https://doi.org/10.1017/jfm.2021.267 Published online by Cambridge University Press

J. Fluid Mech. (2021), vol. 917, A45, doi:10.1017/jfm.2021.267

Solitary water waves created by variations in
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We study the flow of water waves over bathymetry that varies periodically along one
direction. We derive a linearized, homogenized model and show that the periodic
bathymetry induces an effective dispersion, distinct from the dispersion inherently present
in water waves. We relate this dispersion to the well-known effective dispersion introduced
by changes in the bathymetry in non-rectangular channels. Numerical simulations using
the (non-dispersive) shallow water equations reveal that a balance between this effective
dispersion and nonlinearity can create solitary waves. We derive a Korteweg—de Vries-type
equation that approximates the behaviour of these waves in the weakly nonlinear regime.
We show that, depending on geometry, dispersion due to bathymetry can be much stronger
than traditional water wave dispersion and can prevent wave breaking in strongly nonlinear
regimes. Computational experiments using depth-averaged water wave models confirm the
analysis and suggest that experimental observation of these solitary waves is possible.
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1. Introduction
1.1. Wave propagation in media with a periodic structure

The importance of laminates and composite materials in engineering led to the study
of elastic waves in periodically varying media. Long wavelength linear elastic waves
experience an effective dispersion that arises due to the periodic variation in the material
coefficients (Sun, Achenbach & Herrmann 1968). Similar conclusions regarding general
linear wave propagation were reached by using Bloch expansions in Santosa & Symes
(1991) and by using homogenization theory in Fish & Chen (2001). In one dimension, this
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Figure 1. An example of the kind of bathymetry studied in this work. (@) Bathymetry that changes
periodically in one direction. (b) Narrow channel with non-flat bathymetry.

effective dispersion is the result of reflection, and its strength is correlated with the degree
of variation of the impedance in the medium.

For nonlinear elastic waves, a similar effect has been studied in LeVeque & Yong
(2003). The induced dispersion due to reflections leads to the formation of solitary
waves that behave similarly to those arising in nonlinear dispersive wave equations like
the Korteweg—de Vries (KdV) equation (Korteweg & De Vries 1895). This behaviour
also depends on the degree of variation in the impedance; if it is not strong enough
then there is little effective dispersion and shocks tend to develop, as they would in
a homogeneous medium (Ketcheson & LeVeque 2012; Ketcheson & Quezada de Luna
2020). In the multi-dimensional setting, effective dispersion arises not only from variation
in the impedance, but also from variation in the linearized sound speed (Quezada de Luna
& Ketcheson 2014). This latter source of effective dispersion can also lead to solitary wave
formation for nonlinear waves (Ketcheson & Quezada de Luna 2015). These waves have
been called diffractons since they appear as a consequence of diffraction due to changes
in the sound speed.

The first objective of the present work is to investigate similar effects for water waves.
Periodic variation of the medium is introduced through bathymetry that varies periodically
in one direction. In § 2 we derive effective homogenized equations for small-amplitude
waves in this setting. These equations show that such waves experience an effective
dispersion, similar in nature to the effects discussed above for elastic waves. We refer
to this as bathymetric dispersion. These effective equations describe waves varying in two
horizontal dimensions; if restricted to plane waves propagating transverse to the variation
in bathymetry (as depicted in figure 1a) they are similar to those derived in Chassagne
et al. (2019). The amount of dispersion increases with the variation in the bathymetry,
which is also correlated with variation in the linearized impedance and sound speed for
water waves.

In § 3, we perform numerical simulations of the shallow water equations with periodic
bathymetry and obtain solitary waves. Our analysis and qualitative results apply to general
bathymetric profiles that are periodic in one direction. For concrete illustration, in most
of the numerical examples we consider piecewise-constant bathymetry, as depicted in
figure 1(a).

We refer to these solitary waves as bathymetric solitary waves, since they appear only in
the presence of varying bathymetry. We compare some properties of these solitary waves
with those of the diffractons observed in Ketcheson & Quezada de Luna (2015) and with
KdV solitons. In § 4, based on the linear homogenized system, we propose a KdV-type
equation, which we solve numerically and compare vs direct simulations of the shallow
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Figure 2. Channel with inclined walls. The channel is infinitely long. () Front view. (b) Isometric view.

water equations. In § 5 we compare our KdV model with other dispersive models. Finally,
we make some concluding remarks in § 6.

1.2. Solitary water waves in narrow non-rectangular channels

Dispersion of water waves due to bathymetry has been analysed and observed in a very
different setting: flow in a channel like that depicted in figure 1(b) or 2. If the bottom
of the channel is not flat, small-amplitude waves can be shown to obey an effective
equation that includes an additional dispersion, distinct from the inherent dispersion of
water waves and depending purely on the channel geometry (Peters 1966; Peregrine 1968;
Shen 1969; Teng & Wu 1997; Chassagne et al. 2019). Just as in the presence of periodic
bathymetry, here, the effective dispersion also increases with the amount of variation in
the bathymetry. In fact, due to symmetry of the solution over periodic bathymetry, the two
settings are equivalent. For example, consider the periodic bathymetry in figure 1(a) and
the non-rectangular channel in figure 1(b). The solution in the periodic channel restricted
to the domain extending from the middle of segment A to the middle of segment B is
identical to the solution in the non-rectangular channel (with slip boundary conditions
at the sides of the channel). Flow in channels with other shapes, such as that shown in
figure 2, can also be viewed equivalently as flow over an infinite periodic bathymetry,
as long as the channel does not have sloping sides that extend above the water surface.
Thus, bathymetric solitary waves arise also in narrow non-rectangular channel flow. This
equivalence also establishes a connection between our homogenized effective equations
for the infinite domain and the effective equations for channels derived in Chassagne et al.
(2019).

Before moving on, let us mention a few additional works on how bathymetry influences
wave propagation. Rosales & Papanicolau analysed the case of weakly nonlinear shallow
water waves with small bathymetry changes (Rosales & Papanicolaou 1983), while
Nachbin & Papanicolau studied the case of small (linear) waves with large variations
in bathymetry (Nachbin & Papanicolaou 1992). Both works focused on waves in one
horizontal space dimension. An extension to two dimensions was presented in Craig et al.
(2005), with similar results. Based on the Green—Naghdi model (Green & Naghdi 1976),
Chassagne et al. (2019) studied the dispersive effects of bores in non-rectangular channels,
with an emphasis on the influence of sloping banks.

Thus far, we have dealt with the shallow water model, which neglects important physical
effects such as dispersion, dissipation and surface tension. In §5 we concentrate on
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Figure 3. Notation for shallow water equations with variable bathymetry. The reference point z = 0 is located
at the bottom of the bathymetry. The surface elevation is denoted by 7(x,y) and the undisturbed surface
elevation is denoted by n*. The water depth is denoted by h(x,y) = n(x,y) — b(y). The bathymetry b(y)
varies along the axis that points into the page. Figure 1(a) presents a three-dimensional view for one specific
bathymetric profile. In this diagram, the bathymetry b is piecewise constant; however, in general we assume it
to be y-periodic.

waves in non-rectangular channels, with the goal of determining whether it is feasible
to experimentally observe solitary waves that are created primarily by bathymetric
dispersion. To do so we must go beyond the shallow water model. The shallow water
equations neglect the inherent dispersive nature of water waves. If solitary waves over
periodic bathymetry are observed experimentally, can one distinguish them from other
solitary waves arising from other dispersive effects (such as KdV solitons)?

The model most directly relevant to the present work is perhaps that of Peregrine
(Peregrine 1968) (see also Peters 1966; Shen 1969; Teng & Wu 1997), which leads
to an effective KdV equation in which the dispersion coefficient is modified by the
channel geometry. In §§ 4.1 and 5 we compare the dispersion in these three models (KdV,
Peregrine’s and ours) and show that, in certain regimes, bathymetric dispersion can be the
dominant effect. This answers the question above in the affirmative. In § 4.1, we also show
that our model and Peregrine’s model, despite being based on different assumptions, agree
well in a certain physical regime.

The code and instructions to create every plot and all the results in this work are available
at https://github.com/manuel-quezada/water_wave_diffractons_RR.

1.3. Objectives and our contribution

We have two objectives in this work. The first objective, which we tackle in §§ 2 and 3,
is to extend the results in Ketcheson & Quezada de Luna (2015) to obtain bathymetric
solitary waves and study some of their properties. In § 4 we go beyond the work in that
reference and obtain a KdV-type equation valid for weakly nonlinear regimes. The second
objective, which is addressed in § 5, is to assess the feasibility of observing these waves in
physical experiments. Our contribution is to

(i) derive an effective model for bathymetry-induced dispersion of waves in two
horizontal dimensions;
(i1) connect two distinct areas of study: hyperbolic equations with periodic coefficients
and water wave models in channels with non-flat bathymetry;
(iii) show that this (bathymetric) dispersion alone can lead to the formation of solitary
waves;
(iv) derive a KdV-type equation that models these solitary waves; and
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(v) show that bathymetric dispersion can be the dominant source of dispersion for
certain classes of waves.

2. Effective dispersion due to periodic bathymetry

Water waves are inherently dispersive, and this is represented through dispersive terms or
non-hydrostatic pressure terms in models such as the KdV equation (Korteweg & De Vries
1895), the Boussinesq equations (Boussinesq 1872) and the Green—Naghdi model (Green
& Naghdi 1976). In this section, we demonstrate that small-amplitude shallow water waves
propagating over periodic bathymetry undergo an effective dispersion. In order to clearly
distinguish this source of dispersion from the dispersion present over flat bathymetry, we
focus on the — dispersionless — shallow water equations over variable bathymetry

hy + (hu)y + (hv)y, = 0, (2.1a)
(hu); + (h®)y + gh(h + b), + (huv)y = 0, (2.1b)
(), + (huv)y + (?)y + gh(h + b)y = 0. @2.1¢)

Here, £ is the height of the column of water, u and v are the x- and y-velocities respectively,
g is the magnitude of the gravitational force and b(x, y) is the periodic bathymetry. The
reference point z = 0 is chosen to coincide with the lowest point of the bathymetry; see
figure 3. Unless otherwise noted, we use g = 9.8 (ms~2); hereafter, we do not explicitly
reference units of measure but use SI units throughout. We consider a domain that extends
infinitely in both x and y, with bathymetry periodic in y. We let §2 denote the period and
use it as the unit of measurement so that £2 = 1.

The analysis and results of this section are similar to those presented in Quezada de
Luna & Ketcheson (2014), which treated the acoustic wave equation in a periodic medium.
These results are also connected with the work by Chassagne et al. (2019), where the
authors derived an effective model for the shallow water equations that captures the
dispersive effects when one-dimensional waves travel over non-flat channels. The main
differences between the second reference and the results we present in this section is that
the bathymetry that we consider is assumed to be changing periodically in one direction
and that our effective equations are valid for propagation in two dimensions.

2.1. Linearization and homogenization

We aim to obtain a constant-coefficient homogenized system that approximates (2.1)
for small-amplitude long-wavelength perturbations. To do this we follow Quezada de
Luna & Ketcheson (2014) and references therein and perform a homogenization, which
is valid for small-amplitude waves. We consider waves with characteristic wavelength A
propagating in the presence of periodic bathymetry with period 2, where 2 < 1. By
letting & := £2/4, we introduce a fast scale y := 871y in the y-direction. We assume
that the solution A, u and v depend also on this fast scale; i.e. h = h(x,y,t,y) and
similarly for # and v. Finally, we assume that the bathymetry depends only on the fast
scale; i.e. b = b(y). These are key steps in the homogenization process; see e.g. Fish
& Chen (2001). Note that, by these assumptions, (-)y = (-)y + 8‘1(-)5,. Now we obtain
a dimensionless version of (2.1) (after the homogenization process we go back to the
variables with dimensions). This can be done by introducing the following dimensionless
variables:
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y ¢ h u
) y = X9 y = X? r = _tv 7]/= 11 h/: ] u/: )
A A A n* n* c

vV=-, b=—, (2.2a-i)

where ¢ := /gn*. We remark that we scale y by A since the fast variation in J is introduced
via its definition (5 = 8~ !y). After considering the system in non-conservative form and,
for simplicity, dropping the tildes we get

e+ [(n — buly + [(n — b)v]y + 8 [(n — byv]; =0, (2.3)
u,+uux+v(uy+8_1u§,)+nx =0, 2.4)
v,+uvx+v(vy+5_lv9)+ny+5_1ny =0, (2.5)

where n = h 4 b denotes the surface elevation. We consider small-amplitude waves and
perform an asymptotic expansion around 7 = n*, u = 0 and v = 0. The linear system is

e+ [(* = byuly + [(n* — b)vly + 8~ [(n* — byvly =0, (2.6a)
w4 nye =0, (2.6b)
vy +8 1y = 0. (2.6¢)

Now, let 1 := (1™ — b)u and v := (n* — b)v denote the (linearized) x- and y-momentum,
respectively. Doing so, we get

N+ e+ vy + 8 vy =0, (2.7a)
e+ (" = b@)n. =0, (2.7b)
v+ (* = b)) (ny + 8 'n5) = 0. (2.7¢)

We have explicitly noted the spatial dependence of the bathymetry b in order to emphasize
that (2.7) is a first-order linear hyperbolic system with spatially varying coefficients.

In the following equations and in §§ 2.1.1 and 2.1.2, to avoid confusion with subindices,
we use (-); r to denote differentiation of (-); with respect to x, and similarly for the other
derivatives. Using the formal expansion n(x, y, y, ) = Z?io Sini(x, v, ¥, t) and similarly
for  and v, we get

8+ Y S+ Y vy +871D 85 =0, (2.8a)
i=0 i=0 i=0 i=0

o ) o) )
Y i G =b) Y i =0, (2.8D)
i=0 i=0

> 8+ (* = b) (Z 8niy +87" 25"7:;&) =0. (2.8¢)
i=0 i=0 i=0

The next step is to equate terms of the same order. At each order we apply the
average operator (-) := (1/|.§2|)f_(2 ()ydy=(1/2) fo/l(-) dy to obtain the homogenized
leading-order system and corrections to it. In addition, we obtain expressions for the
non-homogenized variables. In the next sections we present details for the derivation of
the homogenized leading-order system and for the first correction. Then we present the
results considering one more correction.
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2.1.1. Homogenized O(1) system

From (2.8), we equate terms of 08~ ") and conclude that vy =: by (x, y,t) and nog =:
no(x, y, t) (where the bar is used to denote variables that are independent of the fast scale
). From (2.8), we take terms of O(1) to obtain

n0.: + Hox +Voy+vi; =0, (2.9a)
mo,e + (" = b)ijox =0, (2.9b)
vo,i + (™ = b) (7lo,y + m15) = 0. (2.9¢)

Divide (2.9¢) by n* — b, apply the average operator to (2.9) and assume that vy and n; are
y-periodic to get

no,: + ox + vo,y =0, (2.10a)
fo,c + (" = b)mijox =0, (2.10b)
bo,r + (" = b)nijo,y =0, (2.10¢)
where
1
Om = /()dy and ()= ()71~ [ /() ld] (2.11a,b)
" Tl 2] Y

denote the mean and harmonic averages, respectively. System (2.10) is the homogenized
leading-order system. It has the same form as the variable bathymetry system (2.7) but
with effective constant bathymetry coefficients.

From (2.95) and (2.10b) (and by choosing an appropriate initial condition for f19) we
obtain

n"-b g (2.12)
(77* - b)m Ho: ‘

Now we obtain expressions for the non-averaged O(1) terms in (2.9). To do this we make
the following ansatz:

Ko =

v = V1 +AQ) R0 x» (2.13a)
n = i1 +B®)o,y, (2.13b)

which is chosen to reduce (2.9) to a system of ordinary differential equations (ODEs).
By substituting the ansatz (2.13), the homogenized leading-order system (2.10) and the
relation for g (2.12) into the O(1) system (2.9) and by requiring that the fast variable
coefficients vanish we get

A+ =b)(* —b),,' —1=0, (2.14a)
By—(* =) '(* —b)y+1=0. (2.14b)

We look for solutions of (2.14) with the normalization condition (A) = (B) = 0. Note that

(A;) = (B 3) = 0, which implies that A and B are y-periodic.

917 A45-7


https://doi.org/10.1017/jfm.2021.267

https://doi.org/10.1017/jfm.2021.267 Published online by Cambridge University Press

M. Quezada de Luna and D.1. Ketcheson

2.1.2. Homogenized corrections
From (2.8) we collect O(3) terms, plug the ansatz (2.13) and apply the average operator (-)
to get

M.+ x4 1,y =0, (2.15q)
P14+ 0" = bD)mi e = —(BM™ — b)) 70 xy, (2.15b)
e+ F = Bty = —(* — BAG* — b)) jio (2.15¢)

For the bathymetry that we consider in this work (B(n* — b)) = (A(n* —b)~!) = 0.
Following similar (but considerably more algebraically intense) steps we obtain the
homogenized second correction

M2, + fax + 2,y =0, (2.16a)
P+ (0" = D)miax = — (1" — BYF)1j0,xyy — (0" — D)E)]o xxxs (2.16D)
B2+ (0" = Dwilzy = (0 = D)R((1" = b) ™' D)ijo.yy

+ (" = D)™ = D)n((7* — b) ™' C) 0,y (2.16¢)

where C, D, E and F are fast variable functions that are given by the following ODE:s:
C;—[1—*=b),,' " —b)IB+A=0, (2.17a)
D3 —B=0, (2.17b)
E;— (" —bm(n* —b) 'A=0, (2.17¢)
Fs+B=0, (2.17d)

with the normalization conditions (C) = (D) = (E) = (F) = 0. It can be easily shown
that, for the periodic bathymetry that we consider, the coefficients in the right-hand side
of (2.16) do not vanish.

Finally, given the homogenized leading-order system (2.10) and the homogenized
corrections (2.15) and (2.16), we combine them into a single system by defining 7 :=
(no + 811 + ...) and similarly for i and v. We obtain

Ne+ix+vy,=0, (2.18a)
i+ 0 = Dmilx = 87" = D) [ 171y + Bailxr] (2.18)
Do+ " = Baily = 82 (1" = Dn [Viilyyy + Vol (2.18¢)
where
Bi=—* —b), (" —bF), pr=—0"—b), (0" = bE), (2.19a)
yi =" —bw(* —b)7'D), y2= " = bwl(n* —b)7'C). (2.19b)

The homogenized system (2.18) is an effective approximation of the two-dimensional
linearized shallow water equations over y-periodic bathymetry whose period is much
smaller than the characteristic wavelength.

If we assume also that the initial data do not depend on y, let #* := (n™ — b) denote the
average undisturbed surface elevation, drop the bars in (2.18) and go back to the dimension
variables, we obtain

N — gﬁ*rl,xx = _gﬁ*azﬁZU,xxxm (2.20)
which models propagation only in the x-direction. The speed of small-amplitude
long-wavelength  perturbations is, as one might expect, cof = /gn*.
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Equations (2.18)—(2.19) and (2.20) are valid for small-amplitude waves over arbitrary
bathymetry that is periodic in y. Below, we will specialize to the piecewise-constant case.

2.2. Piecewise-constant bathymetry

Now we consider a specific case of study with piecewise-constant bathymetry

0, ifn+%§y/[2<n—|—1,

: 2.21)

b(y) =
where 7 is any integer. This bathymetry profile is depicted in figure 1(a). The coefficients

(2.19) are then

b02 2 —b02 2
=——1°, Pfpp=————A°, (2.22a)
48(2n* — bp)? 192n* (* — bo)

Y1 =—B1, 2= —p. (2.22b)

Bi

The term appearing on the right-hand side of (2.20) is dispersive; the coefficient of
dispersion is in this case given by

(2.23)

bo2$2?
192n*(n* — bo) |

— gi"6° 2 = gn* [

It is evident that this dispersion is purely an effect of the bathymetric variation; notice that
it increases as by grows, and vanishes as n* — oo (keeping the bathymetry fixed). We
remark that the dispersion in (2.20) is a consequence of changes in the bathymetry and not
due to non-hydrostatic pressure effects. These dispersive effects are different from those
present in dispersive water wave models, like the KdV equation, in which dispersion is
present even when the bathymetry profile is flat.

In figure 4 we compare the solution of the (nonlinear) shallow water system with
variable bathymetry (2.1) to that of the homogenized linear system (2.20). We take initial
data

2
nx,y,t=0)=n*+ecexp (—;—), ulx,y,0) =v(x,y,0) =0 (2.24a,b)
o

with € = 0.001, @ = 2 and n* = 0.75. The bathymetry is given by (2.21) with
by =0.5. (2.25)

The dispersion predicted by the linearized, homogenized model is also clearly evident in
the nonlinear, variable-coefficient solution. Both models are solved to very high precision;
the differences between the solutions are primarily due to the nonlinear effects that are
neglected in (2.20). The shallow water equations (2.1) are solved using the finite volume
code PyClaw (Ketcheson et al. 2012), with the Riemann solver developed in George
(2008). The mesh resolution is Ax = Ay = 1/128. The linear homogenized equations
(2.20) are solved using a Fourier spectral collocation method in space and a fourth-order
Runge—Kutta method in time; see Trefethen (2000).
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0.7506 ; | — Homogenized linear system  ---- Shallow water model at y=0.25 — Shqllow water model at y=-0.25
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X X X

Figure 4. Solution of the shallow water equations (2.1) with periodic bathymetry vs solution of the linearized
homogenized approximation (2.20). We show the surface elevation 1 at (from left to right) r = 20, 120 and
t = 200. We plot two different slices of the solution at different y values; however, because § < 1 there is
almost no phase difference and the two plots are nearly exactly aligned.
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Figure 5. Bathymetric solitary waves at # = 340. The initial condition is a Gaussian pulse given by (2.24a,b)
with € = 0.05, n* = 0.75 and (a,b) @ = 2 and (¢,d) @ = 10. In (a,c) we show the surface elevation plots (where
the dashed line represents the location of the jump in the bathymetry) and in (b,d) we show slices along
y = 0.25 (in dashed blue) and y = —0.25 (in solid red).

3. Bathymetric solitary waves

Let us now study solutions of the nonlinear, variable-coefficient shallow water model (2.1)
in a more strongly nonlinear regime. We repeat the experiment above, taking (2.24a,b) and
(2.25) but with a much larger perturbation given by € = 0.05 and « = 2 or o = 10. We
again solve the equations using the finite volume solver PyClaw. The results are shown in
figure 5. The mass of the initial pulse determines the number of solitary waves created.
In the rest of this section we use the solitary waves shown in figure 5 and (following
Ketcheson & Quezada de Luna 2015) study some properties for these solitary waves.
In particular, we investigate the long-time stability and shape evolution, the scaling and
speed—amplitude relations and the interaction of bathymetric solitary waves. The results
from these experiments suggest that, although bathymetric solitary waves are similar to
KdV solitons, they possess fundamental differences. We explore these similarities and
differences in § 4. Moreover, we derive a KdV-type equation that approximates the solution
of (2.1) for x-propagation of plane waves over periodic bathymetry like the one depicted
in figure 1(a).

3.1. Long-time stability and shape evolution

We first investigate the long-time behaviour and the shape evolution of these solitary
waves. To do this we isolate the first solitary wave in figure 5(a,b), which corresponds
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Figure 6. For each solitary wave in figure 5(c,d), we plot (a) the amplitude as a function of y, and (b) the
variation AA := maxyA(y) — minyA(y) as a function of mean amplitude A:=(1/2) fQngA(y) dy. The

black dashed line in (b) is a quadratic least-squares curve fitted to the data and constrained to pass through
the known value (0, 0). In both cases, the amplitude is measured relative to the undisturbed water level n*.

to t = 340, use it as initial condition for a new simulation and propagate it by itself until a
final time of r = 1000. Let X (#) denote the location of the solitary wave’s peak at time t;
we compute

(3.1

An = max ,
tell,...,1000]

7 (x — X(0), y, = 0) ll2(x.)

which is the largest relative difference between the shape of the solution at ¢ e
[1,...,1000] and the initial condition. We perform this experiment on a grid with
Ax = Ay = 1/64 and obtain An ~ 7.66 x 10~*. Afterwards, we refine the grid so that
Ax = Ay = 1/128 and obtain An & 1.79 x 10~*. The results indicate that these solutions
are indeed solitary waves that propagate with a fixed shape, up to numerical errors.

3.2. Scaling and speed—amplitude relations

Many solitary waves, including the diffractons found in Ketcheson & Quezada de Luna
(2015), have a shape that is exactly or nearly that of a sech’ function. Here, we investigate
the shape of bathymetric solitary waves. Although these are two-dimensional waves, they
vary more strongly with respect to x than y. Our expectation (based on Ketcheson &
Quezada de Luna 2015) is that the cross-section of a bathymetric solitary wave for a fixed

value of y should be close to a sech? function.

To illustrate the two-dimensional structure of these waves, in figure 6(a) we plot,
for the first five solitary waves from figure 5(c,d), the peak amplitude as a function
of y; i.e. A(y) := max,{n(x,y) — n*}. Observe that the variation in y is stronger for
larger-amplitude solitary waves; for the smallest ones, the wave is nearly uniform in y.
This suggests that the y-variation is a nonlinear effect. To strengthen this argument, we

plot in figure 6(b) the variation in amplitude AA := max, A(y) — miny A(y) vs the mean
amplitude A := (1/£2) f féizA( y) dy. In addition, we plot a quadratic least-squares curve
fitted to the data and constrained to pass through the known value (0, 0). The profiles
plotted here are qualitatively similar to what is predicted by the model derived in Peregrine

(1969), although they differ in magnitude.
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Figure 7. Scaling relation for bathymetric solitary waves. In (a) we show the first three y-averaged solitary

waves (given by (3.2)) from figure 5(c,d) centred at the origin. In (b) we show the same solitary waves after

the scaling given by (3.3). The black dashed line in (b) is a sech? function fitted to the data and the dotted cyan
line is a soliton solution of a KdV-type equation that we derive in § 4.

We consider again the first three solitary waves in figure 5(c,d), computing the
y-averaged surface height

1 922
Nm(x, t = 340) ~ — / [n(x, y, t = 340) — n*]dy, 3.2)
2 ) an
and rescaling each wave by its amplitude
Lo (X
im (%) 1= ";‘( ) (3.3)
n

where A, = max, 7, (x), X = /A (x — xp), with x,, = argmax,7,,(x). In figure 7(a) we
show the three non-scaled, y-averaged solitary waves (given by (3.2)) and in (b) we show
the same averaged solitary waves after the scaling defined by (3.3). After this scaling,
all of the bathymetric solitary waves look similar, which is a common property of many
solitary waves. The black dashed line in () is a sech? function with amplitude and width
fitted (in a least-squares sense) to all of the solitary waves after the scaling. In §4 we
derive a KdV-type equation that approximates the right-going part of the solution of (2.1)
with variable bathymetry (2.21). The dotted cyan line in figure 7(b) is the solution of the
aforementioned KdV-type equation with A,, = 1; i.e. it is a soliton that approximates the
bathymetric solitary waves for the configuration that we consider in figure 5(c,d).

The KdV solitons have a linear speed—amplitude relation (Korteweg & De Vries 1895;
Zabusky & Kruskal 1965). This is also true for other solitary waves. For example,
stegotons, which are solitary waves created due to effective dispersion introduced by
reflections in periodic media, also have a linear speed—amplitude relation (LeVeque &
Yong 2003). As we discussed before, for a given bathymetric solitary wave, the amplitude
is y-dependent. Therefore, to define the speed—amplitude relation, we must first define the
amplitude of a bathymetric solitary wave. If we use the y-averaged wave peak amplitude,
we obtain a nearly linear relation, as shown by the blue circles in figure 8. This relation
also agrees well with the predicted speed—amplitude relationship for small-amplitude
soliton solutions of a KdV-type model that we derive in § 4; this relation is shown with a
solid purple line. If we use instead the minimum or maximum amplitude (which occur at
y = 0.25 and y = —0.25, respectively), we obtain nonlinear relationships, as shown also
in figure 8.
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Figure 8. Speed—amplitude relation for bathymetric solitary waves. We measure the amplitude based on (3.2).
The solid purple line is based on a KdV-type equation that we derive in §4 and the dashed black line is
the quadratic least-squares fitted curve to the cyan circles and constrained to pass through the known value
Ceff = +/8 (n* — b) for zero-amplitude waves. The amplitude is measured relative to the undisturbed water
level n*.

3.3. Interaction of bathymetric solitary waves

Another well-known property of many solitary waves is their tendency to interact with
one another only through a phase shift. In this section we study the interaction of two
solitary waves that are propagating in either the same direction or opposite directions. In
both situations, the solitary waves are taken from the results shown in figure 5(a.,b). In all
plots we show slices of the surface elevation along y = 0.25 and y = —0.25.

To produce a counter-propagating collision we negate the velocity of the shorter wave.
The initial condition is shown in figure 9(a). Here, the taller wave propagates to the right
while the smaller one moves to the left. We show the solution at different times during and
after the interaction. As a reference, we propagate the taller wave by itself and superimpose
the solution using dashed lines. After the interaction, very small oscillations are visible
(see figure 9d), suggesting that the interaction is not elastic. This has been reported before
for diffractons (Ketcheson & Quezada de Luna 2015); however, in this case, the oscillations
in the tail are much weaker. Note that there is an almost unnoticeable change in the phase
for the taller solitary wave with respect to the propagation without interaction; this is due to
the relatively short time of interaction. Although the phase shift is also small for diffractons
(Ketcheson & Quezada de Luna 2015), the phase shift in our numerical experiments with
bathymetric solitary waves is much smaller.

Now we consider a collision where both waves move in the same direction. The initial
condition is shown in figure 10(a). Here, both waves move to the right. Since the taller
wave moves faster (see § 3.2) it eventually reaches and passes the smaller one. Again, we
show the solution at different times during and after the interaction. As a reference, we
propagate the taller wave by itself and superimpose the solution using dashed lines. In this
case, there are no visible oscillations after the collision, suggesting an elastic collision.
In contrast to the counter-propagating collision, the interaction time is larger, which leads
to a noticeable shift in phase. This is a common feature for other solitary waves and for
diffractons.

4. KdV model for weakly nonlinear bathymetric solitary waves

In the previous section we explored some properties of bathymetric solitary waves. The
shape of any given of these waves is not y-independent; i.e. these are truly two-dimensional
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Figure 9. Counter-propagating collision. We show (in different colour) slices at the middle of each bathymetry
section. As a reference, we plot the propagation of the taller solitary wave by itself. In (d) we zoom in on the
tails of the solitary waves after the interaction to notice the oscillations and the slight change in phase.
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Figure 10. Co-propagating collision at different times. We show (in different colour) slices at the middle of
each bathymetry section. As a reference, we plot the propagation of the taller solitary wave by itself. In (f) we
zoom in on the tails of the solitary waves after the interaction.

waves that travel in one direction. However, their shape is closely connected with a
one-dimensional sech? function. In addition, bathymetric solitary waves travel without
significant change in the shape and interact similar to KdV solitons. All these properties
strongly suggest that one might model small-amplitude bathymetric solitary waves
via a KdV equation. We do not expect such a model to be completely accurate for
large-amplitude bathymetric solitary waves since, as the amplitude increases, the waves
behave less like solitons; see § 3.2. In this section, we obtain a KdV-type equation that
accounts for bathymetric dispersion and is valid for weakly nonlinear waves. Before doing
that, however, in the next section we compare the shallow water solutions with Peregrine’s
equation that accounts for additional sources of water wave dispersion.
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4.1. Bathymetric solitary waves via an inherently dispersive water wave model
Another water wave model that accounts for dispersive effects due to changes in the

bathymetry has been derived and analysed in Peregrine (1968) and Teng & Wu (1997).
That model for flow in non-rectangular channels takes the form

— 3 /g _ K2 —
TR N U Rl & 1 Ve oo = 0. (4.1)
Equation (4.1) is a KdV-type equation with a modified dispersion coefficient. Here, «2 is
called the channel shape factor; it depends on the cross-section of the channel and is given
by
2 3[1/W( ydydz — — [ w( *)d:| 4.2)
kK="= 7 Y, 2)dydz — — ysnayf, .
@)% LDl Jp ILI JiL
where D C R? is the cross-section of the channel, L C D is the top boundary of the

cross-section (i.e. the undisturbed free surface) and ¥ is the solution of the following
elliptic boundary value problem:

Wy, W =1, (4.3a)
W, |y = 77, (4.3b)
W, = 0. (4.3¢)

Here, n is the unit vector normal to the boundary of the cross-section of the channel. For
a rectangular channel, x = 1 so (4.1) becomes the standard KdV equation.

It is natural to ask how Peregrine’s model (4.1) compares with solutions of the shallow
water equations in a non-rectangular channel — or equivalently, over the kind of periodic
bathymetry we have considered. To answer this, we first observe that we cannot expect
agreement between the models if the shallow water model leads to shock formation; this
can occur if the initial data are very large or if the bathymetry variation is small (i.e. if
k ~ 1) (Ketcheson & Quezada de Luna 2020).

On the other hand, if the bathymetry variation is relatively large and the initial data are
not too large, the two models can be in relatively close agreement for fairly long times.
An example of this is shown in figure 11(a—c). Here, we take bathymetry given by (2.21)
with by = 0.01. The initial data are given by (2.24a,b) with n* = 0.015, ¢ = 0.001 and
o = 2. Note that, for this case, k% &~ 214.14. We solve (4.1) using a Fourier pseudospectral
collocation method. We see very close agreement between the solutions, even after the
waves have travelled a distance equal to hundreds of times the channel width.

In figure 11(d—f) we show another example, in which bathymetric dispersion is much
less dominant. The bathymetry and the amplitude of the initial data are 50 times larger,
with bg = 0.5, n* = 0.75 and ¢ = 0.05. Note that, for this case, k2~ 1.58. We see
that the resulting solutions are completely different, even from a qualitative perspective.
This is expected, since the model leading to (4.1) includes additional dispersion beyond
that caused by bathymetry variation. The shallow water model neglects that additional
dispersion and may therefore be less accurate in any regime (like that of the latter scenario)
where it is important. In § 5, we compare the strength of these two types of dispersion
independently and compare each against that predicted by Peregrine’s model; see figure 15.

REMARK 4.1 About the amplitude of the initial data. The shallow water equations (2.1)
with the initial condition (2.24a,b) model the propagation of a left- and a right-going wave.
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Figure 11. In green, solution of Peregrine’s model (4.1). In black, y-averaged solution of the shallow water

equations (2.1) with periodic bathymetry. The bathymetry is given by (2.21) with by = 0.01 for (a—c) and
by = 0.5 for (d—f). The initial condition is given by (2.24a,b) with « = 2, n* = 0.015 and € = 0.001 for (a—c)
and @ = 2, n* = 0.75 and € = 0.05 for (d—f).

On the other hand, the KdV-type equation (4.1) models the propagation of a right-going
wave. For this reason, the amplitude € of the initial condition (2.24a,b) differs by a factor
of two between (2.1) and (4.1). For simplicity, we report the amplitude used for the shallow
water equations, for the KdV-type equations we use half of that amplitude.

4.2. KdV-type equation with purely bathymetric dispersion

Now we derive a KdV-type equation whose dispersive effects are only a consequence
of changes in bathymetry. This equation models small-amplitude bathymetric solitary
waves. In the work by LeVeque & Yong (2003), the authors considered a one-dimensional
nonlinear system and derived homogenized equations with a dispersive correction.
Later, in Ketcheson & Quezada de Luna (2015), the authors extended the results
to two dimensions. In these references, the nonlinearity was chosen to facilitate the
homogenization process. Ideally, we would aim to proceed as in § 2 and obtain a nonlinear
homogenized system with constant coefficients and a dispersive correction. Unfortunately,
the nonlinear terms in the shallow water equations complicate the process. Based on these
references and the results in § 2, it is possible to make an ansatz for what the homogenized
nonlinear system should look like. We hypothesize that

e+ (7 — bpul, = 8°®, (4.4a)
Ur + Uty + 8Ny = gazﬂanxx (44b)

is a homogenized system that models the x-propagation of shallow water waves over a
general y-periodic bathymetry. Here, b, = (b) = bo/2, B> is the coefficient of dispersion
defined in (2.19) and 82® = 82® (1), Ny, Nres Nrxes Uy U, Uy, Uree) 1S an O(82) nonlinear
term that depends not only on the solution but also on its derivatives. We do not know a
closed form for @; however, we expect it to introduce (potentially nonlinear) dispersive
effects.

From (4.4) we derive a KdV-type equation. To do this we follow e.g. Garnier, Grajales
& Nachbin (2007). First we consider the Riemann invariants of the left-hand side of (4.4)

R =2gn—by) —u, ondx/dt=u—+/g(n—by), (4.5a)
RT =2\/g(n —b,) +u, ondx/dt =u-++/g(n—by). (4.5b)

By plugging (4.5) into (4.4) we obtain a system of partial differential equations (PDEs)
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for the space—time evolution of the Riemann invariants R~ and R™. We focus on the
right-going invariant R and choose R~ = 2./gi*, which is set constant to match with
the solution as |x|] — oo. Here, n* = n™ — b,,. Doing this, we obtain

1 82
Ri— G 3RHRT = %[(R‘ + RYHRY, + 3RIRE ] + 8%C, (4.6)

where C is an unknown function of R—, RT and the derivatives of Rt; ie. C =
C(R™,R",Rf,R%,, RL). By using the Riemann invariants (4.5), we go back to the
physical variables and obtain

g Ny + 3v/g(n — by nx—az \/g(n— Mawx + 82, (4.7)

where @ is an unknown nonlinear function of n and its derivatives; i.e. b =
q3(;7, Nxs Naxs M) Although, we do not know the exact form of C and qS, these terms
appear as a consequence of the manipulations of @ via the Riemann invariants. Based on
§ 2.1 and the references therein, we expect and assume that disa dispersive term. Finally,
we expand the nonlinear term /1 — b, around n* and drop the terms that are of size
0(8%¢), where ¢ ~ n — n*. We obtain

— 3 —
e+ V&N ne + 2y %(ﬂ — 0 )N + 0 (¥)V/8N* N = 0, (4.8a)
with
o(y) = 62"62' (1+). (4.8b)

where y is a constant (to be determined) that accounts for the linear dispersive part of
§2. Equation (4.8a) is a KdV-type equation with a dispersion coefficient given by (4.8b).
It models the x-propagation of shallow water waves over a two-dimensional y-periodic
bathymetry. Different types of bathymetry are modelled via 8>, which is given by (2.19).
Just like the linear dispersive equation derived in § 2, the KdV-type equation (4.8) only
accounts for dispersive effects due to changes in the bathymetry.

It is important to remark that (4.8) is a weakly nonlinear approximation of (the
right-going part of) (4.4); therefore, we expect it to be a good approximation only
for small-amplitude waves. Indeed, solitary wave solutions of (4.8) travel with a speed
proportional to their amplitude (see §4.2.1); however, from §3.2, we know that the
speed—amplitude relation for bathymetric solitary waves is approximately linear only for
small-amplitude waves.

4.2.1. Profile and speed of weakly nonlinear bathymetric solitary waves

We now look for a travelling wave solution of (4.8) by substituting into that equation
the ansatz n = n*f(x — Vt), where V is the speed of the travelling wave. By doing so,
we obtain an ODE that we can integrate twice to get that the shape of weakly nonlinear
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Figure 12. Solution of the shallow water equations (2.1) with periodic bathymetry given by (2.21) with
bo = 0.5. The initial condition is given by (4.9a) with y = 0 and (4.10). We show a slice along y = —0.25,
with initial amplitude (a—c) A,, = 6.25 x 107 and (d—f) A, = 2 x 1073,

bathymetric solitary waves is given by

A 1/2
n—n* = Apsech? (—”’) x—Ve) |, (4.9a)
8o (y)n*
where A,, is the amplitude of the solitary wave and
V=g 1+ Am (4.9b)
= V& = .

is its speed. Let us now estimate the correction value y in (4.8b). To do this we use (4.9q)
with y = 0 to generate multiple initial conditions for the shallow water equations (2.1)
with bathymetry given by (2.21) with by = 0.5. The initial condition for the velocity is

u(x, y’ O) - 2\/8(77(35: )’: O) - bm) - 2 gﬁ*? U(.x, )’: O) = 09 (410)

where b,, = bg/2. Let us use six initial conditions with

An=625x 1077, 125x107%, 25x107% 5x107%,
I1x 1073 and 2x 1073 (4.11)

Then we propagate the waves until a final time of ¢ = 100. For each simulation, the
initial condition quickly evolves into a solitary wave after some mass is left behind.
Initial conditions that are close to being solitary waves undergo only small changes. In
figure 12, we show the evolution of two of these waves (using A,, = 6.25 x 10~ and
A =2 x 1073). Finally, for each simulation, we isolate the solitary wave at # = 100 and
compute y such that (4.9a) is the closest (in a least-squares sense) to the corresponding
isolated solitary wave. In figure 13 we plot the value of y as a function of amplitude. It is
clear that y = 0 for arbitrarily small-amplitude waves.

Finally, we compare the solution of (4.8) with y = 0 vs the numerical solution of the
shallow water equations (2.1). We consider the same two scenarios shown in figure 11
from § 4.1. We solve (4.8) using a Fourier pseudospectral collocation method.

First, we consider the same scenario as in figure 11(a—c); the bathymetry is given
by (2.21) with by = 0.01 and the initial condition is given by (2.24a,b) with o = 2,
n* = 0.015 and € = 0.001. The results are shown in figure 14(a—c). We see even closer
agreement between the two models than in figure 11(a—c).

Next, we consider the same scenario as in figure 11(d—f), which is also used in
figure 5(a,b). In this case, the bathymetry is given by (2.21) with by = 0.5 and the initial
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Figure 13. Estimated y such that (4.9a) is the closest (in a least-squares sense) to a given bathymetric solitary
wave. The bathymetric solitary waves correspond to the solution of the shallow water equations (2.1) (at t =
100) with periodic bathymetry given by (2.21) with by = 0.5. The initial condition is given by (4.9a) with
o = 0(0), (4.10) and amplitude A,, given by (4.11).

(a) (b) (©)
1=200 =400 1=800
0.0162 0.0162 0.0162
0.0160 0.0160 0.0160
0.0158 0.0158 0.0158
n 0.0156 0.0156 \ 0.0156
0.0154 0.0154 0.0154
0.0152 k 00152 N\ '1\ 00152
00150 - 001 0.0150
40 45 50 55 60 65 70 75 80 105 110 115 120 125 130 135 140 145 235 240 245 250 255 260 265 270 275
(d) . (e) - ) -
(=150 (=270 =380
fﬂj\
6s 70 75 8 8 90 95 100
1=340.0

740 750 760 770 780 790 800
1=38.0
'}
[
|
N
65 70 75 80 8 90 95 100
1=340.0
, , I }l 'I
i\ |l
g - 3 g VLN .I-Jlll\ J i
0.74 74
205 210 215 220 225 230 235 240 245 250 265 270 275 280 285 290 295 300 305 310 740 750 760 770 780 790 800 810 820

Figure 14. In red, solution of the KdV-type equation (4.8). In black, y-averaged solution of the shallow water
equations (2.1) with periodic bathymetry. The bathymetry is given by (2.21) with bg as indicated below. The
initial condition is given by (2.24a,b) with @ = 2 and n* and € as indicated below. (a—c) Simulation of the
same scenario as in figure 11(a—c), this time comparing (4.8) with the shallow water equations (2.1). We use
(2.21) with bg = 0.01 and (2.24a,b) with n* = 0.015 and € = 0.001. (d—i) Simulation of the same scenario as in
figure 11(d—f), this time comparing (4.8) with the shallow water equations (2.1). We use (2.21) with by = 0.5
and (2.24a,b) with n* = 0.75 and € = 0.05. (j—0) The same as figure 14(d—i), but with an initial wave that is
twice as tall (¢ = 0.1).

917 A45-19


https://doi.org/10.1017/jfm.2021.267

https://doi.org/10.1017/jfm.2021.267 Published online by Cambridge University Press

M. Quezada de Luna and D.1. Ketcheson

condition is given by (2.24a,b) with @ = 2, n* = 0.75 and € = 0.05. The results are shown
in figure 14(d—i). Recall that for this problem, the dispersion inherently present in water
waves and bathymetric dispersion are both important in Peregrine’s model. But the shallow
water equations and the model (4.8) both account for only bathymetric dispersion, so we
see much better agreement here.

Finally, in figure 14(j—0), we consider the last scenario but with an initial wave that is
twice as tall. We see that the agreement between the models is worse (and the agreement
with (4.1) would be even worse). Both models (4.1) and (4.8) include only a linear
dispersive term, whereas in § 3.2 we observed that the speed—amplitude relationship of
bathymetric solitary waves is somewhat nonlinear. Furthermore, for very large initial data,
the shallow water solution will contain shocks (Ketcheson & Quezada de Luna 2020),
which cannot be represented by the models (4.1) or (4.8). We conclude that for sufficiently
large initial data and long times, neither of these models will remain close to the shallow
water solution.

5. Comparison of dispersive effects

In this work we have used theoretical and numerical tools to analyse a new class of
solitary waves. Our objective in the remainder of the paper is to determine the feasibility
of observing them in experiments. In this section we compare bathymetric dispersion with
that inherently present in water wave models. To do that, we compare our model (4.8)
with KdV, and determine conditions under which bathymetric dispersion should be much
stronger than the dispersion in KdV. We refer to the dispersion present in the KdV equation
as ‘KdV dispersion’.

Consider a flat channel and a weakly nonlinear regime in which the KdV equation
(Korteweg & De Vries 1895) is applicable. The right-going KdV equation is given by

3 1
Nt + v/ gn*n. + 7 / %(n — ")+ g(n*)zvgn*nm =0, (5.1)

where, as usual, 7 (x, t) is the surface elevation and n* is the undisturbed surface elevation.
The KdV model has been validated experimentally, for instance in Hammack & Segur
(1974), wherein water waves (over flat bathymetry) were observed to form solitary waves of
the kind predicted by (5.1) after propagating over a relatively long distance. To explore the
qualitative difference between bathymetric and KdV dispersion, we study the dispersion
relation of (4.8) and (5.1), which are given by

OHom = /gi17k [1 - o—<0>k2] , (5.2a)
oxav = ek [1- borw?]. (5.20)

respectively. Note that (5.2a) can also be obtained directly from (2.20). Here, o (0) is given
by (4.8b) (with y = 0 for small-amplitude waves) and 77* is the average undisturbed depth
for the non-rectangular channel. It is natural to take the depth of the flat channel n* equal
to %, in which case the O(k) terms for the two models agree. The dominant dispersive
effect arises from the term of O(k%) in (5.2). In figure 15(a) we compare the coefficient
of this term in the two models, taking n* = 0.75 and a range of bathymetry profiles given
by (2.21) with by € [0, 0.75). In the figure, the blue and the red plots are (ﬁ*)2/6 and
o (0) respectively. As one might expect, when the value of by is small, the bathymetric
dispersion is small compared to the KdV dispersion. On the other hand, if by is close to the
mean water level, bathymetric dispersion is stronger and can be of the same order or much
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Figure 15. Coefficients from the O(K3) terms in the dispersion relations (5.2), and that of Peregrine’s model
(4.1). The blue and red curves correspond to KdV equation (5.1) and our model (4.8), respectively. The
dispersive coefficient of Peregrine’s model is plotted in green. (a) Regime considered in figure 11(d—f). Here,
n* = 0.75. (b) Regime considered in figure 11(a—c). Here, n* = 0.015.

larger than KdV dispersion. Thus, at least for small-amplitude, long-wavelength waves,
the two dispersive effects can be made comparable or either one can be made dominant
depending on the parameter bg.

As discussed in § 4.1, neither the KdV equation (5.1) nor our model (4.8) include both
types of dispersive effects. Peregrine’s model (4.1) includes both sources of dispersion.
In figure 15(a), we also plot (in green) the coefficient of dispersion appearing in (4.1).
Note that the dispersion predicted by Peregrine’s model coincides with that predicted by
KdV and by our model in the limits when bg is close to 0 and n*, respectively. This
behaviour is expected: when by & 0, the bathymetry is almost flat so the main source of
dispersion is that predicted by KdV. On the other hand, when by ~ n* = 0.75, bathymetric
dispersion is dominant; see (4.80) and (2.22). In figure 15(a), we mark (with a dashed cyan
line) by = 0.5, which corresponds to the situation studied in figure 11(d—f). In this case,
the dispersion in Peregrine’s model and bathymetric dispersion are significantly different,
leading to the different solutions depicted in figure 11(d—f).

On the other hand, for the situation we considered in figure 11(a—c) with by = 0.01
and n* = 0.015, the bathymetric dispersion is much stronger. Consequently, the dispersive
effects in our model (4.8) and Peregrine’s model are similar, which explains the agreement
in the simulations shown in figure 11(a—c). In figure 15(b), we plot the corresponding
dispersive coefficients of the three models (KdV (5.1), our model (4.8) and Peregrine’s
model (4.1)).

From (5.2a) and (5.2b), it is possible to find a channel configuration that leads to
bathymetric dispersion that has the same magnitude as the dispersive effects appearing
in the classical KdV equation. We get that if

8(i* 2
by = (;722) [_4ﬁ* + 1/ 16(77%)? + 1} ; (5.3)

then the shallow water equations (2.1) with bathymetry given by (2.21) are a close
approximation (up to O0(k>)) to the classical KdV equation (5.1).
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REMARK 5.1 About the effect of dissipation. As we concluded in this section, either
source of dispersion (KdV or bathymetric dispersion) can be made dominant. Since the
dissipative effects in the propagation of water waves in flat channels do not prevent the
formation of solitons (see for instance Hammack & Segur 1974), it is reasonable to
believe that bathymetric solitary waves can also be observed in a physical experiment.
An important difference between these two scenarios is the presence of friction at the
interface between the flat sections of the bathymetry. More detailed studies (or physical
experiments) are needed to determine if this extra source of dissipation might prevent the
formation of bathymetric solitary waves.

6. Conclusions

We have shown that bathymetric variation in an infinite periodic domain leads to
an effective dispersion of water waves, and have related this to the already-studied
phenomenon of dispersion of waves in non-rectangular channels. This dispersion is
distinct from the dispersion accounted for in wave models like KdV, and can on its own
lead to solitary wave formation, which we call bathymetric solitary waves, even when the
dominant behaviour would normally be wave breaking. Weakly nonlinear plane waves in
this setting approximately satisfy a KdV-type equation. This KdV-type model leads to
soliton waves that approximate small-amplitude bathymetric solitary waves. However, it
is important to remark that bathymetric solitary waves are truly two-dimensional waves
that travel in one direction. Bathymetric solitary waves, therefore, behave similar to the
solitons emerging from the derived KdV-type model (4.8) only when the amplitude is
small enough. More strongly nonlinear waves exhibit more pronounced two-dimensional
structure, have a nonlinear speed—amplitude relation and evidently involve nonlinear
dispersion.

We have shown in §§ 4.1 and 5 that the model by Peregrine (1968) agrees with the KdV
equation (5.1), which considers the inherently dispersive nature of water waves, and with
our model (4.8), which considers bathymetric dispersion, in certain asymptotic regimes.
In general, however, the combination of these two types of dispersion is non-trivial.
In particular, as shown in figure 15, the coefficient of dispersion in Peregrine’s model
(Peregrine 1968) is not simply the sum of the coefficients of dispersion in KdV and in
our model. A proper analysis to identify the range of validity and agreement between
Peregrine’s model, KdV and our model requires the solution of the elliptic PDE (4.3).
Doing so could also provide insights about how these two types of dispersive effects are
combined together. This investigation is an area of future work.

Although we focus on piecewise-constant bathymetry, similar phenomena appear in
computational experiments with other kinds of bathymetry. To demonstrate this we
consider a channel with inclined walls, like the one shown in figure 2. A similar problem
was studied in Chassagne et al. (2019), where the authors considered the dispersive
Green—Naghdi model (Green & Naghdi 1976) and showed that the changes in the
bathymetry enhance the dispersive effects. Here, we show that solitary waves arise in
this setting also as solutions of the (dispersionless) shallow water equations (2.1). In
figure 16, we show the solution at = 200. In figure 16(a) we show the surface plot and in
figure 16(b) we plot a slice along y = 0.5.

It is natural to ask whether experimental observation of these waves is feasible. We
have conducted computational experiments (not shown here) using the three-dimensional
Navier—Stokes equations. Preliminary results indicate that, for scenarios like those studied
in this work, wave breaking is almost entirely avoided and an initial pulse breaks into
multiple peaks, which then evolve into solitary waves. Further and more detailed numerical
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Figure 16. Solitary waves at # = 200 in a channel like the one shown in figure 2. The initial condition is given
by (2.24a,b) with € = 0.05, n* = 0.75 and o = 2. In the (@) we show the surface plots and in (b) we show
slices along y = 0.5.

investigation of these waves is part of ongoing investigation and will be published
elsewhere.
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