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Abstract

A structure theorem is proved for finite groups with the property that, for some integer m with m > 2,
every proper quotient group can be generated by m elements but the group itself cannot.

1991 Mathematics subject classification (Amer. Math. Soc): 20D20.

Introduction

Let L be a non-cyclic finite group with a unique minimal normal subgroup, M. If M
is abelian, assume also that M has a complement in L. Denote by d(L) the minimum
of the cardinalities of the generating sets of L.

For each positive integer k, let Lk be the /:-fold direct power of L and define the
subgroup Lk by

L, = { ( / , , . . . , lk) a 1 | / , = ••• = /, mod M}.

Equivalently, set diag Lk = { ( / , . . . , / ) e Lk \ I e L] and Lk = Mk diag Lk. It is easy
to see that the socle of Lk is Mk, a direct product of k minimal normal subgroups
(each isomorphic to M), and that Lk/M

k = L/M. The quotient group of Lk+]

over any minimal normal subgroup is isomorphic to Lk\ in particular, the unbounded
sequence d{L\),..., d(Lk),... is non-decreasing, and, by a theorem proved in [10],
d{Lk+{) < d(Lk) + 1. Thus if m > d{L) then there is a (unique) k such that
d{Lk) = m < d(Lk+i): set f(m) — k + 1. We shall comment below on how the
function / (which of course depends on L) may be calculated.
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In attempting to prove that each finite group with a certain property can be generated
by m elements, one frequently considers groups H such that every proper quotient
group of H can be generated by m elements but H itself cannot. The main result of
this paper is that if m > 2 then each such H is one of the Lf(m) constructed above. By
definition, f{m) is never 1, so it is part of the claim that H must have more than one
minimal normal subgroup. This part was established in [11]; it depends heavily on
the classification of the finite simple groups. There is no need for more work of that
kind here. (We do not consider here the analogous problem of non-cyclic groups all
of whose proper quotient groups are cyclic.)

This paper was motivated by an attempt at understanding finite groups that are
minimal with respect to having non-zero presentation rank (in the sense that the
presentation rank of each proper quotient group is 0). It was proved by Gruenberg
in [6] that such a group has no abelian minimal normal subgroup and is an H for
some m > 2. In view of this, the main theorem implies that each group which is
minimal with respect to having non-zero presentation rank is the LfWL)) built from
an L with non-abelian M, and of course each quotient group of that L/M must have
presentation rank 0. It is also shown here that, conversely, if an L has non-abelian M
and is such that all quotient groups of L/M have presentation rank 0, then the Lf(diL))

formed from that L has presentation rank 1 and all its proper quotient groups have
presentation rank 0.

The first example of a group with non-zero presentation rank was given in Cossey,
Gruenberg and Kovacs [2] as Af where A5 is the alternating group of degree 5. In the
present notation, A50 = Z./(2) with L = A5. The result of the previous paragraph and
a careful examination of the functions / associated to other choices of L may make it
possible to confirm the old feeling that ^5° must be the smallest group with positive
presentation rank.

For any finite group G, let <t>G(m) denote the number of m-bases of G, that is,
ordered w-tuplets (x\, .... xm) of elements of G that generate G. This function was
introduced by Philip Hall [8] with the name of Eulerian function.

If L is one of the groups described above, let F denote the group of those automorph-
isms of L that act trivially on L/M. Further, if M is abelian, set q = \ Endi / M M\.
We prove that if m > d(L) then

= l+\<pL(m)/\r\<f>L/M(m) if M' = M,

[ l ^ l t e l W O V i r i ^ ^ ) ) i f M ' = l .

When M is abelian, this and results of Gaschiitz [5] lead to

f(m) = 1 + logq(\M\m-] I \H\L/M, M)\),

which could have also been derived from Theorem 6 of Gaschiitz [3]. When L is a finite
non-abelian simple group, Lk coincides with the &th direct power Lk; the sequence
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{d(Lk)} is called the growth sequence and has been studied in a series of papers by
James Wiegold ([13-16], etcetera). In this case F = AutL and (t>L/M(m) = 1, so
f(m) = (<j)L(m)/\ Aut L\) + 1, a well-known result, proved many years ago by Philip
Hall [8].

We are very grateful to Professor Kovacs for many useful suggestions and remarks.

Section 1

In this section m is an integer with m > 2 and we consider finite groups H such
that every proper quotient group of H can be generated by m elements but H itself
cannot. It will be useful to recall some known results.

THEOREM 1.1 (Gaschiitz [4]). Let N be a normal subgroup of a finite group G and
let gu ...,gm e G be such that G — (gu ..., gm, N). Ifd(G) < m, then there exist
elements U\,...,umofN such that G = {g\U\,..., gmum). Moreover the cardinality
of the set {{uu ..., um) e Nm \ G = {g\U{,..., gmum)} is independent of the choice
ofg\,...,gm.

THEOREM 1.2 ([10]). IfG is a finite group and N is a minimal normal subgroup of
G, then d(G) < max{2, d(G/N) + 1}.

THEOREM 1.3. If a finite non-cyclic group G contains a unique minimal normal
subgroup M, then d(G) = max{2, d{G/M)}.

When M is abelian this was proved by Aschbacher and Guralnick [1, Corollary 1]
using the fact that the first cohomology group with coefficients in a faithful simple
module is always strictly smaller than the module itself. The case M non-abelian was
considered in [11] and depends heavily on the classification of finite simple groups.

Throughout the paper, L will always denote a non-cyclic finite group which has only
one minimal normal subgroup, M, and M will be either non-abelian or complemented
in L. For each positive integer k, let Lk be the £-fold direct power of L and define the
subgroup Lk by

Lk = {(/ , , . . . , 4) a ' | / , s - s / » modM}.

Equivalently, Lk = Mk diag Lk. The socle of Lk is Mk, a direct product of k minimal
normal subgroups (each isomorphic to M), and Lk/M

k = L/M. It is easy to see
that the quotient group of Lk+I over any minimal normal subgroup is isomorphic
to Lk\ in particular, the sequence d(Li),..., d(Lk),... is non-decreasing, and, by
Theorem 1.2, d(Lk+A) < d{Lk) + 1. Thus if m > d(L) then there is a unique k such
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that d(Lk) = m < d(Lk+l): set f(L, m) =k + \. When L can be identified from the
context, we write f(L,m) simply as f(m).

The groups Lk play a key role in the study of groups that need more generators
than any proper quotient. Indeed we have:

THEOREM 1.4. Let m be an integer with m > 2 and H a finite group such that
d{H/N) < m for every non-trivial normal subgroup N, but d{H) > m. Then there
is a group L which has a unique minimal normal subgroup M and is such that M is
either non-abelian or complemented in L and H = Lf(L m).

PROOF. By Theorem 1.3, H contains at least two different minimal normal sub-
groups. Suppose that Nu ... ,Nr,... are the minimal normal subgroups of H. As
d{H/Nx) < m by hypothesis, there are m elements h\, ..., hm of H such that H =
(hi hm, N\). Now consider Nr with r / 1. Of course, H = (hx,..., hm, N\Nr)
and, as H/NiNr is isomorphic to the quotient (H/Nr)/{NxNr/Nr) of H/Nr and
H/Nr is w-generated, by Theorem 1.1 there exist m elements x,, ... ,xm € N\ such
thAt(hiXi,...,hmxm,Nr) = H.

Consider the subgroup Kr = (h\X\,..., hmxm). We claim that N\ and Nr are both
complements for K, in H. Obviously H = KrN\ = KrNr\ so we have just to prove
that K, n Nj is trivial (/ = 1, r). As [Nx, Nr] — 1, the intersection K, D /V, is a normal
subgroup of H = KrNr. Since this normal subgroup is contained in the minimal
normal subgroup /V, of H, if K, f l i V ^ l then N, < Kr and H = A",^, = K, is
m -generated, which contradicts our hypothesis. The claim K, D Nr = 1 is proved
similarly.

It is now easy to prove that the projections nr : K, D (Â i x Nr) —> Ni and
pr : Krr\(N] x Nr) —> Nr are isomorphisms. Considers,, first: ker7r,. < NrHKr = 1,
so nr is injective. Moreover, for any nx e N\ there exist t e K, and nr e Â , such that
«i = tn,.: then t = nxn~] e (N] x Nr) Pi K, and t"r = «,, so nr is also surjective.
Similar arguments can be applied to pr.

What we shall use from this is that to each r > 1 there is a subgroup K, which
complements both Nx and Nr and an isomorphism <pr : N\ —*• Nr (namely (j)r = n~x pr)
such that K, D (N\ x Nr) = fix*' \ x e N\}. Using that this intersection is normal in
K,, it is easy to see that <j>r is a K, -isomorphism.

When /V, is abelian, the 0,. are in fact //-isomorphisms. We have proved that in
this case each minimal normal subgroup of H is abelian and complemented, so the
Frattini subgroup of H is trivial, and this implies that soc H admits a complement,
K say. We conclude that H = Lk where L is the semidirect product A^ K and k is a
suitable integer.

Now assume that N\ is non-abelian. For this case, we choose k so that the minimal
normal subgroups of H are Nx,..., Nk. Let « , : / / - > Aut AS be the homomorphism
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defined by the conjugation action of H on Ni, so

h°" : x H> xh whenever h e H, x e N{,

and let L denote the image of a,. This group has only one minimal normal subgroup,
namely the non-abelian group M = Inn JV,. For r > 1, define a, : H -> Aut /V, by

/jOr : x \-> ((x*)'1)0' ' whenever h e H, x e N{.

As / / = ^JV, , we can write each h as h = uv with w G A",, v e Nt, and then

(Or*)*)*'"' = ((**)")*'"' = J C " = U*)1'"'

where the first equality holds because Nt centralizes Nr and the second because <pr is
a /^,-map: thus /z" is h°" followed by the inner automorphism of /V, induced by v"'.
We conclude that

h°" =••• = hat m o d A / .

In particular, it follows that each a, has image L, and the ar together yield a homo-
morphism from H onto Lk. The kernel of this homomorphism is the intersection of
the kernels of the a,, that is, of the centralizers of the Nr (with r = 1 , . . . , k): that
intersection being trivial, our homomorphism H —>• Lk is an isomorphism.

Regardless of whether Nx is abelian, we have proved that H = Lk with k > 2,
whence it follows that H/N\ = Lk-\. Thus d(Lk^i) < m < d{Lk). By the definition
of the function / , this means that k = f(L,m), and the proof of the theorem is
complete.

Section 2

The aim of this section is to describe how the function / can be evaluated.

LEMMA 2.5. Given a homomorphism from an Lk onto L/M, consider the set 5^
of normal subgroups N of Lk arising as kernels of those homomorphisms of Lk onto
L which composed with the natural L —> L/M yield the given Lk —*• L/M. The
cardinality of the set S? is k when M is non-abelian; it is (qk — l)/(q — 1) when M
is abelian and q is the number of (L/M)-endomorphisms of M.

PROOF. If p : Lk —*• L/M is a surjective homomorphism, then ker$ = soc Lk =
Mk. So the normal subgroups N we have to count are precisely the normal subgroups
of Lk contained in soc L and such that Lk/N = L. If M is non-abelian then the k
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direct factors of Mk are the unique minimal normal subgroups of Lk and the normal
subgroups N we are considering are precisely the direct products of k — 1 of them,
so we have exactly k possibilities. If M is abelian we have to count the kernels of
surjective (L/M)-homomorphisms from Mk to M and there are (qk — \)/{q — 1) of
these where q is the number of (L/A/)-endomorphisms of M.

For any finite group G, let (pc(m) denote the number of m-bases of G, that is,
ordered w-tuplets (xx,..., xm) of elements of G that generate G. This function was
introduced by Philip Hall [8] with the name of Eulerian function.

In [5] Gaschiitz studied Eulerian functions for solvable groups. Here we generalize
some of the ideas contained in [5] to the non-solvable case.

Let F denote the group of those automorphisms of L that act trivially on L/M.

LEMMA 2.6. Let F be a free group of rank m > d{L). Given a homomorphism
from F onto L/M, consider the set $ of normal subgroups N of F arising as kernels
of those homomorphisms of F onto L which composed with the natural L —»• L/M
yield the given F -*• L/M. The cardinality of the set & is (pL(ni)/\r\<t)L/M(m).

PROOF. Let x , , . . . , xm be a basis of F. A surjective homomorphism y3 : F ->
L/M is uniquely determined by P(x{) = 1XM,..., {$(xm) — lmM, where L =
( / , , . . . , / „ , M). Now let y : F -» L be a surjective homomorphism which composed
with the natural L —>• L/M yields /?; we must have y{x{) — l\Z\, ..., y(xm) = lmzm

with z\,..., zm e M and L = {/,zi, . . . , lmzm). By Theorem 1.1 the number of
possible choices for (zu ..., zm) is <^i.(w)/(/)i./M('"), independently of the choice of
( / , , . . . , /m); so the number of possibilities for y is (pL(m)/^)L/M(m) . Now let yx, y2

be two of these homomorphisms; ker yx = ker y2 — N if and only if there exists an
automorphism aoiL which acts trivially on L/M such that y2 is equal to yx composed
with a. We conclude that the cardinality of S$ is

We can now prove the main result of this section:

THEOREM 2.7. Ifm > d{L) then, with q = | EndL/M M\,

ft ^ , A<t>dm)/\T\<l>LIU{m) ifM' = M,

j (m) = 1 + \
[log, (1 + (q - l)<j>L(m)/\r\(j)L/M(m)) if M' = 1.

PROOF. Let F be a free group of rank m. Given a surjective homomorphism
fi : F —> L, consider the set & defined in Lemma 2.6 and let R = H/ve^ N. It is
easy to see that F/R = Lk for some k depending on the rank m of F, and that F/R is
the largest quotient of F isomorphic to L, for some /; this means that f(m) = 1 + k.
Now /3 induces a surjective homomorphism /I : F/R = Lk —> L/M and the map
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N H> N/R is a bijection between @H and the set 5? defined in Lemma 2.5. So we
have, by Lemma 2.5 and Lemma 2.6,

<t>dm) , _ _ „ , | * if M' = M,

- 1 ) i f M ' = l .

Since k = f(m) — 1, this completes the proof.

For the case of abelian M, Gaschiitz proved ([5, Theorem 2]) that

where a is the number of complements of M in L. Since a = |M | | / / ' (L /M, M)\
while | r | = (q — \)a, one concludes that

f{m) = 1 +\ogq(\M\m-] I \H\L/M, M)\).

This form of our result could be deduced more directly from Theorem 6 of Gaschiitz

[3].
When L is a non-abelian simple group, what Theorem 2.7 gives is that

a well-known result, proved many years ago by Philip Hall [8]. In any case, AutL
permutes the m -bases regularly and 4>L(m)/\ Aut L\ is the number of orbits. A similar
interpretation can be given for the number 4>L(m)/(pL/M{m)\T\. Fix (/ , /„,) e L"'
with the property that </t , . . . , / „ , , M) = L and consider the set

£2 = {(/",,..., /„,) € Lm | L = (/",,..., /"„,), /, = /"• mod A/ for each 1 < / < w}.

The subgroup F of Aut L stabilizes Q and 0 .̂ (m) /4>L/M (m) I r I is the number of orbits
for the action of F on £2 (and is independent, by Theorem 1.1, of the choice of
/ „ . . . , / „ ) .

Section 3

The presentation rank pr(G) of a finite group G is an invariant whose definition
comes from the study of relation modules (see [7] for more details). It also plays a
role in the study of the minimal number of generators d(G) of G. Let IG denote the
augmentation ideal of 1G, and d {Ic) the minimal number of elements of /G needed to
generate Ic as a G-module. Roggenkamp [12] proved that d(G) = d(IG)+pr(G). It is
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known that pr(G) = 0 for many groups G, including all solvable groups, all Frobenius
groups and all 2-generator groups, but examples of groups with presentation rank n
can be constructed for every positive integer n. On the other hand, the only known
examples of groups with non-zero presentation rank are sufficiently high direct powers
of perfect groups and groups related to them. The smallest example which is known
is the direct product Af of 20 copies of the alternating group of degree 5. It is an open
problem whether it is possible to construct examples of different kinds or whether
there exists a group G with pr(G) ^ 0 and \G\ < \Af\.

In this section we study groups that are minimal with respect to having non-zero
presentation rank (in the sense that the presentation rank of each proper quotient group
isO).

Gruenberg proved ([6, (2.4)] and [7, Proposition 6.2]):

THEOREM 3.8. If H is minimal with respect to having non-zero presentation rank,
then H contains no non-trivial solvable normal subgroups, d{H) > 2,andd(H/N) <
d(H)for every non-trivial normal subgroup N of H.

To continue the study of the structure of these groups the following result is useful.
It can be considered as a particular case of a theorem proved by Kimmerle and Williams
[9, Theorem 4.3], but it is also implicit in earlier papers, for example in [2] and in [6].

LEMMA 3.9. If H contains a non-trivial normal subgroup N all of whose chief
factors are non-abelian, then d(IH) = max{2, d(IH/N)}.

We can now prove

THEOREM 3.10. Each group which is minimal with respect to having non-zero
presentation rank is the LffLd{L)) built from an L with non-abelian M, and of course
each quotient group of that L/M must have presentation rank 0. Conversely, if an
L has non-abelian M and is such that all quotient groups of L/M have presentation
rank 0, then the Lf(lHL)) formed from that L has presentation rank 1 and all its proper
quotient groups have presentation rank 0.

PROOF. By Theorem 3.8 and Theorem 1.4, a group which is minimal with respect
to having non-zero presentation rank is the L/(m) built from an L with non-abelian M.
Of course each quotient group of L/M, being a proper quotient group of Lf(m), must
have presentation rank 0. As Lf{m)/M

flm) = L/M, we have that

d(ILjtJ = max{2, d(IL/M)} = max{2, d(L/M)} = d(L)

(by Lemma 3.9 and Theorem 1.3), while d{Lf(m)) = m + 1 (by Theorem 1.2), so
pr(L/(m)) = m + 1 — d{L) > 1, with equality if and only if m = d{L). Since Lj-WL))

is a quotient group of Lf{m) whenever m > d{L), the first claim now follows.
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Conversely, suppose that M is non-abelian and that all quotient groups of L/M

have presentation rank 0. We noted above that pr(Lf(d{Lu) = 1. A proper quotient

group of Lf{d(L)) is isomorphic either to a quotient group of L/M or to an Lk with

k < f(d(L)). In the former case it has presentation rank 0 by hypothesis, while in

the latter case it has presentation rank 0 because

= d(Lk) - d{lu) = d(L) - max{2, d(L/M)\ = 0.

This completes the proof of the theorem.

To conclude we note that, analyzing in more detail the proof of Theorem 1.3,

one notices that the number ^L(m)/^L/M(m) is in general quite large (for example

<t>L{fn)/(j>LiM(m) > \Mm~2\), so it should be possible to prove that f(m) is also large.

So we have the following informal interpretation of Theorem 3.10: a finite group with

non-zero presentation rank should contain a section isomorphic to the direct product

of 'many' copies of a non-abelian simple group.
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