al, 1990). 

In the present paper we show that all these models can be derived from a simple 
variational principle. We follow a method of Glansdorff and Prigogine (1971) who 
developed a variational technique for dissipative systems. A specialization leads 
back to a one-dimensional dynamo model that was introduced by Krause and 
Meinel (1988). We compare the results of Meinel and Brandenburg (1990) for this 
model with the properties of a simple dynamical system. In this way a possible 
explanation of an irregular time-behaviour of astrophysical dynamos (including 
the geo-dynamo) becomes more plausible. 

2. A variational principle 

Consider the following Lagrange density depending on two vector functions B and 
B 0 : 

C{B, Bo) = f »?(curl B)2 - (u x B0 + £) • curl B + B B0 (1) 

where the positive-definite scalar function 77 and the vector functions u and £ may 
depend on Bo and the coordinates explicitly: 

•q = r}(x,B0), u = u(x,B0), £ = £(x,B0). (2) 

A dot denotes a time derivative. 
Now we calculate the variational derivative of C with respect to B, take it at 

B = B 0 , and set it equal to zero: 

SB 
= 0. (3) 

B=Bo 

In components 6C/SB reads 

\6BJi dBt [dBiJj (4) 

where the usual summation convention is used, and Bij means dB{/dxj. 
Equation (3) is equivalent to 

B 0 = curl(« x Bo + £) - curl(»/ curl B 0 ) (5) 

which is just the standard form of the induction equation of mean-field magneto-
hydrodynamics (cf. Krause and Radler 1980). Bo is the mean magnetic field, u 
the mean velocity field, £ the mean electromotive force describing the large-scale 
induction effects of small-scale turbulent motions, and 77 the magnetic diffusivity. 
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Together with (2) various types of nonlinear dynamo models are included in 
this formalism. The so-called a-quenching, for instance, is described by 

£ = OCBQ (6) 

with an a-coefficient depending on BQ such that a vanishes as | Bo | —* oo 
(Rudiger, 1974). The effects of magnetic buoyancy, as another example, can be 
modelled by 

« = u0+uB(B0); (7) 

for further details see Moss et al. (1990). 
The Lagrange density £(B,B0) defined in (1) can be interpreted as a "local 

potential" in the sense of Glansdorff and Prigogine (1971). To show this we con­
sider a finite volume V and restrict ourselves, for simplicity, to perfect conductor 
boundary conditions, i. e. we assume that the tangential components of the elec­
tric field E = T] curl Bo — (u X BQ + £) vanish at the boundary. We consider the 
functional 

$(B,B0) = / C(B,B0)dV (8) 
Jv 

and find for B 0 satisfying (5) and B =̂ Bo 

A* = $(B, B 0 ) - # ( B 0 , B 0 ) = \ I 7?[curl(B - BQ)]2dV > 0, (9) 
Jv 

i. e. (£(B, Bo) has an absolute minimum at B = Bo. This minimum property can 
be employed to investigate (5) by means of variational techniques, e. g. the Ritz 
method. In this way a derivation of the Galerkin expansion is also possible which 
automatically guarantees its convergence (cf. Glansdorff and Prigogine, 1971). 

3. Reduction to a one-dimensional model 

3.1 The local potential 

Now we assume that the magnetic field depends only on one spatial (cartesian) 
coordinate, say z, and that the component Bz vanishes: 

B = [Bx(z,t), By(z,t), 0]. (10) 

The components Bx and By can be combined to form the complex function 

B = Bx+iBy. (11) 

Inserting (10) into (1) we obtain with (6) and u — 0 

C(B,B0) = 1 [rjB'B*1 + ia (£„£* ' - W ) + B^o + B*B0] , (12) 

where an asterisk denotes complex conjugation and a prime denotes differentiation 
with respect to z. Assuming 

https://doi.org/10.1017/S0252921100079495 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100079495


106 Reinhard Meinel 

T) = const > 0, a = aof(B*B0), c*o = const > 0, (13) 

and introducing dimensionless space- and time-coordinates we find 

C(B, B0) = B'B" + iCf(B^B0)(B0B*' - B*B') + BB* + B*B0. (14) 

(We have omitted the unnecessary factor | . ) The dimensionless "dynamo number" 
C is defined by 

C = ^ (15) 

where d is the thickness of the electrically conducting slab under consideration. 
Equation (3) reads now 

6C 

* B=Br° (16) 

with 
6C _ dC f dC V 

SB* dB* \dB") ^ ' 
and leads to 

B0 = B0' + iC{f(B*B0)B0}'. (18) 

(Note that the variational derivative of £ with respect to B gives the complex 
conjugate of (18).) 

We assume that B0 and B vanish at the boundaries z = 0 and z = 1 of the 
slab: 

B0(0,t) = B0(l,t) = 0, (19) 

B(0,t) = B(l,t) = 0. (20) 

These boundary conditions correspond to a vacuum (free of magnetic field) for 
1*1 >!• 

Now we consider the functional 

$(B,B0)= [ C(B,BQ)dz (21) 
Jo 

and calculate 
A$ = $(B,Bo)-$(B0,B0) (22) 

for B ^ BQ. With (18), (19) and (20) we obtain by integration by parts 

A&= f (B' - B'0)(B' - B'Q)*dz > 0. 
Jo 

(23) 

Thus $ is again a "local potential". The one-dimensional nonlinear dynamo model 
(18), (19) was investigated by Krause and Meinel (1988) and Meinel and Bran­
denburg (1990). 
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3.2 Stable and unstable solutions 

Various solutions of (18), (19) have been obtained for the following assumptions 
about the function / : 

/ = 1 - B*B, (24) 

f = ( l + B*B)2' ( 2 5 ) 

/ = T + T W ' K-h (26) 

At first, for C > 2w, there is always a stable steady solution Ba. It bifurcates from 
the solution B = 0 at C = Ccrit = 2n. At C — 2mr, n = 2 ,3 ,4 , . . . , unstable steady 
solutions bifurcate from B = 0. All steady solutions can be found analytically up 
to a single real quadrature. In case (24) the steady solutions can even be given 
explicitly in terms of elliptic functions. 

It should be noted that, if B is any solution of (18), (19), then B exp(i<po) also 
satisfies (18), (19), where y>o is a real constant. We restrict this gauge freedom by 
the constraint 

B%l-z,t) = B(z,t), (27) 

which means that the real part of B is an even function and the imaginary part 
of B an odd function of z with respect to the midpoint z = 4 of the considered 
interval [0,1]. Note that, according to (18), (19), the constraint (27) is conserved in 
course of time if it is initially satisfied. This constraint, however, leaves the freedom 
B —• —B, i.e. for a given solution B, —B is also a solution of our problem. Thus, 
for C > 27r, we have exactly two stable steady solutions Bs and — Bs. Which of 
them is attained as the final state of evolution depends on the initial conditions. 
Numerical investigations of (18), (19) revealed that for large values of the dynamo 
number C there is also a third possibility for the final state of evolution: a stable 
oscillating solution 2?0sc- The basin of attraction of this limit cycle increases with 
growing C while the basins of the two steady solutions shrink. The oscillating 
solution changes periodically its sign: 

Boac(z,t + T) = -Boac(z,t). (28) 

The full cycle period is given by 2T. 

3.3 Noise-induced transitions 

For large values of K in case (26) the oscillating solut ion BOBC1 at particular time 
instants t = te (turning points), closely approaches the steady solutions ±BS. This 
approach is the closer the larger the value of K. A close approach means that 

I 
l 

\Bosc{z,t)TBs\
2dz (29) 

is a small quantity for t = te. Since both solutions Ba and Bosc are stable with 
respect to infinitesimal perturbations there exists a basin boundary between Ba and 
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Bosc(te). However, it is clear that a suitable small finite perturbation is sufficient 
to produce a jump from Ba to BOBC and vice versa. Therefore the inclusion of a 
small noise-term to (18) may lead to an interesting time-behaviour of the resulting 
solutions. Figure 1 shows solutions of 

B = B" + \C[f{B*B)B)' + AG(z)F(t) (30) 

with G{x) = sin7T2 + ^ sin27T2 and F is a stochastic function: 

oo 

F{t) = ] T ek8(t - kAt), t > 0, (31) 
fc=i 

where e*, for each k, can take the values —1,0,1 with probabilities p, 1 — 2p,p, 
respectively. A = 0.2, p = 10 - 2 , At = 10 - 3 . The function / was chosen according 
to (26) and K = 4. The steady solutions ±B S are characterized by ReB(.z = | ) w 
± 1 . Obviously, the noise is sufficient for B(z,t) to leave the basin of attraction 
of Bs. The system follows then a part of Bosc. In this way it is even possible to 
reach — Bs, i. e. to generate a reversal of the magnetic field. With increasing C the 
oscillating solution and with decreasing C the steady solutions dominate. (Note 
that Bosc exists as a stable solution for C ^ 48 only.) 

In general, the noise-level which is necessary to produce jumps between the 
different attractors depends on the dynamo number C and on the degree of the 
nonlinearity / , e. g. on K. 

3.4 A n illustrative example with a two-dimensional phase-space 

The system (18), (19) has an infinite-dimensional phase-space. A discussion of 
basin boundaries etc. is therefore very difficult. The aim of this section is to present 
a "toy" system which shows the same coexistence of attractors as (18), (19) but 
is as simple as possible. A dynamical system of the form 

x = F{x,y), (32) 

V = G(x,y) (33) 

is sufficient for this purpose. We choose 

F(x, y) = xJ(x, y) - yK(x, y), (34) 

G(x,y) = yJ(x,y) + xK(x,y), (35) 

with 

J(x,y) = A- B(x2 + y2) + C(x2 + y2)2 - (x2 + y2)3, (36) 

K(x,y) = 2-(x2+y2)-lxy, (37) 

and take 
A = 15, B = 18.5, C = 7.5. (38) 

This system has the following attractors: 
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Fig. 1. Time-behaviour of the dynamo model with coexisting two steady and one peri­
odic attractors under the influence of a small-amplitude noise for different values of the 
dynamo number C (Meinel and Brandenburg, 1990) 

( 0 x = ±\/2, y = 0, 

(u) x2 + y2 = 3, 

(39) 

(40) 

i. e. two fixed points and one limit cycle. Unstable steady solutions are given by 
x — y = 0;x = 0,y = ±y/2;x = — y = ±y/5/4. The two-dimensional phase-
space is shown in Fig. 2. It can be seen that the limit cycle, when crossing the 
x-axis, closely approaches the fixed points. The basin boundary of the limit cycle 
is given by the circle x2 + y2 = | . All trajectories starting at x2 + y2 > | reach 
asymptotically the limit cycle. All trajectories starting at x2 + y2 < | reach one 
of the fixed points. The boundary between the basins of the two fixed points can 
also be seen from Fig. 2 approximately. 

The behaviour of our system (32), (33) can easily be understood by introducing 
polar coordinates: 

x = r cos tp, y = r sin ip. (41) 

Together with (34)-(38) this leads to 
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r = r ( 2 - r 2 ) ( f - r 2 ) ( 3 - r 2 ) , (42) 

<p = 2 - r2 - ±r2sm2<p. (43) 

The steady solutions (except x = y = 0) are simply given by the crossing points 
of the isoclinals r = 0 (circles) and <p = 0 (ellipse). Note that ip < 0 for all <p on 
the circle r2 = 3 (limit cycle). The basin-boundary property of the circle r2 = | 
can easily be deduced from (42): for r slightly exceeding \ /5 /2 we find r > 0 while 
r < 0 for r slightly less than y 5 / 2 . In a similar way the stability properties of the 
steady solutions and the limit cycle can be found. 

Looking at Fig. 2 one can easily imagine a time-behaviour completely compa­
rable to that of Fig. 1 if some small noise is added to (32), (33). 

Fig. 2. The trajectories for the "toy" system lead either to the limit cycle x2 + y2 = 3 
(full lines) or to one of the two fixed points x = ±v2 , y = 0 (dotted resp. dashed lines). 
Small empty circles indicate unstable steady solutions 

4. Discussion 

The coexistence of two stable steady solutions (which differ only in their polarity) 
and a periodic solution which closely approaches these steady solutions offers an 
interesting possibility for explaining the irregular time-behaviour of the magnetic 
field of various astrophysical objects. (Stability means here only stability with 
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respect to infinitesimal per turbat ions - bu t not with respect to small finite per­
turbations.) The assumption of some small noise is quite na tura l . It is even not 
necessary to make use of external per turbat ions to explain it . Wi th in the frame 
of mean-field theory a small noise t e rm may occur as a correction to the induc­
tion equation (5) if the Reynolds relations are not exactly satisfied in the usual 
two-scale approach (cf. Hoyng, 1988). 

Such an explanation of a random-like behaviour of mean-field dynamo models 
seems to be a t least as plausible as an explanation based on deterministic chaos. 

In particular, the behaviour of the Ear th ' s magnetic field as obtained from 
paleomagnetic records can be compared with our solutions, e. g. in the upper panel 
of Fig. 1. The lower panel of Fig. 1 which corresponds to a larger value of the 
dynamo number , where the periodic solution dominates, may be of interest for 
explaining the activity behaviour observed for young and very active stars . Also 
the solar cycle is not exactly periodic. 

Of course, t he nonlinear dynamo models under consideration are far away from 
real astrophysical objects. This is, however, just an argument in favour of sim­
ple models. It does not make much sense t o s tudy too complicated models of 
this "quasi-kinematic" kind (three-dimensional models with many free parameters 
etc.) . To be closer to reality the hydrodynamic par t of the theory must b e t rea ted 
more thoroughly. 

The variational principle discussed in section 2 can certainly be generalized to 
the full magnetohydrodynamic equations. 
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