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Abstract

In this paper some existence results for third-order differential equations with nonlinear
boundary value conditions are derived. Functional dependence in the data is allowed. In
the proofs we use the method of upper and lower solutions, Schauder's fixed point theorem
and results from Cabada and Heikkila on third-order differential equations with linear and
nonfunctional initial-boundary value conditions.

1. Introduction

Third-order equations arise in a large number of physical and technological processes,
such as the deflection of a curved beam with a constant or varying cross-section,
three layer beams and electromagnetic waves or gravity-driven flows; see [1,9,19]
for details. In studying most of the considered problems, the authors reduced them
to some related first- and/or second-order equations. The existence results follow,
among other techniques, by applying degree theory, monotone iterative techniques or
lower and upper solutions to the equivalent problems, see for instance [1,5,19]. In
other cases, the third-order problem is approached directly by using Green's functions
and comparison principles. In consequence, the method of lower and upper solutions
is developed for the particular equation considered in each situation. In this direction,
the reader can see the papers [3,4,12] where periodic boundary value conditions
are considered, [13-17] in which three-point boundary conditions are studied, and
[5,7,10,20] in which two-point boundary conditions are studied.

Nonlinear boundary conditions, coupled with the method of lower and upper solu-
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tions, were considered by Wang in [18], where the problem

y'"=f(t,y,y',y"), y(a) = Vl,
h(y\a), y"(a)) = 0,
g(y(b), y'(b), y"(b)) = 0,

(and the symmetric boundary conditions) was treated; and Chen, who obtained in [8]
existence results for the problem

( u'" =f(t,u,u',u"),

), u"(0) =

In this paper we study the nonlinear third-order functional initial-boundary value
problem (IBVP)

^ u y X t ) =f(t,u) fora.e. r e f o . f i ] , (1.1)
at

L,(««b), «(r,), H'OO), "'CO, «) = 0, (1.2)
L2(««b), M(r,)) = 0, (1.3)

0* • «')'(%) = Ci. (1.4)

Here c2, Jb, *i £ K, ft < fi, are given. In what follows we denote J = [to, r j .
Here O (J) will be the set of those real-valued functions u whose j -th derivatives
are continuous in J. By AC(J) we denote the set of those real-valued functions
which are absolutely continuous in J and by LX(J) we denote the set of Lebesgue
measurable functions such that / y \f {x)\dx < oo. Here L°°(J) will be the set of
Lebesgue measurable functions that are essentially bounded in J. The functions /A,
<p,f,L\ and L2 are assumed to satisfy the following conditions:

(<Pfj.) <p : IR —> OS is an increasing homeomorphism and fi : J -> (0, oo) is
continuous.

(f 1) f : J x C(7) -> D&, / (•, v) is measurable for all fixed v e C(J), and for each
R > 0 there exists a function ms 6 Ll(J) such that | / (t, v)\ < mR(t) for a.e. t € J
and for all v e C(7) satisfying || v ||oo< /?•

(f2) / (r, un) -> / (r, u) for a.e. t e J whenever vn -»• u in C(7).
(L) Li 6 C(K4 x C(7), OS) is increasing in the third variable, decreasing in the

fourth and increasing in the fifth one. L2 : OS2 -> K is a continuous function and is
decreasing with respect to its first variable.

A function u is said to be a solution of problem (1.1)—(1.4) if it satisfies these four
equations, and belongs to the set

Y = {ueC1(J)\<po(n- u'Y e AC(7)}, (1.5)
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where <p o (^ • u')' denotes the composition of <p and (/x. • «')'• We say that u e Y is
a /ower solution for problem (1.1)—(1.4) if L2(M(/O), •) is injective in K and u satisfies
the following inequalities:

j t «')')(0 > / (*, «) for a.e. r e 7,

L,(«(ib), «(r,), «'(/o), " '( '0, u) > 0 = L2(«(ib), "(fO), (M • «')'(*>) > c2,

and an upper solution if the reversed inequalities hold.
For any pair of continuous functions v, w : J -> K such that v < w in 7, we

denote [u, tu] = {x e C(J); v(t) < x(t) < w(t), for all t e J).
Assuming the existence of a lower solution a and an upper solution /J such that

a < /3 in J, we prove the existence of solutions of problem (1.1)—(1.4) lying between
a and p\ Before proving this existence result in Section 3, we derive in Section 2
some existence results for related nonlinear IBVPs for which functional dependence
on the right-hand side of the four equations is allowed. In this case the existence of
lower and upper solutions is not assumed. These results generalise some of those
obtained by the authors in [6], where similar results were obtained when functional
dependence was not allowed in the boundary conditions. Finally, in Section 4, we
present an example where our main existence result is applied to a particular case
and deduce an existence result for the physical model of the deformation of an elastic
beam.

2. First existence results

In this section we study the solvability of the functional IBVP

^-V((ji • «')')(0 = g(t, u, M'(O) for a.e. t € J,
at

- bou'(to) = C0(M), (2.1)

(ji • «')'0b) = C2(u),

in the set Y defined in (1.5). We assume that C(J) is ordered pointwise and normed
by the maximum norm and impose the following hypotheses to functionals C,:

(Cl) C, : C(7) -> K is continuous for each i = 0, 1, 2.

(C2) There exists K > 0 such that |C,(")| < K for all u e C(J) and / = 0, 1, 2.

The constants a, and b{ satisfy the hypothesis

(A) ao, a\, b0, b\ e R+, aoa{ + aob\ + a}b0 > 0.
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The function g : J x C(7) x K —*• R is assumed to satisfy the following condi-
tions:

(gl) <?(•> v,x) is measurable and \g(-, v,x)\ < m e L\J) for all v e C(J) and
x € R.

(g2) g(r, un,xn) —>• g(f, u ,x)fora .e . t e 7 whenever un —> vin C(7)andjcn —>• J:.

Denote

D=L
k(t S) = \y^y<>^yD' % ^s ^l'

~\yo(t)yi(s)/D, t<s<ti,

and

Zi(t) = m&x{y1(t),a1/fi(t)}, t e J,

to<s<t,l(t, s) = ,
\Zo(t)yi{s)/D, t<s<tu

(2.3)
M ( t ) = m a x " - ' • - " ' - • — • 'V'1 (<P(C2(u)) + J m(x)dx)

<P~l (<p(C2(u)) - j m(x)dx\}• t€ J,

and define a function fc € C{J) by

= max < l " " x " / " - l w ; ^ l v " / ' ^ w } + / " t{t, s)M(s) ds, t e J. (2.4)
ueC(J) *̂

l

Clearly, if (A) and ((pfx) hold then D > 0 and >>o, Zo> >"i. Zi. £ a°d ' are nonnegative-
valued functions.

We shall next prove an existence result for the nonlinear IBVP (2.1) by using
Schauder's fixed point theorem. The arguments are similar to those used in [6,
Theorem 4.1], where Co, Q and C2 are constant functions and g = g(x, u, u'(x), (ix •

In the proof of the above mentioned existence result we apply the following result
of [6].

PROPOSITION 2.1. If the hypotheses (<pii) and (A) hold, iff is Lebesgue integrable,
and c0, ci, c2 € R, then the IBVP

^-<p(fa • n')'(O) = / (0. far a.e. t € J,
dt (2.5)
ao"(<b) - bou'(to) = c0, axu{tx) + bxu'(tl) = cx, (/i • u')'(H)) = c2,

https://doi.org/10.1017/S1446181100013651 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013651


[5] Existence results for third-order nonlinear functional problems 37

has a unique solution u in Y, and can be represented as

, . coyi(t) + ciyoit) /"'
«(f) = 1- / A:(f, s)his) ds, t e 7,

where y 0 , y i t D and k are given in (2.2) and

his) = -<p~l (<p{ei) + I fix)dx), seJ.j fix) dx\ ,

THEOREM 2.1. Assume that the hypotheses ((?//.), (Cl), (C2), (A), (gl) and (g2)
hold, and let b be defined by (2.4). Then problem (2.1) has a solution in the set YHB,
where Y is given in (1.5) and

B = {ue C\J) | max{|u(r)l, |M'(*)I} < Ht), t e J}. (2.6)

PROOF. Conditions (gl) and (g2) imply that the function a : J -»• K, defined by
cr(r) = git, u, u'it)), is Lebesgue integrable for each u e B. Thus, from Proposi-
tion 2.1, we see that u e Y is a solution of problem (2.1) if and only if

CO(M)VI(O + CI(M)VO(/) /"''
«(f) = h / kit, s)guis)ds, t e J, (2.7)

U Jto
where

gu(s) = -<p~x LiC2iu)) + j gix, u, u'ix))dx\ . (2.8)

To prove that (2.7) admits a solution, we define a mapping F on B by

+ / ' kit,s)gu(s)ds, teJ. (2.9)D •/,„

It follows, by differentiation, that for a.e. t e J

iFu)'it) = j ^ (coiu) + J

(Q(U) + I' yds)guis)ds] . (2.10)
V Jt )

Since the right-hand side of (2.10) is continuous, it holds for all t e J. Thus it follows
from (2.10) that Fu € C'(7), and that n • (F«)' e ACiJ). Consequently, (2.10) and
(2.2) imply that

j (/x • (Fu)') (t) = -guit) for a.e. t 6 J. (2.11)
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Since the right-hand side of the above equation is continuous, it holds for all t e J,
and it can be rewritten as

(p((jj. ')')(0 = <P(C2(u)) + f g(x, u, u'(x))dx, t 6 J, (2.12)

which implies that Fu e Y.
From condition (gl) and from the definition of function F we conclude by (2.3),

(2.4) and (2.6) that F[B] c B.
Define a Banach norm in C1 (J) by

||M|| =max{|u(OI, l«'(0|}- (2.13)

Obviously, B is a closed and convex subset of Cl(J). To prove that F is continuous
in B, assume that un, u e B, n e N. Denoting by &o = max{/(/, s) \ t, s e J}, it
follows from (2.9) and (2.10) that for each t e J,

un)'(t) - (Fu)'(t)\ <ko I' \gUn(s) - gu(s)\ds
Jio

and

|F«n(0 - Fu(t)\ <k0 [' \gUn(s) - gu(s)\ds
Jto

|CQ(HB) ~ Cb(«)lyi(Q + |C,(IIB) - Ci(n)|yo(Q
D

The above inequalities, conditions (Cl) and (C2) together with the hypothesis (g2) and
the dominated convergence theorem imply that || Fun — Fu|| ->• 0 as \\un — u\\ ->• 0.
Thus F is continuous in B.

Equation (2.4) together with (2.9) and (2.10) imply that the set [Fu \ u e B] is
uniformly bounded and equicontinuous in C(7). On the other hand, since [i • (Fu)' 6
AC(J), Fu 6 Y and /LA is a continuous and positive function, from (2.11) we obtain
that

- / gu(s)ds), te J.\ ,

Now, from (2.10), conditions (gl), (g2), (Cl) and (C2) and the definition of gu, we con-
clude that the functions {(Fu)', u € B] form a uniformly bounded and equicontinuous
set in C(J).

These results ensure by Ascoli-Arzela's theorem that given any sequence {«„} of
B there is a subsequence of {Fun} which converges with respect to the norm given
by (2.13).
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The above proof implies that F is a compact self-mapping in a closed and convex
subset B of C'(7), whence F has by Schauder's theorem a fixed point u in B. This
and (2.9) ensure that u is a solution of the integral equation (2.7), that is, u is a solution
of (2.1) in YOB.

3. Main existence results

This section is devoted to the study of the existence of solutions of problem (1.1 )-
(1.4) in the presence of a pair of ordered lower and upper solutions. Our main result
reads as follows.

THEOREM 3.1. Assume that conditions (<p(i), (fl), (f2) and (L) hold. If problem
(1.1)—(1.4) has a lower solution a and an upper solution ft such that a < B in J, and
the following inequality holds:

f (t, B)<f (t, v)<f (r, a), for a.e. t e J and all v € [a, B], (3.1)

then problem (1.1)—(1.4) has at least one solution in the sector [a, B].

PROOF. Consider the following truncated problem:

jf<p (0* • u')') (r) =f(t,p (H)) for a.e. t e J,

u(t0) = A(M),

where
= max{a(r), min{i;(r), /J(r)}} for all f e 7,

B(u) = p(v(tx) - L2(v(to

Obviously A and B satisfy (Cl) and (C2) and, using the continuity of the truncated
function p, we deduce from (fl) and (f2) that conditions (gl) and (g2) hold for
/ (t,p(u)). Thus Theorem 2.1 implies that the modified problem (3.2) has at least
one solution u.

Since every solution of (3.2) is given by the expression (2.7) (with obvious notation),
then the definition of a, the positivity of functions yo, y\ and k and hypothesis ((pii)
together with (3.1), and the definition of A and B, imply that every solution u of (3.2)
satisfies for all t e J the following inequality:
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> «(<b)yi(O+«(fi)yo(Q
D

- f \(t, s)<p-x L«ji • «')'(«,)) +[ f(x, a)dx) ds

:= ait).

Note that, by Proposition 2.1, the function a is the unique solution of the problem

— (pUfM • u')'it)) = / 0 , a), for a.e. t e 7,

u(/o)=aOb), u(r,) = a(/,), (/* • M')'OO) = (/* -a')'0b).

Consequently, (/LA • a')' > (M • a')' in 7. Since a(/b) - a(«b) = arOi) — aOi) = 0.
there is F e 7 such that a'it) = <a'(F). Thus we conclude that a — a is decreasing in
[to, t] and increasing in [F, t\]. In particular, a < a, so that a < u in 7.

In an analogous way we prove that u < fi in 7.
Finally, we prove that every solution of (3.2) satisfies the boundary conditions

(1.2)—(1.3), and thus the proof is concluded.
First, note that if uit\) — L2(M(4>), uih)) < a(?i), the definition of B implies that

u(t\) = aOi). Now using condition (L) and the fact that u e [a, /8], we arrive at a
contradiction:

: a(ri) - L2(a(/b),

Analogously if u(ti) — L2(M(/O). «(^I)) > P(t\) w e n a v e M(^i) = ^('i) an£i a

contradiction is reached similarly.
Now a(ti) < u(ti) - L2(u(to), ufa)) < 0{t{) and hence L2(u(t0), u(tt)) = 0.
To prove that L\ (u(to), u(t\), H'(*O), u'ih), u) = 0 it is enough to show that

If M(ZO) + LI(M(A))» «(^I)» «'(<b). «'('i). «) < «(A)) then «(r0) = a(/b) and then
0 = L2(M(/O), M(^I)) = L,2(cx(to), cc(t\)). Now, since L2(a(t0), •) is injective and by
the definition of a lower solution, we have that u(ti) = a(t\).

As a consequence, M — a is nonnegative on 7 and attains its minimum in to and ^,
thus u'(t\) < a'(t\) and «'(*b) > a'(t0). Using the definition of a lower solution and
the properties of L\ we obtain a contradiction:

a(/b) > a Ob) +

It can be analogously proven that

«Oo) + L,(KOO), « 0 I ) , u'(t<>), M'0,), M) <

Then the result has been proved.
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REMARK 3.1. We can also consider boundary conditions of the type

M"0b) , "'(«b), «) = 0 = L2(u,

41

where L\(x, y, £) is increasing in y and £, and L2(r), z) is decreasing in rj. Moreover
a satisfies L\ (a(Zb). Qt'('o). «) > 0 > L2(a, ot(ri)) and ft the reversed inequalities. We
only need to adapt the last part of the above proof to this new situation to conclude
analogous existence results for this problem.

As a corollary of Theorem 3.1 we obtain the following existence result for periodic
IBVPs.

COROLLARY 3.1. Assume that conditions (<?//.). (fl) and (f2) hold, and that (3.1)
holds for a, ft € Y satisfying a < ft in J and

and

— <p((/z • oc')')(t) > / (r, a) for a.e. x € J,
dt

a(ta) = a(ti), a'(to) > a'(ti), (JJ. • a')'(to) > c2,

<f(t,P) fora.e. x € J,
£«K(M

< c2.

Then there exists a solution u € [a, ft] of the problem

— <p«n • u'YKt) = f (r, «) for cue. x e J,
(3.3)

u')'(to) = c2.

Taking Remark 3.1 into account we obtain existence results for initial-nonlocal
multipoint boundary value problems.

COROLLARY 3.2. Let dt > 0, hj > 0 and pjt qt e [k, fi] for i = 1 , . . . , n,
j = 1 , . . . , m. Assume that conditions (fl) and (f2) hold, that inequality (3.1) is
satisfied for a, ft e Y, such that a < $ in J, and that

— <p((n • o')')(0 > / (r, a) for cue. x e J,
at

a(tx) <
7=1

and

T <P«H • P)'){t) < f (t, 0) for a.e. x e J,
at
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Then there exists a solution u e [a, /J] of the problem

£• <p((ti • «')')(0 = / ('. u) for cue. x e J,
at

Problem (3.3) has been considered in [7] with /z = 1. Nonlocal conditions (for
second-order problems) have been studied, for instance in [2].

4. An example and applications to real phenomena

In this section we present, in a first moment, an example where the existence result
Theorem 3.1 is applied. With this example we try to illustrate what kind of problems
we can study with these techniques. The result is the following.

EXAMPLE 4.1. For all real constants A > 0, B < 0, M > \ and p > 1, the
following third-order functional problem has at least one positive solution in Y:

jt<PP(.&- «')')(0 = -min{|M(0l,f € [jr,2n]} fora.e. t 6 [0,2*], (4.1)

H(0) = max {ii(0, t € [0, n])/M, (4.2)

u(2n) = A, (4.3)

0* • H') '(0) = B. (4.4)

Here <pp (x) - \x \p~2x for all x € K, fx(t) = t + 1 for all t e [0, 2n].

SOLUTION. Defining

/ (t, u) = - min{|M(r)|, t e [n, 2n]},

L,(«(0), M'(0), u(2n), u'(2n), u) = max{ii(0. t e [0, n])/M - ii(0)

and

it is immediate to verify that conditions (<pfx), (fl), (f2) and (L) hold.
Now let a(t) = K log(f + 1), with K = A/log(27r + 1). It is clear that a is a

lower solution for this problem.
For each C > 0, we define 0C(O = A + C((2TT + I)2 - (t + I)2). Obviously,

£c e y» and / (r, /3C) = —A for every C > 0. Thus the inequality

£ < / (r, ^c) for a.e. r e 7 = [0, 2TT]
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holds if and only if

Clearly, L,(£c(0), #.(0), 0c(27r), ^ ( 2 T T ) , /3C) < 0 = L2(fic<P), 0C(2TT)).

Finally, since (̂ i • P'c)'(0) — —4 C, we see that ffc is an upper solution of problem
(4.1M4.4)ifandonlyif

Consequently, since a < ffc for all C > 0, and since the function / satisfies
condition (3.1) with P = fic> it follows from Theorem 3.1 that problem (4.1)-(4.4)
has at least one solution in the sector [a, ^CL with C given in (4.5).

After this example, in which we expose the applicability of our results to abstract
and general problems, we present an application of the given results to problems
involving real-world phenomena.

It is well known, see [11] and references therein, that the deformations of an elastic
beam are described by the fourth-order equation

"""(0 + g(t) «(0 = h(0, for a.e. t € (0, 1), (4.6)

with g and h in L'(0, 1).
Assuming that the right endpoint of the beam is fixed or cantilevered and the left

one is free, then the following conditions must be satisfied:

M"(0) = M"'(0) = 0 and M(1) = «'(1) = 0. (4.7)

It is not difficult to verify that if u € [x 6 C3([0, l]),x'" € AC([0, 1])} is a solution of
problem (4.6)-(4.7) then u' is a solution of the third-order integro-differential equation

'"(0 = g(t) f y(s)ds + h{t), for a.e. t e (0, 1);
Jt (.4.8)

Now, assuming that g and h are in L°°([0, 1]) and that g(t) < 0 for a.e. t e [0, 1],
we conclude that problem (4.8) has at least one solution.

To see this it is enough to define (p as the identity, /x = 1,/ (f, «) = g(t) ft M(S) ds+
h(t), Li(x, y, z, p, u) = z, L2(x, y) = y and c2 = 0 and consider for every C > 0,
ac(t) = C(r3 - 1) and £ c (0 = -C(t3 - 1). It is easy to verify that for C large
enough the hypotheses of Theorem 3.1 are fulfilled. Consequently, there is a solution
y of problem (4.8) lying between ac and Pc- Now u(t) = /,' y(s) ds is a solution of
(4.6H4.7).

https://doi.org/10.1017/S1446181100013651 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013651


44 Alberto Cabada and Seppo Heikkila [ 12]

Acknowledgements

The first author was supported by D.G.I, project BFM2001-3884-C02-01, Spain.
The authors thank the referees for their valuable comments and suggestions.

References

[1] R. Agarwal and D. O'Regan, "Singular problems modelling phenomena in the theory of pseudo-
plastic fluids", ANZIAM J. 45 (2003) 167-179.

[2] A. Boucherif and S. M. Bouguima, "Nonlocal multipoint boundary value problems", Comm. Appl.
Nonlinear Anal. 8 (2001) 73-85.

[3] A. Cabada, "The method of lower and upper solutions for second, third, fourth, and higher order
boundary value problems", J. Math. Anal. Appl. 185 (1994) 302-320.

[4] A. Cabada, "The method of lower and upper solutions for third-order periodic boundary value
problems", J. Math. Anal. Appl. 195 (1995) 568-589.

[5] A. Cabada and S. Heikkila, "Extremality and comparison results for discontinuous third-order
functional initial-boundary value problems", /. Math. Anal. Appl. 255 (2001) 195-212.

[6] A. Cabada and S. Heikkila, "Uniqueness, comparison and existence results for third-order initial-
boundary value problems", Comput. Math. Appl. 41 (2001) 607-618.

[7] A. Cabada and S. Lois, "Existence of solution for discontinuous third order boundary value
problems", J. Comput. Appl. Math. 110 (1999) 105-114.

[8] G. Chen, "On a kind of nonlinear boundary value problem of third order differential equation",
Ann. Differential Equations 4 (1988) 381-389.

[9] M. GreguS, Third order linear differential equations. Mathematics and its Applications (Reidel,
Dordrecht, 1987).

[10] M. Grossinho and F. Minhos, "Existence result for some third-order separated boundary value
problems", Nonlinear Anal. 47 (2001) 2407-2418.

[11] C. P. Gupta, "Existence and uniqueness theorems for the bending of an elastic beam equation",
Appl. Anal. 26 (1988) 289-304.

[12] P. Omari and M. Trombetta, "Remarks on the lower and upper solutions method for second- and
third-order periodic boundary value problems", Appl. Math. Comput. 50(1992) 1-21.

[13] I. Rachunkovd, "On some three-point problems for third-order differential equations", Math.
Bohem. 117(1992)98-110.

[14] J. RusnSk, "Existence theorems for a certain nonlinear boundary value problem of the third order",
Math. Slovaca 37 (1987) 351-356.

[15] J. Rusnak, "Constructions of lower and upper solutions for a nonlinear boundary value problem of
the third order and their applications", Math. Slovaca 40 (1990) 101-110.

[16] M. Senkyfik, "Method of lower and upper solutions for a third-order three-point regular boundary
value problem", Ada Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 31 (1992) 60-70.

[17] M. Senkyfik, "Existence of multiple solutions for a third-order three-point regular boundary value
problem", Math. Bohem. 119 (1994) 113-121.

[18] J. Wang, "Existence of solutions of nonlinear two-point boundary value problems for third-order
nonlinear differential equations", Northeast. Math. y. 7 (1991) 181—189.

[19] Z. Zhang and J. Wang, "A boundary layer problem arising in gravity-driven laminar film flow of
power-law fluids along vertical walls", ZAMP (to appear).

[20] W. Zhao, "Existence and uniqueness of solutions for third-order nonlinear boundary value prob-
lems", Tohoku Math. J. (2) 44 (1992) 545-555.

https://doi.org/10.1017/S1446181100013651 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013651

