ASYMPTOTIC BEHAVIOR OF NONOSCILLATORY SOLUTIONS OF A HIGHER ORDER FUNCTIONAL DIFFERENTIAL EQUATION

HIROSHI ONOSE

The asymptotic behavior of nonoscillatory solutions of nth order nonlinear functional differential equations

$$\begin{pmatrix} r_{n-1}(t) \left(r_{n-2}(t) \left(\dots \left(r_2(t) \left(r_1(t) y'(t) \right)' \right)' \right) \dots \right)' \right)' \\ + a(t) f \left(y \left(g(t) \right) \right) = b(t)$$

is investigated. Sufficient conditions are provided which ensure that all nonoscillatory solutions approach zero as $t \to \infty$.

1. Introduction

We consider the nth order functional differential equation with deviating argument

$$\begin{array}{ll} (1) & \left(r_{n-1}(t)\left(r_{n-2}(t)\left(\ldots\left(r_{2}(t)\left(r_{1}(t)y'(t)\right)'\right)'\ldots\right)'\right)'\right)' \\ & & +a(t)f\left(y\left(g(t)\right)\right) = b(t) \end{array},$$

where $a(t), b(t), g(t), r_1(t), \ldots, r_{n-1}(t)$ are real-valued and continuous on $[T, \infty)$ and f(y) is real-valued and continuous on $(-\infty, \infty)$.

The following conditions are assumed to hold throughout the paper:

- (2a) $\lim_{t\to\infty} g(t) = \infty$;
- (2b) yf(y) > 0 for $y \neq 0$;

Received 23 February 1981.

(2c)
$$r_i(t) > 0$$
 and $\lim_{t \to \infty} \rho_i(t) = 0$, where $\rho_i(t) = \int_t^\infty \frac{\rho_{i-1}(s)}{r_i(s)} ds$,
 $i = 1, ..., n-1$, $(\rho_0(t) \equiv 1)$.

We note that the condition (2c) is satisfied if

86

(3)
$$\int_{T}^{\infty} \frac{dt}{r_{i}(t)} < \infty , \quad i = 1, \ldots, n-1 .$$

We restrict our consideration to those solutions y(t) of (1) which exist on some ray $[T_{\mu}, \infty)$ and satisfy

$$\sup\{|y(t)| : t_0 \le t < \infty\} > 0$$

for any $t_0 \in [T_y, \infty)$. Such a solution is said to be oscillatory if it has arbitrary large zeros; otherwise, it is said to be nonoscillatory. It is important to find sufficient conditions in order that all nonoscillatory solutions of (1) tend to zero as $t \rightarrow \infty$. Many authors have studied this problem, for example, Hammett [3], Graef and Spikes [1], Grimmer [2], Kartsatos [4], Kusano and Onose ([5], [6]), Londen [7] and Singh [8]. In this paper we present some results on this problem.

2. Non-oscillation theorems

We use the following lemmas to prove our results.

LEMMA 1 [5]. Consider the differential equation

(4)
$$u'(t) - \frac{\rho'(t)}{\rho(t)} u(t) + \frac{\rho'(t)}{\rho(t)} \phi(t) = 0$$

where $\phi(t)$ is continuous on $[T, \infty)$, $\rho(t)$ is continuously differentiable on $[T, \infty)$ and $\rho(t) > 0$, $\rho'(t) < 0$, $\lim_{t \to \infty} \rho(t) = 0$. Let u(t) be the solution of (4) on $[T, \infty)$ satisfying u(T) = 0. Then $\lim_{t \to \infty} \phi(t) = \infty$ [or $-\infty$] implies $\lim_{t \to \infty} u(t) = \infty$ [or $-\infty$].

LEMMA 2 [5]. Let $\sigma(t)$ be continuous on $[T, \infty)$ and let v(t) be continuous differentiable on $[T, \infty)$. If the limit $\lim_{t\to\infty} [\sigma(t)v'(t)+v(t)] t \to \infty$

 $R^{\#}$.

THEOREM]. Let the condition (3) hold. Suppose that $a(t) \ge 0$. If

(5)
$$\int_{n-1}^{\infty} \rho_{n-1}(t)a(t)dt = \infty ,$$

(6)
$$\int_{0}^{\infty} |b(t)| dt < \infty$$

then all nonoscillatory solutions of (1) tend to zero as $t \rightarrow \infty$.

Proof. Let y(t) be a nonoscillatory solution of (1). We may suppose that y(g(t)) > 0 for $t \ge t_1$. We define

(7)
$$G_0(t) = y(t)$$
, $G_i(t) = r_i(t)G'_{i-1}(t)$, $i = 1, ..., n-1$,

(8)
$$u_{k-1}(t) \equiv \int_{t_1}^t \rho_{n-k}(s) G'_{n-k}(s) ds$$
 for $k = 1, 2, ..., n$,

which implies

$$u_{k-1}(t) = -\frac{\rho_{n-k}(t)}{\rho'_{n-k}(t)} u'_{k}(t) + u_{k}(t) - \rho_{n-k}(t_{1})G_{n-k}(t_{1}) .$$

This shows that $u_k(t)$ satisfies the differential equation

(9)
$$\frac{\rho_{n-k}(t)}{\rho_{n-k}'(t)} u' - u + \phi_k(t) = 0 ,$$

or equivalently,

(10)
$$u' - \frac{\rho'_{n-k}(t)}{\rho_{n-k}(t)} u + \frac{\rho'_{n-k}(t)}{\rho_{n-k}(t)} \phi_k(t) = 0 ,$$

where

$$\phi_{k}(t) = u_{k-1}(t) + \rho_{n-k}(t_{1})G_{n-k}(t_{1})$$

Since $u_k(t_1) = 0$ by (8) and since $\rho_{n-k}(t) > 0$, $\rho'_{n-k}(t) < 0$, $\lim_{t \to \infty} \rho_{n-k}(t) = 0$ by (2c), we apply Lemma 1 to (10) to conclude that $\lim_{t \to \infty} u_{k-1}(t) = \infty$ [or $-\infty$] implies that $\lim_{t \to \infty} u_k(t) = \infty$ [or $-\infty$]. Moreover, $t \to \infty$ applying Lemma 2 to (9), we conclude that $\lim_{t\to\infty} u_k(t)$ exists in $R^{\#}$ whenever $\lim_{t\to\infty} u_{k-1}(t)$ exists in $R^{\#}$. From (1) we obtain

(11)
$$G_{n-1}(t) - G_{n-1}(t_1) + \int_{t_1}^t a(s)f(y(g(s)))ds = \int_{t_1}^t b(s)ds$$

Since the first integral of (11) is positive and, by (6), the second integral is bounded, there exist a constant K_{n-1} such that

$$G_{n-1}(t) = r_{n-1}(t)G'_{n-2}(t) \le K_{n-1}$$
 for $t \ge t_2 \ge t_1$.

Dividing the inequality by $r_{n-1}(t)$ and integrating from t_2 to t, we get

$$G_{n-2}(t) - G_{n-2}(t_1) \le K_{n-1} \int_{t_2}^t \frac{ds}{r_{n-1}(s)} \text{ for } t \ge t_2$$

which shows, in view of (3), that there exists a constant K_{n-2} such that

$$G_{n-2}(t) = r_{n-2}(t)G'_{n-3}(t) \le K_{n-2}$$
 for $t \ge t_2$.

Applying the above argument repeatedly, we have

$$G_{n-3}(t) \leq K_{n-3}, \ldots, G_1(t) \leq K_1, G_0(t) \leq K_0 \text{ for } t \geq t_2,$$

where $K_{n-3}, \ldots, K_1, K_0$ are constants. It follows that $G_0(t) \equiv y(t)$ is bounded above for $t \geq t_2$. We now multiply both sides of (1) by $\rho_{n-1}(t)$ and integrate it over $[t_2, t]$. Then we have

$$(12) \int_{t_2}^{t} \rho_{n-1}(s) G'_{n-1}(s) ds + \int_{t_2}^{t} \rho_{n-1}(s) a(s) f\{y\{g(s)\}\} ds$$
$$= \int_{t_2}^{t} \rho_{n-1}(s) b(s) ds .$$

Noting that on account of (6) the right hand of (12) tends to a finite limit as $t \rightarrow \infty$, we can deduce from (12) that

(13)
$$\int_{t_2}^{\infty} \rho_{n-1}(t)a(t)f\{y\{g(t)\}\}dt < \infty ,$$

since otherwise we could use Lemma 1 to obtain $\lim_{t\to\infty} u_k(t) = -\infty$ for $t\to\infty$ for $k=0, 1, \ldots, n-1$, which implies $\lim_{t\to\infty} y(t) = -\infty$, a contradiction. Next, $t\to\infty$ using (12), (13), the boundedness of y(t) and applying Lemma 2, we can find that $\lim_{t\to\infty} u_k(t)$ is finite for each $k=0, 1, \ldots, n-1$. Thus we see that $\lim_{t\to\infty} y(t)$ exists and finite. Namely, $\lim_{t\to\infty} y(t) = c$, where c is a finite nonnegative constant. If c > 0, then we have $c/2 \le y(g(t)) \le 2c$ for sufficiently large t, say $t \ge t_3 \ge t_2$.

From (13) and f(y) is continuous, we have a contradiction that

$$\infty > \int_{t_3}^{\infty} \rho_{n-1}(t)a(t)f(y(g(t)))dt \ge K^* \int_{t_3}^{\infty} \rho_{n-1}(t)a(t)dt = \infty ,$$

where

$$\begin{array}{rcl} K^{\star} = & \operatorname{Min} & f(y) > 0 \\ & & (c/2) \leq y \leq 2c \end{array}$$

Therefore, we conclude that y(t) tends to zero as $t \rightarrow \infty$.

REMARK. Kusano and Onose [5] obtain the same conclusion with the additional assumption $\liminf_{y \to \infty} f(y) > 0$ and $\limsup_{y \to -\infty} f(y) < 0$.

THEOREM 2. Let the condition (3) hold. Suppose that $a(t) \ge 0$, lim inf f(y) > 0 and lim sup f(y) < 0. If $y \rightarrow \infty$

(14)
$$\int_{0}^{\infty} \rho_{n-1}(t)a(t)dt = \infty$$

(15)
$$\int_{n-1}^{\infty} \rho_{n-1}(t) |b(t)| dt < \infty ,$$

then all nonoscillatory solutions of (1) tends to zero as $t \rightarrow \infty$.

Proof. Let y(t) be a nonoscillatory solution of (1). We may suppose that y(g(t)) > 0 for $t \ge t_1$. Define $G_{i}(t)$ and $u_{k}(t)$ by (7) and (8). We now multiply both sides of (1) by $\rho_{n-1}(t)$ and integrate it over $[t_1, t]$. Then we have

$$(12) \int_{t_{1}}^{t} \rho_{n-1}(s) G'_{n-1}(s) ds + \int_{t_{1}}^{t} \rho_{n-1}(s) a(s) f(y(g(s))) ds$$
$$= \int_{t_{1}}^{t} \rho_{n-1}(s) b(s) ds$$

By using (12) and (15) we can deduce that

(13)
$$\int_{t_1}^{\infty} \rho_{n-1}(t)a(t)f(y(g(t)))dt < \infty$$

since otherwise we could use Lemma 1 to obtain $\lim_{t\to\infty} y(t) = -\infty$, a contradiction. Next, using (12), (13) and applying Lemma 2, we can find that $\lim_{t\to\infty} u_k(t)$ (k = 0, 1, ..., n-1) exist as definite limit finite or ∞ . Thus we see $\lim_{t\to\infty} y(t) = \infty$ or $\lim_{t\to\infty} y(t) = c$, where c is a finite to the total distribution $t \to \infty$. Then we have to the total distribution $t \to \infty$ is a finite total total distribution $t \to \infty$.

contradiction that
$$\int_{t_1}^{\infty} \rho_{n-1}(t)a(t)f\{y(g(t))\}dt = \infty$$

If $\lim_{t \to \infty} y(t) = c > 0$, then also we have a contradiction:

$$\int_{t}^{\infty} \rho_{n-1}(t)a(t)f(y(g(t)))dt = \infty .$$

Therefore we conclude that y(t) tends to zero as $t \rightarrow \infty$. //

REMARK. Theorem 2 contains the result of Kusano and Onose ([5], Theorem 3).

EXAMPLE 1. Consider the equation

(16)
$$(t^2(t^2(t^2y'(t))')' + t^7y^3(\gamma t) = \gamma^{-6}t, t > 0,$$

where γ is a positive constant. In this case we have $\rho_1(t) = t^{-1}$, $\rho_2(t) = (1/2)t^{-2}$, $\rho_3(t) = (1/6)t^{-3}$. Since all assumptions of Theorem 2 are satisfied, every nonoscillatory solution of (16) approaches zero as $t \neq \infty$. This equation has a nonoscillatory solution $y(t) = t^{-2}$.

EXAMPLE 2. Consider the equation

$$(17) \quad \left(e^{t}\left(e^{t}\left(e^{t}y'(t)\right)'\right)'\right)' + e^{5t}y(t+\theta) = 24e^{-t} + e^{-4\theta}e^{t} , \quad t \ge 0 ,$$

where θ is a constant. This equation possesses $y(t) = e^{-4t}$ as a nonoscillatory solution tending to zero as $t \neq \infty$. It is easy to verify that $\rho_1(t) = e^{-t}$, $\rho_2(t) = (1/2)e^{-2t}$, $\rho_3(t) = (1/6)e^{-3t}$ and the conclusions of Theorem 2 are satisfied. Therefore all nonoscillatory solutions of (17) also tend to zero as $t \neq \infty$.

REMARK. These examples cannot be covered by Kusano and Onose ([5], Theorem 3).

References

- John R. Graef and Paul W. Spikes, "Asymptotic behavior of solutions of a second order nonlinear differential equation", J. Differential Equations 17 (1975), 461-476.
- [2] R. Grimmer, "On nonoscillatory solutions of a nonlinear differential equation", Proc. Amer. Math. Soc. 34 (1972), 118-120.
- [3] Michael E. Hammett, "Nonoscillation properties of a nonlinear differential equation", Proc. Amer. Math. Soc. 30 (1971), 92-96.
- [4] Athanassios G. Kartsatos, "Oscillation and existence of unique positive solutions for nonlinear *nth* order equations with forcing term", *Hiroshima Math. J.* 6 (1976), 1-6.
- [5] Takaŝi Kusano and Hiroshi Onose, "Nonoscillation theorems for differential equations with deviating argument", *Pacific J. Math.* 63 (1976), 185-192.

- [6] Takaŝi Kusano and Hiroshi Onose, "Asymptotic behavior of nonoscillatory solutions of second order functional differential equations", Bull. Austral. Math. Soc. 13 (1975), 291-299.
- [7] Stig-Olof Londen, "Some nonoscillation theorems for a second order nonlinear differential equation", SIAM J. Math. Anal. 4 (1973), 460-465.
- [8] Bhagat Singh, "Asymptotic nature of nonoscillatory solutions of nth order retarded differential equations", SIAM J. Math. Anal. 6 (1975), 784-795.

Department of Mathematics, Ibaraki University, Mito 310, Japan.