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Abstract
Objective: To derive estimates of age-gender specific food availability, based on data
collected at household level.
Design: Two alternative modelling approaches are described leading to linear and
non-linear optimisation, respectively. The idea of penalised least squares is used for
estimation of model parameters. The effect of household characteristics can be
incorporated into both modelling approaches.
Setting: Household budget survey data from four European countries (Belgium,
Greece, Norway and the United Kingdom), circa 1990.
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Household budget surveys (HBSs) and individual nutri-
tion surveys (INSs) are different sources of dietary
information, both of interest to nutritionists. Their
difference lies in the fact that household budget survey
data are aggregated, representing food availability for the
whole household, which is not the case for individual-
based dietary survey data. Therefore, the estimates of
individual food availability from HBS data represent a
useful endeavour. In this undertaking, information could
be retrieved from a large pool of data, such as the HBS.
Moreover, the compatibility of HBS and INS needs to be
assessed.

In this respect the problem is similar to that studied by
Engle et al.1, in which electricity demand over a billing
period is modelled as a sum of independent daily
demands each determined by temperature on the day
concerned, the demand temperatures relationship being
of main interest. If we assume that the days and
temperatures of the study of Engle etal.1 are, respectively,
the household members and their genders and ages, then
we have the appropriate link between the two analyses.

The objective of this paper is to describe two modelling
approaches. The first, due to Chesher2, leads to a semi-
parametric model requiring non-linear estimation, while
the other leads to a non-parametric model requiring linear
weighted estimation. Both approaches use the idea of
roughness penalty for the estimation of model para-
meters. This quantifies the notion of a rapidly fluctuating
curve and then poses the estimation problem in a way
that takes it into account.

Models and estimation

Let us consider household i (i = 1,...,«) containing m,
members, each with availability j/,-, (_/ = 1,..., ra,) for some
food of interest during a recording period. The personal
characteristics such as age and gender of member j are
denoted by vector Cy, wherey = 1,..., m,-. In this way, C, =
(c,i,c,2,..., Cimi)T is a matrix of individual characteristics of
all members of the household and z, can be a vector of
household characteristics such as location of household,
income of household or household composition. The
average availability for person ra, conditional on house-
hold composition and other personal characteristics is

E(yij\Cuzt)=f(ciJ,zi\ (1)

where/(Cy, z,) is an individual-specific availability function
we wish to estimate./(c,y,z,) tells us how expected food
consumption varies by age, gender and household
characteristics. Since the food consumption within the
household is the sum of consumptions of the household
members during the recording period, the expected
household food consumption is:

(2)

where quantities e, are assumed to be independent with
mean 0 and variance matrix 2 = a2/.

Chesher2 presented a multiplicative model for the
individual availability functions as

f(ctj,zi) = b(ciJ)g(zl). (3)
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An alternative model was proposed by Vasdekis and
Trichopoulou3 as

f(cij,zi) = h(cij)+g(zi). (4)

We shall refer to these models as the multiplicative and
the additive one, respectively. Model (3) has a better
interpretation from the nutritional point of view, since a
change in a household characteristic causes a propor-
tional effect to availability at different ages. This effect is
the same for all ages with model (4). However, the latter
leads to computationally simpler solutions and therefore
is suitable for massive analyses.

Although there are various individual characteristics
recorded in an HBS, the analysis presented in this paper
will deal with age («»y for member j of household /) and
gender (% = 1 if member j of household i is male, and
Sy = 0 otherwise). Even among very young children, the
average food consumption is different for males and
females4, so

ficy) = Sijfm{Oij) + (1 - Sij)fFi(aij),

where /Ml(.) and /F,(.) are age-intake functions for
household i for males and females, respectively. Estima-
tion is difficult if functions / are left unspecified. If,
however, the problem is discretised, by approximating

7M() andypO by step functions with points of increase at
integer years of age, then considerable simplification is
obtained. Dropping subscript /, let, for member j , Wj =
(Wjfl,..., Wj,at) be a vector of binary indicators with Wj>a =
lfas^sa+i], «, being this member's age and t = M or t = F.
Note that aM and % represent the highest age at which an
analysis is required for males and females, respectively.
Then, age-intake relationships for either males or females
are approximated by the discrete form/M(«/) = wJ$M or
fv(aj) = wjfa, where PM = OM,O> •••.PM,«M) a n < i PF =

(PF 0 , ...,PFf lF) are vectors of age- and gender-specific
average intakes. The final form of the model therefore is

yt = Go + •HLPM + < P F ) S ( * < ) (5)

for the multiplicative case, while for the additive case

yt = Go + VIUVM + < P F ) + Wigizd, (6)
where t\Mj and t̂ p/ are % X l and «F X 1 vectors of counts
of the number of males and females in household i falling
into each age category, respectively. Interpretation of (B
values suggests that they should actually resemble a
smooth curve. Therefore, they should be smoothed and a
natural inference tool can be the penalised least-squares
criterion, which in the case of the multiplicative model is

(7)

where xt = (1,T|MJ,•%,)((<% + «F + 1) X 1) contains the
number of male and female members of household i at
each of the aM and aF ages, respectively, plus a constant.
Model parameters [ST = (p0) (3^, pj) with $M(aM X 1) and

PF(<2F X 1) represent mean individual availability for males
and females, respectively, while fJ0 is the constant of the
model allowing for availability not taken into account
from individual characteristics and qt are specified
quantities giving different weights to households.

The last term in (7) corresponds to smoothing
parameters (3 with

W =

0 0 0

0 \MAaM 0

0 0 \?Aav

(8)

and

1 - 2 1 0 ••• 0 0 0

0 1 - 2 1 ••• 0 0 0

0 0 0 0 1 - 2 1

(9)

with As((s — 2) X s) being a matrix of second differences.
Function g(z^ is that part of individual availability
assigned to household characteristics. Chesher2 considered

g(z{) = exp{zjyt) (10)

with 7,(<*Y X 1) being a vector of unknown parameters. On
the other hand, considering the additive model, the
penalised formula (7) becomes

(11)

and, by extending the discretisation argument to g(z^), we
can express it as

T
= U: 7,

(12)

where Ui(ay X 1) contains dummy variables for the expres-
sion of qualitative or quantitative household characteristics.
The coefficients -yT = (7^, 7J) that correspond to the latter
can be smoothed by using a quadratic expression similar to
the last term in (11) and thus the penalised least-squares
criterion is equivalent to

(13)

V[Vk*t (14)

where y is a n n X l vector of observations, (7(6) is an n X 1
vector representing the expected household availability as
a function of parameters 0, Q = diag,^...,„{#,•} is an w X w
diagonal matrix containing the quantities q{ and Vx is a
block diagonal matrix containing matrices representing
second differences as blocks depending on a smoothing
parameter vector \ . For example, in the multiplicative

Both criteria can be written in concise form as

= (y- G(Q))rQ(y - (7(6)) + 8TFjK
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model,

= W. (15)

In the additive model, (

<7(6) = Z6, V, =

Dn the other hand,

"0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0

with

x

mnu
T

n_

(16)

(17)

In both cases, 0T = (pT, ryT). Estimation in the multiplicative
model requires non-linear optimisation. Details of the
estimation and the variance of the estimated 0 can be found
in Chesher2 and Vasdekis et al.5. In the additive case, it is
straightforward that

lVx)-
1ZrQv, (18)

(19)

which is a biased estimator of d with

= (ZrQZ + Vlvk)~'lZTQZrQ%QZ(ZrQZ

This is a robust estimate of the covariance matrix of
observations as suggested by White6 with X being a
diagonal matrix obtained by setting the diagonal entries
equal to the squared residual of each household. Estimates
of variance can be used for the derivation of confidence
intervals.

Chesher2 obtained 95% pointwise intervals that are not
confidence intervals in a strict sense but give an idea of
the mean variability of the availability curves. These are
given by

dx< ± l-96VV«C&x), * = 1 I . . . , « M + «F + «Y + 1. (20)

The degree of bias depends on the value of smoothing
parameter, which is unknown and has to be estimated. In
recent years, two approaches have been used. One is to
subjectively choose the value of the smoothing parameter
according to possible previous ideas on the degree of
smoothing. This choice is encouraged by Green and
Silverman7 and Silverman8, and it certainly is a reasonable
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solution provided that a few testing runs have shaped a
good idea about the value of the smoothing parameter.
The other, to some extent opposing, view is that there is a
need for an automatic method whereby the smoothing
parameter value is chosen by the data. It is better to use
the word 'automatic' rather than 'objective' for such a
method. There are a number of different automatic
procedures available. The best known is the generalised
cross-validation7, which, for the additive model, is
equivalent to minimising

GCV(X) = n~l RSS

(1 - n-hr ZrQZ(ZrQZ+VlVkr
1)-1\2 '

(21)

where RSS is the residual sum of squares from the model
fit. Values of \ equal to zero or around zero are equivalent
to no smoothing, the resulting estimates are ordinary
weighted least-squares estimates and their graph is very
noisy. Moderate values of \ correspond to moderate
smoothing. The largest value, however, makes model
parameters be over-smoothed and for \ —• oo they form a
straight line.
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