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1. Introduction

The operator of linear elasticity is one of the fundamental operators of mathematical
physics, describing the deformation of an (isotropic) elastic body. The main thrust
of this paper is to derive an explicit formula for the second asymptotic term (often
called second Weyl coefficient) in the expansion of the eigenvalue counting function
for the operator of linear elasticity with mixed boundary conditions on a smooth
d-dimensional Riemannian manifold with boundary. This paper complements the
analysis performed in [7], where the two cases of ‘pure’ Dirichlet and free boundary
conditions were examined.

The structure of the paper is as follows.
In §§ 1.1 and 1.2 we introduce setting and notation, before stating the problem

and our main results in §§ 1.3.
§ 2 is devoted to the proof of our main result, theorem 1.8. The proof comes

in several steps: first we present a streamlined version of the algorithm for the
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calculation of the second asymptotic term (§§ 2.1); secondly, we reduce the problem
at hand to the two-dimensional analogue plus a much simpler (d− 2)-dimensional
problem by identifying appropriate invariant subspaces (§§ 2.2); lastly, we prove our
main result by implementing the algorithm in each invariant subspace separately
(§§ 2.3).

In § 3 we examine explicit examples in dimensions two and three. This is an
integral part of the paper which serves both as an illustration and a verification
of our results. Remarkably, for two- and three-dimensional flat cylinders we write
down the full spectrum of the operator of linear elasticity with mixed boundary
conditions explicitly, and compute the two-term spectral asymptotics analytically.

1.1. The operator of linear elasticity

Let (M, g) be a compact connected smooth Riemannian manifold of dimension
d � 2 with boundary ∂M . We denote by ∇ the Levi-Civita connection and by Ric
the Ricci curvature tensor.

We define the operator of linear elasticity L acting on vector fields u on M as

(Lu)α := −μ
(
∇β∇βuα + Ricα

βu
β
)
− (λ+ μ)∇α∇βu

β . (1.1)

Here and further on we adopt the Einstein summation convention over repeated
indices. The quantities λ and μ are real constants known as Lamé parameters,
assumed to satisfy the conditions

μ > 0, dλ+ 2μ > 0, (1.2)

which guarantee strong convexity, see, e.g., [1, 24]. Furthermore, we assume that
the material density of the of the elastic medium ρmat differs from the Riemannian
density

√
det g by a constant positive factor.

The principal symbol Lprin of L reads1

[Lprin]α β(x, ξ) = μ‖ξ‖2δα
β + (λ+ μ)ξαξβ , (1.3)

which, on account of (1.2), immediately implies that L is elliptic. Indeed, the
eigenvalues of Lprin are

μ‖ξ‖2 (with multiplicity d− 1), (λ+ 2μ)‖ξ‖2 (with multiplicity 1) . (1.4)

Clearly, the operator L is formally self-adjoint with respect to the L2 inner product

(u,v)L2(M) :=
∫

M

gαβ u
αvβ
√

det g dx.

1.2. Boundary value problems

Consider the potential energy of elastic deformation

E [u] :=
1
2

∫
M

(
λ(∇αu

α)2 + μ(∇αuβ + ∇βuα)∇αuβ
)√

det g dx (1.5)

associated with the vector field of displacements u. The quadratic form E [u] is
nonnegative for u ∈ H1(Ω) and strictly positive for u ∈ H1

0 (Ω). Observe that the

1Here and further on ‖ξ‖ denotes the Riemannian norm of the covector ξ.
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Spectral asymptotics for linear elasticity 3

structure of the quadratic functional (1.5) of linear elasticity is the result of certain
geometric assumptions, see [10, formula (8.28)], as well as [9, Example 2.3 and
formulae (2.5a), (2.5b) and (4.10e)].

Performing integration by parts in (1.5) one obtains the Green identity for the
elasticity operator

2 E [u] = (u,Lu)L2(M) + (u, T u)L2(∂M), (1.6)

where T is the boundary traction operator defined as

(T u)α := λnα∇βu
β + μ

(
nβ∇βu

α + nβ∇αuβ
)
.

Here n is the exterior unit normal vector to the boundary ∂M .
Examination of (1.6) supplies appropriate boundary conditions for L. In the

current paper, we will be concerned with the following four sets of boundary
conditions.

• Dirichlet boundary conditions:

u|∂M = 0. (1.7)

• Free boundary conditions:

T u|∂M = 0. (1.8)

• Dirichlet-free (DF) boundary conditions:[
u −
(
gαβ n

αuβ
)

n
]∣∣

∂M
= 0 , gαβ n

α(T u)β
∣∣
∂M

= 0 . (1.9)

• Free-Dirichlet (FD) boundary conditions:[
T u −

(
gαβ n

α(T u)β
)

n
]∣∣

∂M
= 0 , gαβ n

αuβ
∣∣
∂M

= 0 . (1.10)

We refer to the boundary conditions DF and FD as mixed boundary conditions.
The former (DF) corresponds to Dirichlet boundary conditions being imposed tan-
gentially to the boundary and free conditions imposed in the normal direction
to the boundary; the latter (FD) corresponds to free boundary conditions being
imposed tangentially to the boundary and Dirichlet conditions imposed in the
normal direction to the boundary.

The boundary conditions (1.7)–(1.10) are of Shapiro–Lopatinski type [21] for L,
hence the corresponding boundary value problems are elliptic. This leads to the
following four eigenvalue problems for L.

1. The Dirichlet problem (Dir). The Dirichlet eigenvalue problem consists
in seeking u ∈ H1(Ω), u �= 0, and Λ ∈ R such that

Lu = Λu (1.11)

subject to the boundary conditions (1.7). The problem (1.11), (1.7) has
discrete spectrum, consisting of discrete eigenvalues

(0 <)ΛDir
1 � ΛDir

2 � . . .

enumerated with account of multiplicity and accumulating to +∞.
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2. The free boundary problem (free). The free boundary eigenvalue problem
consists in seeking u ∈ H1(Ω), u �= 0, and Λ ∈ R satisfying (1.11), subject
to the boundary conditions (1.8). The problem (1.11), (1.8) has discrete
spectrum, consisting of discrete eigenvalues

(0 �)Λfree
1 � Λfree

2 � . . .

enumerated with account of multiplicity and accumulating to +∞.

3. The Dirichlet-free problem (DF). The Dirichlet-free eigenvalue problem
consists in seeking u ∈ H1(Ω), u �= 0, and Λ ∈ R satisfying (1.11), subject
to the boundary conditions (1.9). The problem (1.11), (1.9) has discrete
spectrum, consisting of discrete eigenvalues

(0 �)ΛDF
1 � ΛDF

2 � . . .

enumerated with account of multiplicity and accumulating to +∞.

4. The free-Dirichlet problem (FD). The free-Dirichlet eigenvalue problem
consists in seeking u ∈ H1(Ω), u �= 0, and Λ ∈ R satisfying (1.11), subject
to the boundary conditions (1.10). The problem (1.11), (1.10) has discrete
spectrum, consisting of discrete eigenvalues

(0 �)ΛFD
1 � ΛFD

2 � . . .

enumerated with account of multiplicity and accumulating to +∞.

Remark 1.1. The problems Dir, free, DF and FD also admit a minmax formulation.
We refer the interested reader to [23] for details.

Let us briefly elaborate on the physical meaning of the above eigenvalue problems.
The spectral parameter Λ appearing in (1.11) has the following interpretation

Λ =
ρmat√
det g

ω2,

where ω is the angular natural frequency of oscillation of the elastic medium. The
boundary conditions Dir (1.7) describe a body whose boundary is ‘clamped’, i.e.,
completely prevented from moving, whereas the conditions free (1.8) describe the
opposite situation, in which the boundary is free to oscillate without restrictions.
Mixed DF boundary conditions describe a body that is allowed to deform in the
direction normal to the boundary, but is prevented from deforming in the directions
tangential to the boundary. Similarly, mixed FD boundary conditions describe a
body that is allowed to ‘slide’ along its boundary, but is prevented from deforming
in the direction normal to the boundary. Clearly, mixed boundary conditions are
physically meaningful and describe realistic scenarios relevant for applications —
see also [23] for further discussions in this respect.
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1.3. Statement of the problem and main results

Consider, for each set of boundary conditions ℵ ∈ {Dir, free, DF, FD}, the
corresponding eigenvalue counting function Nℵ : R → N defined as

Nℵ(Λ) := #
{
k | Λℵ

k < Λ
}
. (1.12)

Clearly, the function (1.12) is monotonically non-decreasing in Λ and vanishes
identically for Λ � Λℵ

1 .
The study of the asymptotic behaviour of eigenvalue counting functions of the

type (1.12) as Λ → +∞ for (semibounded) elliptic operators is a well established
area of mathematics, pioneered by Lord Rayleigh’s The theory of sound [26] in 1877.
What started as an investigation prompted by practical questions from physics soon
attracted the interest of pure mathematicians, as people realized that the coeffi-
cients in these expansions contain geometric invariants (see, e.g., [22, Chapter 6]).
We refer the reader to [3, 20, 27] for historical overviews of the development of the
subject.

Before stating our main result, let us summarize, without proof, some known
facts concerning (1.12). In what follows (M, g) satisfies the conditions from §§ 1.1.

Proposition 1.2. We have

Nℵ(Λ) = aVold(M)Λd/2 + o
(
Λd/2
)

as Λ → +∞, (1.13)

where

a =
1

(4π)d/2Γ
(
1 + d

2

) (d− 1
μd/2

+
1

(λ+ 2μ)d/2

)
(1.14)

is the Weyl constant for linear elasticity, Vold(M) is the Riemannian volume of M ,
and Γ is the gamma function.

The one-term asymptotic expansion (1.13) is often referred to as Weyl law. Note
that in the special case d = 3 formula (1.13) was already established, indirectly and
on the basis of physical arguments, by P. Debye in 1912 [14]. A rigorous mathemat-
ical proof was provided shortly afterwards by H. Weyl [30]. It is worth emphasizing
that the coefficient a is independent of the choice of boundary conditions.

Let A be an elliptic semibounded differential operator of even order 2m acting
between sections of Hermitian C∞ vector bundles of dimension N over a smooth
d-dimensional manifold M with boundary, supplemented by differential boundary
conditions B satisfying the (parabolic version of the) Shapiro–Lopatniski condi-
tions [2]. Then it is known [16, Theorem 2.6.1] that the trace of the Green kernel
G(x, y, t) for the boundary value problem{(

∂
∂t + A

)
u = 0 in M,

Bu = 0 on ∂M,
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admits a complete asymptotic expansion

ZB(t) :=
∫

M

trG(x, x, t) dVolM ∼ c̃d−1 t
−d/2m

+ c̃d−2 t
−d/2m+1/2m + · · · + c̃d−kt

−d/2m+(n−1)/2m + . . .

as t→ 0+, (1.15)

where tr stands for matrix trace. Moreover, all coefficients in (1.15) are locally
determined [16, §2]. We refer the reader to [18], [17, §4.2] and references therein
for further details and generalizations.

Formula (1.15) allows us to define Weyl coefficients for elliptic operators on
manifolds with boundary.

Definition 1.3. For 1 � n � d, we define the n-th Weyl coefficient for the elliptic
boundary value problem (A, B) to be the number

cd−n :=
c̃d−n

Γ
(

d−n+1
2m

) , (1.16)

where the c̃d−n is the coefficient of t−d/2m+(n−1)/2m in the expansion (1.15) and Γ
is the gamma function.

Remark 1.4. Note that definition 1.3 agrees with the definition of Weyl coefficients
in [4, 6, 8, 11, 12] for (pseudo)differential operators on compact manifolds without
boundary, where Weyl coefficients are defined to be the coefficients appearing in the
complete asymptotic expansion for the mollified derivative of the counting function.
Whilst such a complete asymptotic expansion always exists when ∂M = ∅ (see, e.g.,
[19]), we are unaware of a similar result for manifolds with boundary. This is why
in the latter case defining Weyl coefficients is somewhat more delicate.

We should also point out that the standard convention in the literature is
to call Weyl coefficients the constants appearing in the asymptotic expansion of
the mollified counting function, as opposed to its derivative. The two definitions
are, effectively, the same up to integrating factors; as a matter of convenience
and consistency with previous papers by the first author, we will stick here with
definition 1.3.

Fact 1.5. Suppose that the eigenvalue counting function N(Λ) of the elliptic
eigenvalue problem {

Au = Λu in M,

Bu = 0 on ∂M

admits a j-term asymptotic expansion

N(Λ) = CdΛd/2m + Cd−1Λd−1/2m + · · · + Cd−j+1Λd−j+1/2m

+ o(Λd−j+1/2m) as Λ → +∞ (1.17)
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for some 1 � j � d. Then

Cd−n+1 =
2m

d− n+ 1
cd−n for 1 � n � j . (1.18)

Remark 1.6. We should like to emphasize that Weyl coefficients (1.16) are defined
— and can be computed — irrespective of whether an asymptotic expansion for
the eigenvalue counting function of the form (1.17) exists.

Of course, when A = L and B = Bℵ, ℵ ∈ {DF, FD}, formula (1.15) specializes to
read

Zℵ(t) =
∞∑

k=1

e−Λℵ
k t = Γ

(
d

2
+ 1
)
aVold(M)t−d/2

+ cℵd−2 t
−d−1/2 + o(t−d−1/2) as t→ 0+,

where the first asymptotic term has been written explicitly in terms of (1.14) — cf.
(1.13) and (1.18).

Whilst the existence of a one-term asymptotic expansion (Weyl’s law) is always
guaranteed — see proposition 1.2 — the validity of a two-term expansion of the
form (1.17) for L with boundary conditions Bℵ, ℵ ∈ {Dir, free, DF, FD}, is still an
open problem. Nevertheless, such an expansion is known to exist under additional
dynamical assumptions on certain branching Hamiltonian billiards on the cotangent
bundle T ∗M . We recall the result below, referring the reader to [29] for additional
details and precise statements.

Theorem 1.7. Suppose that (M, g) is such that the corresponding billiards is
neither absolutely periodic nor dead-end. Then

Nℵ(Λ) = aVold(M)Λd/2 + Cℵ
d−1Λ

(d−1)/2 + o
(
Λ(d−1)/2

)
as Λ → +∞, (1.19)

for any set of boundary conditions ℵ ∈ {Dir, free, DF, FD}.

Theorem 1.7 is a special case of [28, Theorem 6.1], which is applicable here
because the eigenvalues (1.4) of Lprin have constant multiplicity as functions of
(x, ξ) ∈ T ∗M \ {0}.

We are now ready to state our main result.

Theorem 1.8. Let (M, g) be a smooth compact connected d-dimensional Rieman-
nian manifold with boundary ∂M , d � 2. The second Weyl coefficient for the elliptic
boundary value problem (L, Bℵ), ℵ ∈ {DF, FD}, is given by

cℵd−2 =
d− 1

2
Cℵ

d−1 =
d− 1

2
bℵ Vold−1(∂M) , (1.20)
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where

bℵ := @
1

2d+1πd−1/2Γ
(

d+1
2

) ( d− 3
μd−1/2

+
1

(λ+ 2μ)d−1/2

)
with

@ =

{
− for ℵ = DF,
+ for ℵ = FD.

(1.21)

The above theorem, whose proof will be given in § 2, warrants a number of
remarks.

(i) Formulae for bℵ in the case of ‘pure’ boundary conditions ℵ ∈ {Dir, free} were
obtained in [7, Theorem 1.8]2 .

(ii) Remarkably, formula (1.21) is very simple and elegant. This is noteworthy
and in general not the case for boundary value problems for linear elasticity,
in that one would expect the Lamé parameters λ and μ to mix up in a rather
complicated way in the second Weyl coefficient, owing to boundary conditions
mixing longitudinal and transverse waves. For instance, the expressions for
bDir and bfree contain integrals of inverse trigonometric functions depending
on α := μ/λ+ 2μ in a nontrivial fashion, see [7, formulae (1.27) and (1.28)].
The underlying reason for (1.21) being so simple is that mixed boundary
conditions DF and FD, unlike Dir and free, do not mix up components of
the vector fields they act upon when one switches to the associated one-
dimensional spectral problem — see § 2.1, and formula (2.3) in particular.

(iii) Note that

bFD < 0 < bDF (1.22)

for d = 2, whereas

bDF < 0 < bFD (1.23)

for d � 3.

(iv) We should like to emphasize that computing the second Weyl coefficient for
systems of PDEs is not easy. Indeed, the subject area of two-term asymptotics
for elliptic systems has experienced a troubled development, up until the last
decade; we refer the reader to [13, Section 11] for a historical overview.

(v) In this paper we prove theorem 1.8 by studying the eigenvalue counting func-
tion. There are, of course, alternative approaches to the problem available in
the literature, for instance by means of heat kernel techniques — see, e.g.,
[5].

Before moving on to the proof of our main theorem, let us recall a well known
fact which will bring about some simplifications in subsequent sections.

2To ease the comparison, note that formulae (1.27) and (1.28) in [7, Theorem 1.8] are expressed
in terms of the auxiliary quantity α := μ/λ + 2μ ∈ (0, d/2(d − 1)).
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Fact 1.9. The first two Weyl coefficients do not feel the geometry of M or of its
boundary ∂M . Therefore, it suffices to determine these coefficients in the case where
M is a smooth domain in R

d equipped with the Euclidean metric.

2. Proof of theorem 1.8

This section is concerned with the proof of theorem 1.8. We will break the proof,
somewhat long and technical, into several steps.

On account of Fact 1.9, in the remainder of this section we will assume that M
is a smooth domain in R

d and that g is the Euclidean metric, gαβ = δαβ .

2.1. A streamlined algorithm

In order to prove theorem 1.8 we will rely on a constructive algorithm for the
second Weyl coefficient due to Vassiliev [28]. The original results from [28] (see also
[27]) apply, strictly speaking, to scalar operators. A roadmap for the generalization
to systems was given in [28, § 6], whereas a detailed exposition of the algorithm for
systems was recently provided in [7]. For the convenience of the reader, we present
below a streamlined version of the latter algorithm, adapted to the special case of
the operator of linear elasticity (1.1).

In a neighbourhood of the boundary ∂M we introduce local coordinates
x = (x′, z), with x′ ∈ R

d−1 and z := dist(x, ∂M) for x ∈ Int(M), so that ∂M =
{z = 0} and z > 0 inside of M . Similarly, we adopt the notation ξ = (ξ′, ζ) ∈
R

d−1 × R and u = (u′, ud). Furthermore, we denote by Bℵ the differential operators
implementing the boundary conditions (1.9) and (1.10) for ℵ = DF and ℵ = FD,
respectively.

Consider the one-dimensional3 spectral problem

L′u(z) = Λu(z), B′
ℵu|z=0 = 0, ℵ ∈ {DF,FD}, (2.1)

where L′ and B′
ℵ are the ordinary differential operators acting on vector functions

u = u(z) defined in accordance with

L′u := μ

(
|ξ′|2 − d2

dz2

)
u − (λ+ 2μ)

(
iξ′
d
dz

)(
iξ′ · u′ +

dud

dz

)
(2.2)

and

B′
DFu(z)|z=0 =

(
u′(0) − (λ+ 2μ)dud

dz (0)
)
, B′

FDu(z)|z=0 =
(
−μdu′

dz (0)
ud(0)

)
. (2.3)

The operators (2.2) and (2.3) are obtained from L and Bℵ, ℵ ∈ {DF, FD}, by
replacing partial derivatives along the boundary with i times the corresponding
component of momentum, ∂x′ �→ iξ′. Furthermore, in the second component of

3Here ‘one-dimensional’ refers to the fact that the operator L′ acts in one variable only —
the variable z — effectively reducing the problem at hand to the examination of the eigenvalue
problem (2.1) on the positive half-line for the ordinary, as opposed to partial, differential operator
L′, see (2.2) and (2.3).
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B′
DFu we dropped terms proportional to u′(0), whereas in the first component

of B′
FDu we dropped terms proportional to ud(0).

Suppose ξ′ �= 0.

Step 1: Thresholds and continuous spectrum. The principal symbol L′
prin(ζ) of L′

(recall (1.3)) has eigenvalues

h1(ζ) = μ(|ξ′|2 + ζ2) (with multiplicity d− 1), h2(ζ)

= (λ+ 2μ)(|ξ′|2 + ζ2) (with multiplicity 1) . (2.4)

We define the thresholds of the continuous spectrum as the nonnegative real
numbers Λ∗ such that the equation

hk(ζ) = Λ∗

has a multiple real root for either k = 1 or k = 2. Formula (2.4) immediately implies
that we have two thresholds for (2.1):

Λ(1)
∗ = μ|ξ′|2, Λ(2)

∗ = (λ+ 2μ)|ξ′|2. (2.5)

Observe that, due to (1.2), we have Λ(1)
∗ < Λ(2)

∗ .
Formula (2.5) then implies that the problem (2.1) has continuous spectrum

[Λ(1)
∗ , +∞) — see, e.g., [27, Appendix A]. Furthermore, the thresholds partition

the continuous spectrum into two zones I(1) := (Λ(1)
∗ , Λ(2)

∗ ) and I(2) := (Λ(2)
∗ , +∞),

where the continuous spectrum has multiplicity d− 1 and d, respectively.

Step 2: Eigenfunctions of the continuous spectrum. Let vk(ζ), k = 1, . . . , d− 1, be
orthonormalized eigenvectors of L′

prin corresponding to the eigenvalue h1(ζ), and
let

vd(ζ) :=
1√

|ξ′|2 + ζ2

(
ξ′

ζ

)
=

1
|ξ|ξ (2.6)

be the normalized eigenvector of L′
prin corresponding to the eigenvalue h2(ζ). Let

ζ±1 (Λ) := ±
√

Λ
μ
− |ξ′|2 and ζ±2 (Λ) := ±

√
Λ

λ+ 2μ
− |ξ′|2

for Λ � μ|ξ′|2 and Λ � (λ+ 2μ)|ξ′|2, respectively. Note that the quantities ζ±k (Λ)
are solutions of hk(ζ) − Λ = 0. Then, in view of elementary theory of matrix ordi-
nary differential equations, we seek eigenfunctions of the continuous spectrum
(or generalized eigenfunctions) for (2.1) in the form

u(z; Λ) =
1

√
4πμ
∣∣ζ+

1 (Λ)
∣∣1/2

d−1∑
j=1

(
c+j vj(ζ+

1 (Λ))eiζ+
1 (Λ)z + c−j vj(ζ−1 (Λ))eiζ−

1 (Λ)z
)

+ C vd

(
i

√
|ξ′|2 − Λ

λ+ 2μ

)
e−
√

|ξ′|2− Λ
λ+2μ z (2.7)
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for Λ ∈ I(1), and in the form

u(z; Λ) =
1

√
4πμ
∣∣ζ+

1 (Λ)
∣∣1/2

d−1∑
j=1

(
c+j vj(ζ+

1 (Λ))eiζ+
1 (Λ)z + c−j vj(ζ−1 (Λ))eiζ−

1 (Λ)z
)

+
1√

4π(λ+2μ)
∣∣ζ+

2 (Λ)
∣∣1/2

(
c+d vd(ζ+

2 (Λ))eiζ+
2 (Λ)z + c−d vj(ζ−2 (Λ))eiζ−

1 (Λ)z
)

(2.8)

for Λ ∈ I(2). The complex numbers c±j in (2.7) and (2.8) are called incoming (-)
and outgoing (+) complex wave amplitudes, and are assumed not to be all zero.

Step 3: The scattering matrix. By imposing that (2.7) and (2.8) satisfy the bound-
ary conditions, one can express the coefficients c+j in terms of the coefficients c−j .
This defines the scattering matrices S(k)(Λ), k = 1, 2, via the identities⎛⎜⎝ c+1

...
c+d−1

⎞⎟⎠ = S(1)(Λ)

⎛⎜⎝ c−1
...

c−d−1

⎞⎟⎠ for Λ ∈ I(1)

and ⎛⎜⎝c
+
1
...
c+d

⎞⎟⎠ = S(2)(Λ)

⎛⎜⎝c
−
1
...
c−d

⎞⎟⎠ for Λ ∈ I(2).

The matrix S(1)(Λ) (resp. S(2)(Λ)) is a (d− 1) × (d− 1) (resp. d× d) unitary
matrix. The way in which the c±j are arranged into a (d− 1)-dimensional (resp.
d-dimensional) vector is unimportant and will not affect the quantities computed
in the next steps.

Step 4: The phase shift. Compute the phase shift, defined as

ϕℵ(Λ; ξ′) :=

{
0 for Λ � Λ∗

1

arg detSk(Λ) + s(k) for Λ ∈ I(k)
(2.9)

where the branch of the multivalued function arg are chosen in such a way that
ϕ(Λ) is continuous in each interval I(k), and the shifts s(k) are constants determined
by the requirement that the jump of the phase shift at the thresholds satisfy

1
π

lim
ε→0+

(
ϕ(Λ(k)

∗ + ε) − ϕ(Λ(k)
∗ − ε)

)
= j

(k)
∗ − mk

2
, k ∈ {1, 2}. (2.10)

Here mk is the multiplicity of the eigenvalue hk and j
(k)
∗ is the number of linearly

independent vectors v such that

veiζ+(Λ(k)
∗ )z + f(z) (2.11)

is a solution of the one-dimensional problem (2.1), with f(z) = o(1) as z → +∞.
The threshold Λ(k)

∗ is called rigid if j(k)
∗ = 0 and soft if j(k)

∗ = mk.
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12 M. Capoferri and I. Mann

Step 5: The one-dimensional counting function. Compute the one-dimensional
counting function, defined as

Nℵ,1D(Λ; ξ′) := #{eigenvalues of (2.1) strictly smaller than Λ} . (2.12)

Step 6: The spectral shift function. Compute the spectral shift function, defined
as

shiftℵ(Λ; ξ′) :=
1
2π
ϕℵ(Λ; ξ′) +Nℵ,1D(Λ; ξ′). (2.13)

Then we have the following.

Theorem 2.1. The second Weyl coefficient4 is given by

cℵd−2 =
d− 1

2(2π)d−1

∫
T∗∂M

shiftℵ(1; ξ′) dx′ dξ′

=
d− 1

2
Vold−1(∂M)

(2π)d−1

∫
Rd−1

shiftℵ(1; ξ′) dξ′ . (2.14)

Theorem 2.1 is a specialization to the case at hand of [29, Theorem 2] (once the
latter has been extended to systems).

2.2. Invariant subspaces

Implementing the algorithm from subsection 2.1 as written for an arbitrary
dimension d is quite tricky. Rather than applying our algorithm to (1.11), (1.9)
and (1.11), (1.10) directly, we shall first simplify the problem by decomposing the
general d-dimensional problem into a two-dimensional analogue plus a much simpler
(d− 2)-dimensional problem. The arguments in this subsection can be traced back,
in essence, to observations by Dupuis–Mazo–Onsager [15], see also [7, Section 3].
The key idea is to decompose elastic waves into two polarized components: one
polarized in the plane of propagation and the other normally to it.

To this end, suppose we have fixed ξ′ ∈ R
d−1, ξ′ �= 0, and define

P := span
{

1
|ξ′|

(
ξ′

0

)
,

(
0′

1

)}
⊂ R

d .

Let P⊥ be the orthogonal complement of P in R
d. One can easily check the following

facts.

Fact 2.2.

(i) For every ζ ∈ R the eigenvector vd(ζ) (2.6) is an element of P .

(ii) For every ζ ∈ R the orthogonal subspaces P and P⊥ are invariant subspaces
of Lprin(ξ′, ζ) = L′

prin(ζ) — recall (1.3).

4Recall that the second Weyl coefficient and the second coefficient in the asymptotic expansion
for the eigenvalue counting function (1.19) are related in accordance with (1.20) — see also (1.18).
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(iii) The restriction L′
prin

∣∣
P⊥ of L′

prin to P⊥ has one eigenvalue, μ|ξ|2, of
multiplicity d− 2.

(iv) The restriction L′
prin

∣∣
P

of L′
prin to P has two eigenvalues, μ|ξ|2 and (λ+

2μ)|ξ|2, each of multiplicity 1.

The decomposition R
d = P ⊕ P⊥ induces a corresponding decomposition at the

level of vector fields. Let

P := {u ∈ C∞[0,+∞) | u(z) ∈ P ∀z ∈ [0,+∞)}, (2.15)

P⊥ := {u ∈ C∞[0,+∞) | u(z) ∈ P⊥ ∀z ∈ [0,+∞)}. (2.16)

Proposition 2.3. The vector spaces (2.15) and (2.16) are invariant subspaces for
the operator (2.2), compatible with mixed boundary conditions DF and FD. Namely,

L′P ⊂ P, L′P⊥⊂P⊥, (2.17)

and

B′
ℵP|z=0 ⊂ P, B′

ℵP
⊥∣∣

z=0
⊂ P⊥, ℵ ∈ {DF,FD} . (2.18)

Proof. A generic element of P reads

u‖ =
1

‖ξ′‖

(
ξ′

0

)
f1(z) +

(
0′

1

)
f2(z), f1, f2 ∈ C∞[0,+∞) (2.19)

whereas a generic element of P⊥ reads

u⊥(z) =
d−2∑
j=1

(
ψj

0

)
fj(z), fj ∈ C∞[0,+∞), (2.20)

where the ψj ’s, j = 1, . . . , d− 2, are linearly independent columns in R
d−1

orthogonal to ξ′.
Formula (2.17) follows from [7, Lemma 3.1(a)].
Substituting (2.19) and (2.20) into (2.3) we obtain

(
B′

DF u‖
)∣∣

z=0
=

1
‖ξ′‖

(
ξ′

0

)
f1(0) − (λ+ 2μ)

(
0′

1

)
df2
dz

(0), (2.21)

(B′
DF u⊥)|z=0 =

d−2∑
j=1

(
ψj

0

)
fj(0) (2.22)

for ℵ = DF and(
B′

FDu‖
)∣∣

z=0
= −μ 1

‖ξ′‖

(
ξ′

0

)
df1
dz

(0) +
(

0′

1

)
f2(0), (2.23)
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14 M. Capoferri and I. Mann

(B′
FDu⊥)|z=0 = −μ

d−2∑
j=1

(
ψj

0

)
dfj

dz
(0) (2.24)

for ℵ = FD. Formulae (2.21)–(2.24) imply that mixed boundary conditions preserve
our invariant subspaces, so that (2.18) holds. This concludes the proof. �

Remark 2.4. The crucial property established by proposition 2.3 is expressed by
formula (2.18). An analogue of proposition 2.3 for ‘pure’ Dirichlet and free boundary
conditions was proved in [7]. That this extends to a mixture of the two is not clear
a priori, because both the operator and boundary conditions mix up components
in a nontrivial fashion. Indeed, if one, say, imposes different boundary conditions in
different directions along the boundary, the statement of the proposition is false.

Let ΠP be the orthogonal projection in R
d onto P , and let us define

L′
P,ℵ := L′

ℵ|ΠP D(L′
ℵ) and L′

⊥,ℵ := L′
ℵ|(I−ΠP )D(L′

ℵ) (2.25)

to be the restriction of the operator L′ with boundary conditions ℵ ∈ {DF, FD}
to the invariant subspaces of its domain D(L′

ℵ) induced by (2.15) and (2.16) by
combining proposition 2.3 with a standard density argument. It then follows that
operator L′

ℵ decomposes as

L′
ℵ = L′

P,ℵ ⊕ L′
⊥,ℵ, (2.26)

so that, by the Spectral Theorem, we have

shiftℵ = shiftP,ℵ + shift⊥,ℵ . (2.27)

In other words, the spectral shift function for the problem (2.1) can be obtained
by computing the spectral shift functions for L′

P,ℵ and L′
⊥,ℵ separately, and adding

up the results in the end.
By examining the structure of our equations, it is not hard to see that shiftP,ℵ

coincides with the the spectral shift function for the problem (2.1) in the special
case d = 2 (we will revisit this point more formally in subsection 2.3). Therefore,
in view of theorem 2.1 and formula (2.27), the decomposition (2.26) reduces the
problem at hand to computing

(i) the spectral shift function for (2.1) in two dimensions and

(ii) the spectral shift function of the restriction of our operator to normally
polarized vector fields in arbitrary dimension d > 2.

2.3. The proof

We are now ready to prove theorem 1.8.
Due to rotational symmetry, we observe that the spectral shift function will only

depend on ξ′ via its norm |ξ′|. Therefore, it suffices to implement our algorithm
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and determine the spectral shift function in the special case

ξ′ =

⎛⎜⎜⎜⎝
0
...
0
1

⎞⎟⎟⎟⎠ ∈ R
d−1 . (2.28)

The general case can then be recovered by rescaling the spectral parameter as

Λ �→ Λ
|ξ′|2 (2.29)

at the very end.
In the next two subsections we will assume that ξ′ has been chosen in accordance

with (2.28).

2.3.1. Computing shiftP,ℵ: the two-dimensional case. On account of (2.28), the
domain of L′

P,ℵ is comprised of vector functions of the form⎛⎜⎜⎜⎜⎜⎝
0
...
0

f1(z)
f2(z)

⎞⎟⎟⎟⎟⎟⎠ . (2.30)

Furthermore, L′
P,ℵ acts on (2.30) as the one-dimensional operator associated with

the full elasticity operator in two spatial dimensions. More precisely, let L′
2,ℵ be

the one-dimensional operator (2.1) associated with the operator (1.1) for d = 2 and
boundary conditions Bℵ. Then we have

L′
P,ℵ

⎛⎜⎜⎜⎜⎜⎝
0
...
0

f1(z)
f2(z)

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0
...
0

L′
2,ℵ

(
f1(z)
f2(z)

)
⎞⎟⎟⎟⎟⎟⎠ .

See also Fact 2.2(iv). This implies

shiftP,ℵ = shift2,ℵ. (2.31)

The goal of this subsection is then to prove the following.

Proposition 2.5. We have5

shift2,ℵ(Λ; 1) = @
1
4

�(μ,λ+2μ)(Λ) where @ =

{
+ for ℵ = DF
− for ℵ = FD

(2.32)

and �A denotes the characteristic function of the set A.

5Observe that in two dimensions formula (2.28) reads ξ′ = 1.
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16 M. Capoferri and I. Mann

In order to prove proposition 2.5 let us implement the algorithm from subsection
2.1. The associated one-dimensional spectral problem (2.1) has continuous spectrum
[μ, +∞), with thresholds

Λ(1)
∗ = μ , Λ(2)

∗ = (λ+ 2μ) .

The latter partition the continuous spectrum into two intervals I(1) = (μ, λ+ 2μ)
and I(2) = (λ+ 2μ, +∞) of multiplicity 1 and 2, respectively.

The eigenfunctions of the continuous spectrum read

u(z; Λ) =
1√

4π
√

Λ

⎛⎜⎝
(

Λ
μ − 1

)1/4 [
c−1 e−i(Λ

μ −1)1/2
z − c+1 ei(Λ

μ −1)1/2
z
]

(
Λ
μ − 1

)−1/4 [
c−1 e−i(Λ

μ −1)1/2
z + c+1 ei(Λ

μ −1)1/2
z
]
⎞⎟⎠

+ C

√
λ+ 2μ

Λ

(
1

i
(
1 − Λ

λ+2μ

)1/2

)
e−
√

1− Λ
λ+2μ z (2.33)

for Λ ∈ I(1) and

u(z; Λ) =
1√

4π
√

Λ

⎛⎜⎝
(

Λ
μ − 1

)1/4 [
c−1 e−i(Λ

μ −1)1/2
z − c+1 ei(Λ

μ −1)1/2
z
]

(
Λ
μ − 1

)−1/4 [
c−1 e−i(Λ

μ −1)1/2
z + c+1 ei(Λ

μ −1)1/2
z
]
⎞⎟⎠

+
1√

4π
√

Λ

⎛⎜⎝
(

Λ
λ+2μ − 1

)−1/4 [
c−2 e−i( Λ

λ+2μ−1)1/2
z + c+2 ei( Λ

λ+2μ−1)1/2
z
]

(
Λ

λ+2μ − 1
)1/4 [

−c−2 e−i( Λ
λ+2μ−1)1/2

z + c+2 ei( Λ
λ+2μ−1)1/2

z
]
⎞⎟⎠

(2.34)

for Λ ∈ I(2).
By imposing that (2.33) and (2.34) satisfy mixed boundary conditions (2.1), (2.3)

we obtain the scattering matrices

SDF(Λ) =

⎧⎪⎨⎪⎩
1 for Λ ∈ (μ, λ+ 2μ) ,(
−1 0
0 1

)
for Λ ∈ (λ+ 2μ,+∞)

(2.35)

and

SFD(Λ) =

⎧⎪⎨⎪⎩
−1 for Λ ∈ (μ, λ+ 2μ) ,(
−1 0
0 1

)
for Λ ∈ (λ+ 2μ,+∞) .

(2.36)
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Lemma 2.6. We have the following:

the threshold Λ(1)
∗ is

{
soft for ℵ = DF
rigid for ℵ = FD

, (2.37)

the threshold Λ(2)
∗ is

{
rigid for ℵ = DF
soft for ℵ = FD

. (2.38)

Proof. In accordance with (2.11), for Λ = Λ(1)
∗ we seek solutions in the form

c1

(
0
1

)
+ c2

(
1

i
√

λ+μ
λ+2μ

)
e−
√

λ+μ
λ+2μ z (2.39)

for some constants c1 and c2. Substituting (2.39) into our boundary conditions one
finds that when ℵ = DF the function (2.39) satisfies boundary conditions for any
c1 ∈ R and c2 = 0, whereas when ℵ = FD the function (2.39) only satisfies boundary
conditions for c1 = c2 = 0. This gives us (2.37).

For Λ = Λ(2)
∗ we seek solutions in the form

c

(
1
0

)
(2.40)

for some constant c. Now, it is easy to see that (2.40) satisfies FD boundary con-
ditions for any c ∈ R, whereas it satisfies DF boundary conditions only for c = 0.
This gives us (2.38) and completes the proof. �

Lemma 2.7. The operator L′
2,ℵ does not have eigenvalues below or embedded into

the continuous spectrum for either set of mixed boundary conditions ℵ = DF, FD.

Proof. For Λ ∈ (0, μ) we seek an eigenfunction in the form

c1

(
−i
(
1 − Λ

μ

)1/2

1

)
e−
√

1−Λ
μ z + c2

(
1

i
(
1 − Λ

λ+2μ

)1/2

)
e−
√

1− Λ
λ+2μ z

. (2.41)

Substituting (2.41) into the FD boundary conditions we obtain⎛⎜⎝i
(
1 − Λ

μ

)
−
(
1 − Λ

λ+2μ

)1/2

1 i
(
1 − Λ

λ+2μ

)1/2

⎞⎟⎠(c1
c2

)
=
(

0
0

)
.

The latter has a nontrivial solution if and only if

χ(Λ) =
(

1 − Λ
λ+ 2μ

)1/2 [
−
(

1 − Λ
μ

)
+ 1
]

=
(

1 − Λ
λ+ 2μ

)1/2 Λ
μ

= 0 . (2.42)

But the characteristic equation (2.42) does not admit solutions in (0, μ). The case
of DF is analogous, with no eigenfunctions in (0, μ), and we omit the details. All
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18 M. Capoferri and I. Mann

in all, there are no solutions below bottom of the essential spectrum for either set
of mixed boundary conditions.

The threshold Λ = μ is not an eigenvalue. Indeed, an eigenfunction of the form(
1

i
√

λ+μ
λ+2μ

)
e−
√

λ+μ
λ+2μ z

satisfies boundary conditions (2.3) only if c = 0.
For Λ ∈ (μ, λ+ 2μ) we seek an eigenfunction in the form

c

(
1

i
(
1 − Λ

λ+2μ

)1/2

)
e−
√

1− Λ
λ+2μ z

.

Once again, the latter satisfies either set of mixed boundary conditions (2.3) only
if c = 0. Therefore, there are no eigenvalues in (μ, λ+ 2μ).

Finally, it is easy to see that Λ = λ+ 2μ is not an eigenvalue, and that there are
no square integrable solutions of our one-dimensional spectral problem for values
of the spectral parameter Λ > λ+ 2μ. �

Now, lemma 2.7 implies that the one-dimensional counting function vanishes
identically. Therefore, on account of (2.13) and (2.9)–(2.10), combining (2.35),
(2.36) with lemma 2.6 one arrives at (2.32).

2.3.2. Computing shift⊥,ℵ: normally polarized waves Let us now examine our one-
dimensional spectral problem restricted to the subspace P⊥ (2.16). The goal of this
subsection is to prove the following.

Proposition 2.8. We have

shift⊥,ℵ(Λ; ξ′) = @
d− 2

4
�(μ,+∞)(Λ) where @ =

{
− for ℵ = DF
+ for ℵ = FD

. (2.43)

In order to prove proposition 2.8 let us implement the algorithm from subsection
2.1.

One can easily check that when restricted to normally polarized waves the
operator L′ acts as

L′
⊥,ℵu = μ

(
1 − d2

dz2

)
u.

This implies that the one-dimensional spectral problem (2.1) for L′ = L′
⊥,ℵ has only

one threshold

Λ∗ = μ, (2.44)

and the essential spectrum [μ, +∞) has multiplicity d− 2.
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For Λ > μ the eigenfunctions of the continuous spectrum read

u(z; Λ) =
d−2∑
j=1

ej

(
c+j ei

√
Λ/μ−1 + c−j e−i

√
Λ/μ−1

)
, (2.45)

where (ej)α = δjα.
By imposing that (2.45) satisfy mixed boundary conditions (2.3) we obtain the

scattering matrices

Sℵ(Λ) = @Id−2 , @ =

{
− for ℵ = DF
+ for ℵ = FD

, Λ ∈ (μ,+∞). (2.46)

where Id−2 is the (d− 2)-dimensional identity matrix.

Lemma 2.9. The threshold (2.44) is{
rigid for ℵ = DF
soft for ℵ = FD

. (2.47)

Proof. In accordance with (2.11), for Λ = Λ∗ we seek solutions in the form⎛⎜⎜⎜⎜⎜⎜⎝
c1
c2
. . .
cd−2

0
0

⎞⎟⎟⎟⎟⎟⎟⎠ (2.48)

for some constants cj , j = 1, . . . , d− 2. Substituting the latter into (2.3) one imme-
diately sees that (2.48) satisfies DF boundary conditions only if all the cj ’s vanish,
whereas it satisfies FD boundary conditions for any choice of constants cj ’s. Hence,
one has (2.47). �

Lemma 2.10. The operator L′
⊥,ℵ, ℵ ∈ {DF, FD}, does not have eigenvalues, either

below or embedded into the continuous spectrum.

Proof. For Λ ∈ (0, μ) we seek an eigenfunction in the form⎛⎜⎜⎜⎜⎜⎜⎝
c1
c2
. . .
cd−2

0
0

⎞⎟⎟⎟⎟⎟⎟⎠ e−
√

1−Λ/μ.

But the latter does not satisfy either set of mixed boundary conditions unless all
the constants cj vanish; therefore, there are no eigenvalues in (0, μ).
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Finally, it is easy to see that there are no square integrable solutions of the one-
dimensional spectral problem for values of the spectral parameter Λ � μ. Hence,
there are no eigenvalues in [μ, +∞) either. �

As in the previous subsection, lemma 2.10 implies that the one-dimensional count-
ing function vanishes identically. Therefore, on account of (2.13) and (2.9)–(2.10),
combining (2.46) with lemma 2.9 one arrives at (2.43).

2.3.3. Putting things together. Combining proposition 2.5, proposition 2.8, and
formulae (2.29), (2.27), (2.31) we obtain

shiftℵ(Λ; ξ′) = @

⎧⎪⎨⎪⎩
0 for Λ < μ |ξ′|2
d−3
4 for μ |ξ′|2 < Λ < (λ+ 2μ) |ξ′|2

d−2
4 for Λ > (λ+ 2μ) |ξ′|2

with @ =

{
− forℵ = DF,
+ forℵ = FD.

(2.49)

Substituting (2.49) into (2.14) and integrating we arrive at (1.21). This completes
the proof of theorem 1.8.

3. Explicit examples

In this section we verify our formulae for the second Weyl coefficients by examining
the asymptotics of the eigenvalue counting function for explicit examples: the disk,
and flat cylinders in dimensions d = 2 and d = 3.

The choice of examples is motivated by the fact that they possess the following
properties.

(i) They allow for separation of variables for the operator of linear elasticity with
mixed boundary conditions.

(ii) They satisfy the conditions on branching Hamiltonian billiards from theorem
1.7, so that the two-term asymptotics for the counting function is valid.

(iii) For flat cylinders, variables separate completely and one can write down the
full spectrum explicitly. Therefore, unlike in [7], we can verify our formulae
analytically, using asymptotic expansions for certain number-theoretic series
determined by our eigenvalues.

3.1. Two-dimensional examples

3.1.1. The disk. Let M ⊂ R
2 be the unit disk and let us work in standard polar

coordinates (r, θ). Following [25, Chapter XIII] (see also [23]), we introduce a
fictitious third coordinate z orthogonal to the disk and seek solutions in the form

u(r, θ) = gradψ1(r, θ) + curl (ψ2(r, θ) ẑ) , (3.1)

where ẑ is the unit vector in the direction of z and ψj , j = 1, 2, are auxiliary scalar
potentials. Substituting (3.1) into (1.11) one obtains that the scalar potentials must
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Figure 1. The DF eigenvalue problem for the disk. In all images µ = 1.

satisfy the Helmholtz equations

− Δψj = ωj,Λψj , j = 1, 2, (3.2)

ω1,Λ :=
Λ

λ+ 2μ
, ω2,Λ :=

Λ
μ
. (3.3)

But now the general solution to (3.2) regular at r = 0 reads

ψj(r, φ) = cj,0J0

(√
ωj,Λr

)
+

∞∑
k=1

Jk

(√
ωj,Λr

) (
cj,k,+eikθ + cj,k,−e−ikθ

)
, (3.4)

where the Jk’s are Bessel functions of the first kind. By substituting (3.4) and
imposing that (3.1) satisfies DF boundary conditions(

(λ+ 2μ) ∂ru1 + λ(u1 + ∂θu2)
u2

)∣∣∣∣
r=1

=
(

0
0

)
,

one obtains the secular equation

μkJk

(√
ω2,Λ

) [
ω2,ΛJk

(√
ω1,Λ

)
− 2

√
ω1,ΛJk+1

(√
ω1,Λ

)]
+ μ

√
ω2,ΛJk+1

(√
ω2,Λ

) [
2
√
ω1,ΛJk+1

(√
ω1,Λ

)
− (2k + ω2,Λ)Jk

(√
ω1,Λ

)]
= 0.
(3.5)

For FD boundary conditions one obtains an analogous formula, which we omit.
One can use Mathematica to find the zeroes of (3.5) (and the correspond-

ing equation for FD boundary conditions) numerically and compute the eigen-
value counting function Nℵ(Λ), ℵ ∈ {DF, FD}, for reasonably large values of the
parameter Λ.

The numerical results are shown in figures 1 and 2.

3.1.2. Flat cylinders. Consider the two-dimensional cylinder M := T × [0, h],
where T is the one-dimensional torus and h > 0 is the height of the cylinder,
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Figure 2. The FD eigenvalue problem for the disk. In all images µ = 1.

equipped with coordinates (x1, x2) ∈ [0, 2π) × [0, h]. Of course,

Vol2(M) = 2πh, Vol1(∂M) = 4π. (3.6)

We separate variables by seeking a solution in the form

u(x1, x2) = gradψ1(x1, x2) + curl
(
ψ2(x1, x2) ẑ

)
, (3.7)

where ẑ is the unit vector in the auxiliary coordinate x3 (orthogonal to the (x1, x2)-
plane) and ψj , j = 1, 2, are scalar potentials. As in subsection 3.1.1, the scalar
potentials satisfy Helmholtz equation (3.2), (3.3). The general solution for ψj ,
j = 1, 2, reads

ψj(x1, x2) =
∑
ξ∈Z

(
cj,ξ,+ei

(
x1ξ+

√
ωj,Λ−ξ2x2

)
+ cj,ξ,−ei

(
x1ξ−

√
ωj,Λ−ξ2x2

))
. (3.8)

Substituting (3.8) into (3.7) and, in turn, imposing boundary conditions BDF

yields the secular equation

Λ2

(
Λ
μ
− ξ2
)

sin

(
h

√
Λ
μ
− ξ2

)
sin

(
h

√
Λ

λ+ 2μ
− ξ2

)
= 0 . (3.9)

Similarly, imposing boundary conditions BFD yields the secular equation

Λ2

(
Λ

λ+ 2μ
− ξ2
)

sin

(
h

√
Λ
μ
− ξ2

)
sin

(
h

√
Λ

λ+ 2μ
− ξ2

)
= 0 . (3.10)

A careful examination of (3.7)–(3.10) yields the following.

Theorem 3.1. T he eigenvalues of the Dirichlet-free (DF) eigenvalue problem for
the operator of linear elasticity on the two-dimensional cylinder are:

(i) Eigenvalues

k2π2

h2
(λ+ 2μ), k = 1, 2, . . . , (3.11)

with multiplicity 1.
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(ii) Eigenvalues

k2π2

h2
μ, k = 1, 2, . . . , (3.12)

with multiplicity 1.

(iii) Eigenvalues

n2 μ, n = 1, 2, . . . , (3.13)

with multiplicity 2.

(iv) Eigenvalues (
n2 +

k2π2

h2

)
μ, n, k = 1, 2, . . . , (3.14)

with multiplicity 2.

(v) Eigenvalues (
n2 +

k2π2

h2

)
(λ+ 2μ), n, k = 1, 2, . . . , (3.15)

with multiplicity 2.

Theorem 3.2. The eigenvalues of the free-Dirichlet (FD) eigenvalue problem for
the operator of linear elasticity on the two-dimensional cylinder are:

(i) Eigenvalues

k2π2

h2
(λ+ 2μ), k = 1, 2, . . . , (3.16)

with multiplicity 1.

(ii) Eigenvalues

k2π2

h2
μ, k = 1, 2, . . . , (3.17)

with multiplicity 1.

(iii) Eigenvalues (
n2 +

k2π2

h2

)
μ, n, k = 1, 2, . . . , (3.18)

with multiplicity 2.

(iv) Eigenvalues

n2(λ+ 2μ), n = 1, 2, . . . , (3.19)

with multiplicity 2.
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(v) Eigenvalues (
n2 +

k2π2

h2

)
(λ+ 2μ), n, k = 1, 2, . . . , (3.20)

with multiplicity 2.

Observe that the DF (theorem 3.1) and the FD (theorem 3.2) spectra coincide,
except for fact that the series of eigenvalues (3.13) in the DF spectrum is replaced
by the series of eigenvalues (3.19) in the FD spectrum.

Theorems 3.4 and 3.5 allow us to write down the eigenvalue counting functions
NDF and NFD explicitly. They read

NDF(Λ) =

⌊
h

π

√
Λ

λ+ 2μ

⌋
+

⌊
h

π

√
Λ
μ

⌋
+ 2

⌊√
Λ
μ

⌋

+ 2

⌊√
Λ
μ

⌋∑
n=1

⌊
h

π

√
Λ
μ
− n2

⌋
+ 2

⌊√
Λ

λ+2μ

⌋∑
n=1

⌊
h

π

√
Λ

λ+ 2μ
− n2

⌋
, (3.21)

NFD(Λ) = NDF(Λ) + 2

(⌊√
Λ

λ+ 2μ

⌋
−
⌊√

Λ
μ

⌋)
. (3.22)

Here � · � denotes the integer part (floor function).
Let us verify formula (1.21) by computing the asymptotic expansions of (3.21)

and (3.22) as Λ → +∞.

Proposition 3.3. The functions (3.21) and (3.22) admit the following two-term
asymptotic expansion:

Nℵ(Λ) =
h

2

(
1
μ

+
1

λ+ 2μ

)
Λ

±
(

1
μ1/2

− 1
(λ+ 2μ)1/2

)
Λ1/2 + o(Λ1/2) as Λ → +∞ (3.23)

with sign {
+ for ℵ = DF,
− for ℵ = FD.

(3.24)

Proof. Formula (3.23) follows from (3.22), (3.21), and the estimate


√x�∑
n=1

⌊
a
√
x− n2

⌋
=
πa

4
x− 1

2
(a+ 1)x1/2 + o(x1/2) as x→ +∞ , a > 0 . �

On account of (3.6), proposition 3.3 agrees with theorem 1.8 as well as formula
(1.22).

Figures 3 and 4 show a comparison between the actual counting functions (3.21),
(3.22) and the two-term asymptotic expansions (3.23), (3.24).
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Figure 3. The DF eigenvalue problem for 2D flat cylinders. In all images µ = 1.

Figure 4. The FD eigenvalue problem for 2D flat cylinders. In all images µ = 1.

3.2. Three-dimensional examples

3.2.1. Flat cylinders. Consider the three-dimensional cylinder M := T
2 × [0, h],

where T
2 is the flat two-dimensional torus with side 2π and h > 0 is the height of

the cylinder, equipped with coordinates (x1, x2, x3) ∈ [0, 2π)2 × [0, h]. Of course,

Vol3(M) = 4π2 h, Vol2(∂M) = 8π2. (3.25)

We separate variables by seeking a solution in the form

u(x1, x2, x3) = gradψ1(x1, x2, x3) + curl
(
ψ2(x1, x2, x3) ẑ

)
+ curl curl

(
ψ3(x1, x2, x3) ẑ

)
, (3.26)

where ẑ is the unit vector in the (positive) direction x3 and ψj , j = 1, 2, 3, are
scalar potentials. Once again, the scalar potentials satisfy Helmholtz equation (3.2),
with ω1,Λ and ω2,Λ defined in accordance with (3.3), and ω3,Λ := ω2,Λ. The general
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solution for ψj , j = 1, 2, 3, reads

ψj(x1, x2, x3) =
∑

(ξ1,ξ2)∈Z2

(
cj,ξ1,ξ2,+ei(x1ξ1+x2ξ2+

√
ωj,Λ−nx3)

+ cj,ξ1,ξ2,−ei(x1ξ1+x2ξ2+
√

ωj,Λ−nx2)
)
, (3.27)

where n := ξ21 + ξ22 . Substituting (3.27) into (3.26) and, in turn, imposing boundary
conditions BDF at x3 = 0 and x3 = h yields the secular equation

Λ2n2

(
Λ
μ
− n

)
sin2

(
h

√
Λ
μ
− n

)
sin

(
h

√
Λ

λ+ 2μ
− n

)
= 0 . (3.28)

Similarly, imposing boundary conditions BFD yields the secular equation

Λ2n2

(
Λ
μ
− n

)(
Λ

λ+ 2μ
− n

)
sin2

(
h

√
Λ
μ
− n

)
sin

(
h

√
Λ

λ+ 2μ
− n

)
= 0 .

(3.29)
The DF (resp. FD) spectrum is a subset of the zeroes of (3.28) (resp. (3.29)).

A direct examination of solutions of (3.28) and (3.29) yields the following.
Let r2 : N → N be the sum of squares function:

r2(n) := #
{
(a, b) ∈ Z

2 | n = a2 + b2
}
.

Theorem 3.4. The eigenvalues of the Dirichlet-free eigenvalue problem for the
operator of linear elasticity on the three-dimensional flat cylinder are:

(i) Eigenvalues

k2π2

h2
(λ+ 2μ), k = 1, 2, . . . , (3.30)

with multiplicity 1.

(ii) Eigenvalues

nμ, n = 1, 2, . . . , (3.31)

with multiplicity r2(n).

(iii) Eigenvalues (
n+

k2π2

h2

)
μ, n, k = 1, 2, . . . , (3.32)

with multiplicity 2r2(n).

(iv) Eigenvalues (
n+

k2π2

h2

)
(λ+ 2μ), n, k = 1, 2, . . . , (3.33)

with multiplicity r2(n).
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Theorem 3.5. The eigenvalues of the free-Dirichlet eigenvalue problem for the
operator of linear elasticity on the three-dimensional flat cylinder are:

(i) Eigenvalues

k2π2

h2
(λ+ 2μ), k = 1, 2, . . . , (3.34)

with multiplicity 1.

(ii) Eigenvalues

nμ, n = 1, 2, . . . , (3.35)

with multiplicity r2(n)6 .

(iii) Eigenvalues (
n+

k2π2

h2

)
μ, n, k = 1, 2, . . . , (3.36)

with multiplicity 2r2(n).

(iv) Eigenvalues

n (λ+ 2μ), n = 1, 2, . . . , (3.37)

with multiplicity r2(n).

(v) Eigenvalues (
n+

k2π2

h2

)
(λ+ 2μ), n, k = 1, 2, . . . , (3.38)

with multiplicity r2(n).

Observe that the DF (theorem 3.4) and the FD (theorem 3.5) spectra coincide,
except for the additional series of eigenvalues (3.37) in the FD spectrum.

Theorems 3.4 and 3.5 allow us to write down the eigenvalue counting functions
NDF and NFD explicitly. They read

NDF(Λ) =

⌊
h

π

√
Λ

λ+ 2μ

⌋
+
�Λ

μ �∑
n=1

r2(n)

(
2

⌊
h

π

√
Λ
μ
− n

⌋
+ 1

)

+
� Λ

λ+2μ�∑
n=1

r2(n)

⌊
h

π

√
Λ

λ+ 2μ
− n

⌋
, (3.39)

NFD(Λ) = NDF(Λ) +
� Λ

λ+2μ�∑
n=1

r2(n). (3.40)

6Here and further on by multiplicity zero we mean that the corresponding number is not an
eigenvalue.
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Figure 5. The DF eigenvalue problem for 3D flat cylinders. In all images µ = 1.

Figure 6. The FD eigenvalue problem for 3D flat cylinders. In all images µ = 1.

Let us verify formula (1.21) by computing the asymptotic expansions of (3.40)
and (3.39) as Λ → +∞.

Proposition 3.6. The functions (3.40) and (3.39) admit the following two-term
asymptotic expansion:

Nℵ(Λ) =
2h
3

(
2

μ3/2
+

1
(λ+ 2μ)3/2

)
Λ3/2 ∓ π

2(λ+ 2μ)
Λ + o(Λ) as Λ → +∞

(3.41)
with sign {

− for ℵ = DF,
+ for ℵ = FD.

(3.42)
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Proof. Formula (3.42) follows from (3.40), (3.40), and the estimates


x�∑
n=1

r2(n) = πx+O(x1/3) as x→ +∞,


x�∑
n=1

⌊
a
√
x− n

⌋
r2(n) =

2πa
3
x3/2 − π

2
x+ o(x) as x→ +∞, a > 0. �

On account of (3.25), proposition 3.6 agrees with theorem 1.8 as well as formula
(1.23).

Figures 5 and 6 show a comparison between the actual counting functions (3.39),
(3.40) and the two-term asymptotic expansions (3.41), (3.42).
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