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ASYMPTOTIC BEHAVIOR OF NONOSCILLATORY SOLUTIONS
OF A HIGHER ORDER FUNCTIONAL DIFFERENTIAL EQUATION

HIROSHI ONOSE

The asymptotic behavior of nonoscillatory solutions of nth

order nonlinear functional differential equations

+ a{t)f[y{g{t))) = b(t)

is investigated. Sufficient conditions are provided which ensure

that all nonoscillatory solutions approach zero as t -*• °° .

1. Introduction

We consider the nth order functional differential equation with

deviating argument

(1) {rn_1{t){Tn_2{t){...{r2{t){rx(t)y'{t)) •)'...)')•)'

+ a{t)f{y[g(t))) = b(t)

where a(t), b(t), g{t), r At), ..., v At) are real-valued and

continuous on [T, <*>) and f{y) is real-valued and continuous on

C-00, °°) •

The following conditions are assumed to hold throughout the paper:

(2a) lim g(t) = °° ;

(2b) yf{y) > 0 for y t 0 ;
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r°° P• , (
( 2 c ) r . ( t ) > 0 a n d l i m p . i t ) = 0 , w h e r e p . ( t ) = — - j -

% £-*» % % 't i

i = 1, . . . , n-1 , (pQ(t) E l) .

We note that the condition (2c) i s satisfied i f

f.o} •• < oo i - i K l
I J ^ T* ( £ } j i- - i j . . . , n—J. .

We restrict our consideration to those solutions y{t) of (l) which exist

on some ray \T , °°) and satisfy

sup{|2/(*)| : tQ S t < •»] > 0

for any t € [T , <=°) . Such a solution is said to be oscillatory if it

has arbitrary large zeros; otherwise, it is said to be nonoscillatory. It

is important to find sufficient conditions in order that all nonoscillatory

solutions of (l) tend to zero as t •+<*>. Many authors have studied this

problem, for example, Hammett [3], Graef and Spikes [/], Grimmer [2],

Kartsatos [4], Kusano and Onose ([5], [6]), Londen [7] and Singh [S]. In

this paper we present some results on this problem.

2. Non-oscillation theorems

We use the following lemmas to prove our results.

LEMMA 1 [5]. Consider the differential equation

(U) u'(t) - ""^

where <i>(t) is continuous on [T, <*>) , pit) is continuously

differentiate on [T, «>) and p(t) > 0 , p'(t) < 0 , l im p(t) = 0 .

Let u{t) be the solution of (1+) on [T, <*>) satisfying u(T) = 0 . Then

l im <t>(t) = t» [or -°°] implies lim u(t) = °° [or -»] .
£-x» t-xx>

LEMMA 2 [5]. Let a(t) be continuous on [T, °°) and let v(t) be
continuous differentiable on [T, oo) . if the limit lim [a(t)v'(t)+v(t) ]

t-*°°
u

exists in the extended real line R' , then the limit l im v{t) exists in
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THEOREM 1. Let the condition (3) hold. Suppose that a(t) 2 0 . I f

( 5 ) j Pn_1(t)a(t)dt = °° ,

(6) J \Ht)\dt < » ,

then all nonos dilatory solutions of (l) tend to zero as t •* °° .

Proof. Let y(t) be a nonoscillatory solution of (l). We may

suppose that y{g(t)) > 0 for t > t . We define

(7) G At) = y(t) , GAt) = r (t)G'. At) , i = 1, ..., n-l ,

"fc_l
( t ) "

f
(8) " f c _ l

( t ) " pn-fe(s)C«-fe(s)ds f o r fe = 1» 2, ..., n ,

which implies

P At)

This shows that u.(t) satisfies the differential equation

pn At)

pn-kKt> K

or equivalently,

P' fc(*) P' fc(*)
do)

where

Since «,(*,) = 0 by (8) and since p , (t) > 0 , p' ,(t) < 0 ,
K J. n—K n—K

lim p ,(£) = 0 by (2c), we apply Lemma 1 to (10) to conclude that

lim u, At) = °° [or -»] implies that lim uAt) = °° [or -<*>] . Moreover,
t*» k~X tx»
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applying Lemma 2 to (9), we conclude that lim uAt) exists in K

whenever lim u, ,(t) exists in R . From (l) we obtain
K 1

rt ft
G

n _ l U ) " G n - l ^ J + J a{s)f{y[g(s)))ds = j b(s)ds .
rt

(11)

1

Since the first integral of (ll) is positive and, by (6), the second

integral is bounded, there exist a constant K such that

Gn-i{t) = Vi(t)c;-2(tl s Vi f o r t J V ' r

Dividing the inequality by r (£) and integrating from t to t , we

get

5 V l t HTiT f°r * - *2 '

which shows, in view of (3), that there exists a constant K - such that

Applying the above argument repeatedly, we have

•?{'') — ̂  ^, • • • » w \ u ; i > n ^ ' n l o r V _ t ^ ,

where K -,..., K- , K. are constants. It follows that GAt) = w(t) is

bounded above for t > t . We now multiply both sides of (l) by p At)

and integrate it over [t-, t] . Then we have

t2 t 2

rt ,t
(12) pn_As)G^_As)ds + Pn_1(

p (s)Z?(s)ds .

*2

Noting that on account of (6) the right hand of (12) tends to a finite

limit as t -*• °° , we can deduce from (12) that
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(13) I o At)a{t)f{y{g{t)))dt < °° ,

since otherwise we could use Lemma 1 to obtain lim uv{t) = -°° for
t*° K

k = 0, 1, ..., n-l , which implies lim y(t) = -<*> , a contradiction. Next,

using (12), (13), the boundedness of y{t) and applying Lemma 2, we can

find that lim uAt) is finite for each k = 0, 1, ..., n-l . Thus we

see that lim y(t) exists and finite. Namely, lim y(t) = a , where c
£-wo t-*°°

is a finite nonnegative constant. If o > 0 , then we have

e/2 - y (&(*)) - 2e for sufficiently large t , say t 2 t > t .

From (13) and f(y) is continuous, we have a contradiction that

00 > J Pn_1(t)a(t)f(i/(?(t)))dt > K* j pn_1(

*3 *3

where

K*= Min /(j/) > 0 .

Therefore, we conclude that y(t) tends to zero as t •*•">.

REMARK. Kusano and Onose [5] obtain the same conclusion with the

additional assumption lim inf f(y) > 0 and lim sup f(y) < 0 .

THEOREM 2. Let the condition (3) hold. Suppose that ait) > 0 ,

lim inf f{y) > 0 and lim sup f(y) < 0 . If

j Qn_A.t)a{t)dt =

(15) I Pn_A.t)\b{t)\dt < - ,

then all nonosdilatory solutions of (l) tends to zero as t -»• °° .

Proof. Let y(t) be a nonoscillatory solution of (l). We may

suppose that y[g{t)) > 0 for t > t . Define G.(t) and uAt) by (7)
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and ( 8 ) . We now multiply both s ides of ( l ) by p At) and in tegra te i t

over [?-<•> t] . Then we have

ft ft

(12) j pn_As)G^_i(s)ds + j Pn_1(s)a{s)f{y{g(s)))ds
* l

- f*
J n-i

>t

By using (12) and (15) we can deduce that

(13) | Qn_A.t)a{t)f[y{g{t)))dt < » ,|

since otherwise we could use Lemma 1 to obtain lim y(t) = -» , a

contradiction. Next, using (12), (13) and applying Lemma 2, we can find

that lim "&(*) (k = 0, 1, ..., w-l) exist as definite limit finite or
£-*»

00 . Thus we see lim y(t) = » or lim y(t) = c , where c is a finite

and nonnegative constant. If lim y{t) = °° , then we have
t-KO

lim inf /(i/ [g(t))) > 0 by assumption, which and (ik) lead to a

contradiction that p (t)a(t)f[y [g{t)) )dt = «> .
't

If lim j/(t) = o > 0 , then also we have a contradiction:

| pn_ 1

Therefore we conclude tha t y(t) tends to zero as t -*• °° . / /

REMARK. Theorem 2 contains the r e su l t of Kusano and Onose ( [ 5 ] ,

Theorem 3) .

EXAMPLE 1 . Consider the equation

(16) {t2{t2{t2y'{t))')')' + t V ( y i ) = y~6t , t > 0 ,
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where Y is a positive constant. In this case we have pAt) = t ,

pAt) = (l/2)£~2 , pAt) = (l/6)£~3 . Since all assumptions of Theorem 2

are satisfied, every nonoscillatory solution of (l6) approaches zero as

t •*•<*>. This equation has a nonoscillatory solution y(t) = t

EXAMPLE 2. Consider the equation

(17) {et[ct{ety'{t)) ') ') ' + e5ty(t+B) = 2«te"* + e"U6e* , t > 0 ,

where 6 is a constant. This equation possesses y(t) = e as a non-

oscillatory solution tending to zero as t -*•<*>. It is easy to verify that

pAt) = e~ , pAt) = (l/2)e~2 , pAt) = (l/6)e~3 and the conclusions

of Theorem 2 are satisfied. Therefore all nonoscillatory solutions of (17)

also tend to zero as t -*• °° .

REMARK. These examples cannot be covered by Kusano and Onose ([5],

Theorem 3).
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