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AN AVERAGE DISTANCE RESULT
III EUCLIDEAN n-SPACE

JOHN STRANTZEN

The following result has been established by Stadje and Gross:

THEOREM. If < X, d> is a compact connected metric space, then

there is a unique positive real number a{(X, d)) with the

property that for each natural number , n 3 and for all

(x., x_, ..., x } c X , there exists y € X for which

J I d{x., y) =a(UT,

2
Stadje also proved that if d is the Euclidean metric on R ,

2
and X is a compact convex subset of R then

a((X, d)) 5 (D/2)V 5-2V3 , where D is the diameter of X .

Stadje further claimed that his proof of this result generalised

to R^ giving the same bound, and conjectured that in R ,

O/V3 is an upper bound for a(< X, d)) .

In this paper we show that if d is the Euclidean metric on

R , and X is a compact convex subset of R , then

a(<X, d)) < ZTVn/(2n+2) where D is the diameter of X . We

also show that if X is the k skeleton of a regular n

simplex J (that is, X is the union of all k simplices whose

vertices are vertices of J ), and D is the diameter of X ,
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322 John Strantzen

then

a«X, d)) =

By putting k = n th is shows the bound Dvn/{2n+2) is optimal.

Further, since for n > h i t follows that Vn/(2w+2) > %v 5-2^3 ,

Stadje's claim that (D/2)v 5-2VJ is an upper bound for

, d>) in RW is false for n> k .

1. A classical result

THEOREM 0. If < X, d) is a compact connected metric space then
there is a unique positive real number a((X, d)) with the property that
for each natural number n , and for all \x , x , ..., x } c x 3 there

n
exists y € X for which (l/n) £ d\x., y) = a((X, d)) .

i=l *

For a proof of Theorem 0 see [2] or [5] (where a more general result

is proved with X being a compact connected Hausdorff space and

d : X x X •*• R being a continuous and symmetric function).

DEFINITION 1. Let < X, d) be a compact connected metric space. The

number a(< X, d)) defined in Theorem 0 shall be called the Stadje number

of (X, d) . If D is the diameter of X the number a(< Xy d))/D is

called the dispersion constant of < X, d) and is denoted m(X, d) .

We now quote a classical result first published in 1901 (see [3])

which leads quickly to an upper bound for Stadje numbers for bounded closed

convex subsets of R (with Euclidean metric) which is the central purpose

of this paper.

THEOREM 1. Let R be real Euclidean n-epace, and X a bounded

subset of FT containing at least two points. There exists a unique

closed ball B of smallest radius r such that X c s , and if D is the

diameter of X then r s ZA/n/(2n+2) .

A simple proof of Theorem 1 appears in [7].
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LEMMA 1. Let X be a bounded closed convex subset of R"

containing at least two points, and let B be the closed ball of smallest

radius such that X cr B . If b is the centre of B then b € X .

Proof. This can be deduced from the results in [J], specifically

Lemma 1, p. 772 and Property 1, p. 773. Alternatively a simple direct

proof is as follows. Let A be a closed ball in R of centre a and

radius s such that X c= A . We will show that if a $ X and 6 > 0 is

the distance of a from X then there is a closed ball C of radius

V s -& < s such that X c C . Hence if the centre of a is not in X

then A is not the unique ball of smallest radius containing X . Since

a \ X and X is compact there is a point c € X such that d{a, c) = 6 .

Let ac be the line in R containing a and c and let x € X . By

consideration of the plane containing a, c and x and Euclidean plane

geometry we see that if the angle < acx is less than TT/2 , since

d(a, x) > 6 = d(a, c) , the point y which is the projection of a on the

line ex belongs to the segment ex and thus to the convex set X . But

y is the point of ex of shortest distance from a , and y ? c since

<acx + TT/2 . Therefore d(a, y) < d{a, c) = 6 which contradicts the fact

that 6 is the distance of a from X . Hence < acx is greater than

TT/2 from which it follows, again by Euclidean plane geometry that

d(a, x) > V d(c, d)2+d(a, c)2 = V d{c, x)2+62 . Since x Z X <=. A ,

or d(c, x) < s2 - &2 . Thus ifd{a, x) 5 s . Hence s > d(e, x) + 6

be the closed ball of centre c

x € C or X c C . It is interesting to note that the reduction of the

problem to Euclidean plane geometry works in the more general case where

instead of R we take any inner product space (thus any real inner

product space), and we take X to be a convex compact subset of the inner

product space. //

LEMMA 2. Let X be a bounded closed convex subset of IR and D

be the diameter of X . Then a((X, d>) 2 D\/n/(2n+2) , and if X contains

more than a single point m(X, d) 5 Vn/(2w+2) .

Proof. If X = {x} then trivially <z(< X, d>) = 0 so the result

follows. If X contains more than a single point, apply Theorem 1 to find
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the bal l B of smallest radius v containing X . Let b be the centre

of B . By Lemma 1, b € X . Apply Theorem 0 to the subset {&} of X

to obtain the existence of a point y € X for which d(b, y) = a(< X, d>) .

But y € X<=_ B , so d{b, y) 5 r < £Vn/(2«+2) . Hence

a( X, d ) 5 ZA/n/(2n+2) and m(X, d) 5 Vn/(2n+2) , as required. " / /

In the next section we demonstrate the upper bound for Stadje numbers

so obtained i s optimal.

2. Dispersion constants for skeletons of regular simplices

DEFINITION 2 . Le t {x , x 2 > . . . , i } c [RM , where mS n i s such

t h a t d[x., x.) = D > 0 , 0 S i < j S m+1 .

m-simplex with vertices x , x , . . . , x is the convex hull of
1 c. /7H"1

the set {x±, x2, . . . , i ^ ) , and is denoted e^^, x^, . . . ,

DEFINITION 3. If J[x^ , xn, ..., x^A is an m simplex in RW

1 2 W+l- - •

and 1 5 fe 5 m then the k-skeleton of t̂ (x , x , . . . , x ) is the,union

of a l l the fc-simplices whose vertices are in the set {x , x , . . . , x } .

I t i s denoted u[x , x^, . . . , x
m+j) • • *

For example </(x , x , x ) i s a closed t r i angu la r region with

v e r t i c e s x , x^ and x and j [ x , x , x ) i s the t r i a n g l e which forms

the boundary of j[x , x x ) .

DEFINITION 4 . The aentroid of J"fx, , x^, . . . . x A i s the point
v 1 d 77J+1'

o f

I t is clear that isometric spaces have the same Stadje numbers, and

that i f J"(xn , . . . , x ) is an m simplex in R̂  where dfx , x ) = D
1 //rrX X t-'

and 1 , Ip, •. • , 1 -. is an orthonormal basis for IR̂  , then the

mapping <j> : j ( x r . . . , x ^ J -> J^D/^l^ . . . , W ^ ) ^ ) given by
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= {D/y/2) T t.l. is a centroid preserving isometry. Further
• "Is 1^=l

•z.

by restricting $ to /'(a^, ..., x ^ J we see

, ..., (D/V2)Z,1 are isometric. It is also evident by
m+±'

scaling that the Stadje number of j[{D/y/2)l^, ..., (ZJ/V̂ ) l ^ .J is (D/V2)

multiplied by the Stadje number of <j{l, •••»-^_M.1) • ^us
 w e restrict

our attention to simplices j[l-. » •••> £.!•) and their k-skeletons.

m+1
LEMMA 3 . l e t x ^ j{l±, ••-, lml) and let f(x) = X ^(a;, ^ ) .

•£=1

/(x) is a minimum if x is the centroid of j{l-. , ..., I ..) .

1=1

m+1
and

Proof.

m+1

I f

= 1

x € j ^ ,

/ ( x )

- • • > *:.

m+1

m+l
= I v

i=l

= 11

then

; <$]•

X =
m

m ["("H-l P"\ ~|
Z X *• +1~2*i subject to ^ > 0 ,Thus we wish to minimise

m+1
i = 1, 2, ..., m+1 and £ t. = 1 . By standard techniques the minimum

is achieved for £, = £„ = ... = * , = l/(m+l) , that is when x is the

centroid of J\ln , . .. , Z. ) . //

LEMMA 4. Let x = t,Z, + *„£„ + ... +
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= 1 . That is,j = 2 , 3 , . . . , fc+1 and t± + t g + . . . +

x 6 j[l.., l», . . . , ^x,.
1 c. K+

be the aentvoid of j[l. , I. , . . . , I. ) where {l. , . . . , I. } is a

and the closest vertex to x is I . Let z

+ 1 element subset of {l±, . . . ,

Proof.

, z) > d(x, z) .

Suppose {I , . . . , I } n {I . . . , I } = \l . . . , I } . Then
"k+l

d(x, z) =
k+l

Case 1. l € {i±, . . . , i ^ .

Without loss of generality put i = 1 ;

^=2

fe+1

I *•

(k+D'
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Case 2. 1 whence 1

k+1

fe+1

k+2

LEMMA 5. a(//(Z , ..., I ), dj\ = i

Proof. Write X for cT(£ ..., I ) .

By Theorem 0 there is a y € X for which

., m-1

m+1 / i'

By Lemma 3,

fe+l

^=l
,, y) >- I d^. .) .

By symmetry we may suppose y £ j[l , . . . , I, ) .

centroid of

( i )

Let 3 be the

If fe+1 < t < m+1 , J[l,, •-., ^ + 1 » ^ •)
 i s a (fe+l)-simplex and the line

zl. is perpendicular to the space S determined by the points

, l2, ..., (because

i k+1

if 0 5 t < k+1 ).

Thus as y is in the space S ,

(ii) d[l., z) < dfl., yl for k+1 < i s n+1
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By ( i ) and ( i i ) ,

Thus

(iii)

m + l m+l
I d{l y) > I d[l z) .

i l ' '% i ^

m+l

1
m+l

£ = 1

'fc+1 m+l

•-+ I d(l., z]
•£=k+2 ^

But, as has been seen in the proof of Lennna 3,

d[lv z] =
Vk/(k+l) , l < i < k+i ,

.) , fc+1 < £ 2 m+l .

1

Thus

(iv)

Let z,, sQ) . . . , s be those points of

fe-subsimplices of jf • There are m+l.
C-, ,

which are centroids of

such k-subsimplices, so

s =

By Theorem 0, the re i s a y € X for which

J I d{zv y) = a{(X, d)) .

By symmetry we may suppose y € j{l-,, • • • , ^r,+-i) > an^L t h a t j / i s c l o s e s t

t o l± ( t h a t i s , y = txlx + * 2 Z 2 + . . . + tk+1lk+1 , where 0 5 ^ . 5 * x

f o r j = 2 , 3 , . • • , k+1 and * 1 + t g - + - . . . + t , = 1 ) .

Now i f z i s the centroid of any k subsimplex of X , by Lemma U,

, 3) •

Thus
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a(<X, d>) = j £ d{zv y) ± j Y. d{zv l±) .

Again if z• is the centroid of a fe-subsiinplex with vertex I ,
& 1

d[z-, I.) = Vk/{k+i) , and if z. "is the centroid of a- fe-subsimplex which

does not have vertex I , d[z., I ) = V(fe+2)/(fe+1) . Further, as there

are C-, fe-subsimplices with vertex I , "and C, - C, other sub-"

simplices, i t follows that

(v) a(iX, d)) :
Ck+1

[(k+i)Vk+(m-k)Vk+2] .

The lemma is established by (iv) and (v). II

This leads to the two main-results in this paper, namely:

THEOREM 2.

x., .... x.J, d)} =-
X m l 'y (m+l)V

f Jtf ' -> ,1 (k+i)y/k+{m-k)y/k+2m\J \x. , . . . , x n l , a = ~ — _ .

and

Proof. This is a t r iv ia l consequence of Lemma 5 using congruence and

scaling. . . .

THEOREM 3. If X is a bounded closed convex subset of ft1 and D
is the diameter of X , then

a(< X, d>) 5 ZA/n/(2n+2) .,

and the bound is optimal.

Proof. The bound is established in Lemma 2. To see it is optimal,

note that j[x-.> ...,£..) is a bounded closed convex subset of FT and

J(x±, . . . , xn+1) = J " ( x r . . . , * n + 1 ) . Thus
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, d)) =

3. Some related results

Since this paper was written, Szekeres and Szekeres [6] have

independently shown that Stadje's bound is incorrect, and have found Stadje

numbers for all compact convex subsets of a normed vector space with real

or complex scalars. Their paper "The average distance theorem for compact

convex regions" will also appear in the Bulletin of the Australian

Mathematical Society., as will a related paper "Average distances in compact

connected spaces" by Yost [8].
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