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Abstract

In this article, we use the method of Foias and Temam to show that the strong solutions of
the time-dependent magnetohydrodynamics equations in a periodic domain are analytic in
time with values in a Gevrey class of functions. As immediate corollaries we find that the
solutions are analytic in //'-norms and that the solutions become smooth immediately after
the initial time.

1. Introduction

The non-dimensional form of the magnetohydrodynamics (MHD) equations is

'B2\
— -S(flV)B=/, (1.1)

at Ke

d 1
— B + (u • V)B -(B • V)w + — curl(curl B) = 0, (1.2)
dt Rm

divu = divfl = 0, (1.3)

where u = (wi(;t, 0 . u2(x, t), u3(x, t)) is the velocity of the particle of fluid which is
at point* at time t, B = (B\(x, t), B2(x, t), By(x, t)) is the magnetic field at point*
at time /, / = / (x, t) is a volume density force, Re is the Reynolds number, Rm is the
magnetic Reynolds number and 5 = M2/(ReRm), where M is the Hartan number.

These equations are important in the physics of plasma. The existence of weak
and strong solutions and some regularities have been established by Sermange and
Temam [3].

In this paper, we will consider the Gevrey class regularity of MHD equations in
a periodic domain in Kw with N = 2 or 3 following the method used by Foias and
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Temam [1]. In that paper Foias and Temam showed that the strong solutions of the
Navier-Stokes equations in a periodic domain are analytic in time with the values in
a Gevrey class of functions. We will prove a similar result for the MHD equations
using a similar method.

The organization of this paper is as follows. In Section 2, we introduce some
function spaces. In Section 3, we introduce known results about existence, uniqueness
and regularity. In Section 4, we prove the main theorem, namely we establish Gevrey
class regularity and derive some related regularity properties.

2. Function spaces

We supplement the system (1.1)—(1.3) with the following initial and boundary
conditions:

u(x, 0) = uo(x), B(x, 0) = B0(x), (2.1)

u(x + Le,, 0 = u(x,t), B(x + Le,, 0 = B{x,t), (2.2)

for all x e W and t > 0, where L is the period and {e,}^, is an orthonormal basis of
the space. But we will regard L to be 2n for notational simplicity. When the dimension
of the space is N = 2, we classically define the operators curl u = du2/dx\ — dui/dx2

for every vector function u = (MI, M2) and curl0 = (d<p/dx2, —d<p/dx{) for every
scalar function <j>. We recall the two-dimensional formula

curl curl u = graddiv u — AM, (2.3)

which corresponds to the three-dimensional formula

curl curl u = graddiv u — AM. (2.4)

The two-dimensional MHD equations are (1.1)—(1.3) with the term curl(curlB) re-
placing curl(curl B). Thus if div u = 0, then curl curl u — —AM.

Let T > 0 and let X be a Banach space. We shall consider Lp (0, T; X), 1 <p <oo,
which is the space of functions from [0, T] into X, which are Lp for the Lebesgue
measure dt. This is a Banach space for the norm

for 1 < p < oo, esssup ||M(0IIX for/? = oo.
/o / o<i<r

We denote by L2(i2) the space of OP -valued functions on £} which are square
integrable for the Lebesgue measure dx = dx\ • • • dxN. This is a Hilbert space for the
scalar product

(M, v) = / u(x) • v(x)dx.

Qf
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Using Fourier series expressions we can identify Z,2(<S) with the space of functions
u satisfying

u=J2 ujO)eu", Uj(t) g <CN, u-j = uj for / e [0, T]. (2.5)

For m e N, we also introduce

u e uo =

and H~m(£), the dual space of Hm(£). Also

V = {ue H\£)\j -Uj =0 for a l l ; € 1N],

H = {ue H\£) I j • Uj, = 0 for a l l ; € 1N)

and V is the dual space of V. We equip V with the scalar product

which is a scalar product on H' (i2).
We also introduce the spaces V and 0-0:

V = {(M, fl) | M, £ e V), H = {(ii, B) | «, fl 6 «} .

We equip H with the scalar products

(*, * ) = (M, V) + (B, C) for all <D = (u, B), * = (u, C) e H

providing a norm on 0-0, |4>| = {(O, <I>)}1/2. We also equip V with the scalar products

>, ¥)) = ((«, w)) + ((fl, Q)

providing a norm on V, ||<t>|| = {(($,

We define an operator si € S£{ V, V) to be such that

(s/u, v) — ((M, V)) for all u, v € V.

We also consider &/ as an unbounded operator on H whose domain is

= {ue V, &/u e H) = H2 D V.
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Since we consider divergence-free functions on a periodic domain, s/ is actually —A.
And since si is a nonnegative symmetric functional, we can define s/a and the domain
of si" is the set of functions u such that

\j HM, |2 = \s/au\l < oo. (2.6)

For T > 0 given, we consider also the Gevrey class @{eri*"~), that is, the set of
functions u satisfying

e2T[J%\2 = \er«"2u\2 < oo (2.7)
jel"

with inner product

with norm |M|r = {(2it)N YiJez» e*m\uj\2}>n- And for ^( .e / ' /V^"2) , we equip the
inner product

i, v))T = (2ny

with the norm ||w||r = {(.2n)N ^jelll \j\2e*Tm\uj\2}l/2.

LEMMA 2.1. Suppose \u\2 = (2n)N Y.jez" e2rL/ll"; I2 < oo for some x > 0. Then

PROOF. Since (2r|y 1)*/*! < <?2rUI for ally 6 Zw and k e N,

yeZ"

Thus M € n £ i w*- fiy Sobolev imbedding, we get u e tf°°.

We define now a trilinear form on L'(^) x Wu(>^) x L ' (^) by setting

b(u, v, w) = 2^ I UjDjVjWj dx (where D, = d/dx,),

whenever the integrals make sense. We know the trilinear form b is continuous on
(H' (<S))3 [4]. Thus we can define a continuous bilinear operator SB from V x V into
V" with {£B{u, v), w) = &(u, w, w).
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3. Known results

Let T > 0 be given and let us assume that (p, u, B) is a smooth solution of
(1.1M2.2). Multiplying (1.1) by a test function v e V and integrating over «2, we
obtain

! - ( « , v) + ^-((M, u)) + b(u, u, v) - Sb(B, B, v) = {f, v). (3.1)
at Ke

We also multiply (1.2) by a test function C 6 V and integrate over J2, then

| - ( 5 , C) + -i-((fl, O) + b(u, B, C) - b(B, u, C) = 0. (3.2)
at Rm

Thus we define a strong solution of the MHD equations.

DEFINITION3.1 (Strongsolution). Assume N = 2 or 3, f e L2(0, T;H) and
O0 = (M0, BO) is given in V. Then <J> = (u, B) is a strong solution of the MHD
equations if w, B e L2(0, 7; 0(.eO) n L°°(0, 7; V) and 4> satisfies (3.1), (3.2) for all
* = (v, C) e V.

Using operators srf and 38, the previous equations, (3.1) and (3.2), may be written as

^ + -^-^M + ^(M, U)-S£(B, B)=f, (3.3)
cu Re
dB 1
-—+ -—jz/fl + ^(M,B)-«(B,ii) = O. (3.4)
ot Rm

The following result about existence and uniqueness is known [3].

THEOREM 3.2. Let f, u0, Bo be given withf € L°°(0, T; H), <J>0 = (M0, BO) € V.
(1) If N = 2, the strong solution <t> = (u,B)ofthe MHD equations uniquely exists
and satisfies

O € L2(0, T; 9(*/)) n L°°(0, T; V). (3.5)

(2) IfN= 3, there exists Tt > 0 (depending on SI, f, ||<}>||) such that there exists a
unique strong solution O on [0, 7*,], which satisfies (3.5) with T replaced by Tt.

4. Gevrey class regularity

LEMMA 4.1. Let u, v, w be given in Q{^ezl^m), r > 0. Then the following
inequalities hold in space dimension N = 2 or 3:
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| < c\\u\\\l2\e/u\\i2\\v\\T\tfw\x,

where c > 0 is independent ofu, v, w, x.

PROOF. We set u = J^jei" uJe'J '*> u* = Hyez^ u*eijx, u* = ez^Uj and use similar
notation for v and w. We have (38{u, v), w) = (2n)Ni J2 +k=i(uj ' ̂ )(u*" ">/). Also

{u, v), w} = (2n)Ni
j+k=i

= {2n)Ni i-iy I-I*D

j +*=/

Now since |/| — \j \ — \k\ = \j + k\ - \j | - |Jfc| < 0, we have

< (2n)N (4.1)
;+*=/

Then the right-hand side of (4.1) is equal to the integral j 2 %(x)\{r(x)9(x)dx, where
Hja" \"j\eiJx, Hx) = E*eZ« l*llw;i«'*-x, 0(x) = Zlelfl \l\2\w*\e-n*.

Assume N — 3. Then by the Nirenberg inequality,

Kiel"

kel" lei"

Thus

bT£/"2@(u, v), .£*V

Assume N = 2. Then by the Nirenberg inequality,

I$L- < c\D§\L2=c\\u\\T < c\\u\\\l2\^u\\'2.

Thus

Lt=(x)ir(x)d(x)dx
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And by similar calculation we obtain

J2 (uj • k)(vt • vm)(u,
j +k=l+m

j +k=l+m

<c\\u\\z\*/u\T\\v\\2
T.

Now we obtain the following theorem.

THEOREM 4.2. Assume that ||*0|| < M and f € L°°(0, T;9(ea"*"2)) for some
CT| > 0. Then there exists T\ that depends on f and M such that the following
holds:

(1) The strong solutions * of the MHD equations satisfy that t \-+ ^/ l / 2e ' ) ( ' )^ ' / 2*(r)
is L2{^-continuousfor t e [0, T\\, where rj(t) = min(t, CTI).
(2) If the strong solutions * of the MHD equations satisfy | |*(0ll < M on [0, TO],

then * is analytic on (CT, TO + T{) with respect to the norm of {Q{£^llle"^n))2 for
sufficiently small a > 0.

PROOF. Let C denote the complex plane and Hc the complexified space of H, whose
elements are denoted by u + iv, where u,v e H\ similarly Vc, V£ are the complexified
V, V. Let (O\,a)2,... be orthonormal eigenvectors in V with respect to &/, whose
eigenvalues are nondecreasing. Let Pm be the projection onto (o)\,... ,com).

Consider now the complexified form of the Galerkin approximation of the MHD
equations, that is, the complex differential system in (PmHc)

2:

dq
dB

^Pmf, (4.2)

= 0, (4.3)

Bm(0) = Pm(B0), (4.4)

where < 6 C and um, Bm maps C (or an open subset of C) into PmHc =
1- €wm. The complex differential system (4.2)-(4.4) possesses a unique analytic

solution um, Bm defined in some neighborhood of the origin. It is clear that the
restriction um, Bm to some interval (0, Tm) of the real axis coincides with the Galerkin
approximation um(t), Bm(t) defined in the real field.
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We now get some estimates on um,Bm. Let \6\ < JT/4, and rj(t) = min(t, at),
S = sem. Then

2 ~d~ Um n(scosO)

We have

2 3T I

ds

[eie( - {\/Re)^um

O, Bm(S)) + Pmf,

COS0

COS0

We introduce some norms for <1> = (w, B) as follows:

Let ?̂ = mm[\/Re, l/Rm}, 4>m = (um, Bm). Then we can rewrite the above inequali-
ties as

—
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< c(3

cos0
c4

cos 9
U I|)(JCOS0)

where c2, c3, c4 depend on /? and c.

Since | / l^cosfl) < 1/ U , there exists c5 which is dependent on R, c and \f \a, such
that

se) + I ) 3 . (4.5)

1. Thenfor^ <

1 + [[^m(seie)]]2
nUcose) < 2(1 + ||cDOm||2) < 2(1 + ||O0||2). (4.6)

This shows that the solution of (4.2)-(4.4), which was defined and analytic in a
neighbourhood of f = 0 , actually extends to an analytic solution of this equation in
an open set containing

&(M) = {? = sew, 0 < s < T;(M), \9\ < TT/4}. (4.7)

The above estimates show that

sup | |4>m(?) | | 2
( s c o s e )<2(l + ||cl>o||2). (4.8)

The analyticity of (um, Bm) and Cauchy's integral formula allow us to deduce
estimates on the derivatives of (um, Bm) (with respect to £) on a compact subset of
&(M) from (4.8). For 0 < a < au we denote &a{M) = {z € C,z e ^ ( M ) ,
7» > Rez > a ) , where 7* is derived from Theorem 3.2. Then for 0 < a < T[{M),

is not empty. Let £ € J ^ M ) and k € N. Then

<4-9)

where d = rf(f, 3i?
<T(M)) is the distance of f to the boundary d&o(M). Therefore

2kk\

IF SUP dt,k
Bn

2kW
<—- SUp \\Bm(z)\\a.

aK
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Thus for any compact K c

dk

sup

sup

On the other hand,

Sangjeong Kim

2k+xk\

2k+lk\

„ ~ [d(K,

) a + S(PmSS{Bm, Bm),

(um, um), &/Um)a - (dum/dt;,

[10]

(4.11)

(4.12)

c\\um\\l/2\*/u\l/1

1
, um), ^Bm)a - (Pm<%(um, Bm),

<c\\Bm\\xJ2WBm\)!2\\um\\aWBm

U + \dBmldK\aWBm

Thus

1
~RZ

\\dBm/dS\\o.

, (4.13)

(4.14)

Thus by (4.13) and (4.14),

<Re\f\c a ^

a + Rm[{d<bJdK^a.

Therefore

< cb{K) < oo. (4.15)
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Again using Cauchy's formula and (4.15) we obtain also for every £ € K and k € N

2kk\

Thus

where AT' = {z e ^ ( M ) , d( z , 3 ^ ( M ) ) > (l/2)d(K,
We now pass to the limit m -*• oo. For every compact subset of &a(M), 4>m

is uniformly bounded in @(£?eaj*"2) and d<$>m/dt; is also bounded in S>(s>/eai*1'2).
Since (^ ' l / 2 )~1 is a compact operator, we can use the vector version of Montel's
theorem, that is, there is a subsequence {<J>my} which converges to a analytic function
d> in ^ C e / ^ W 2 ) on &a{M).

Since the restriction of um, Bm to the real axis coincides with the Galerkin approx-
imation in R+ of the MHD equations, it is clear that the restriction of O to the same
interval (0, T, = minfT,', Tt}) of the real axis coincides with the unique solution of
the MHD equations given by Theorem 3.2. Thus we obtain the real analyticity of <J>
on the interval (a, T,). Since ||<t>|| < M on [0, To], <$> is analytic in @(£/1/2ea'*"2) for
t e (a, TQ + r , ) .

Now we prove part (1) of Theorem 4.2.
By (4.5), *fe'>is)J*"2<i> € L2(0, T{; H). Thus

^"24> g L2(0, r , ;V) . (4.16)

By(4.16),J2/3/2e''<l)jS"/2cI> € L2(0, F,;V'). And if u,, u2 are u or B, then by Lemma 4.1
and (4.5), we obtain that

and e L2(0, T^ V) .

And s ince / 6 L°°(0, T;
Thus we obtain

By (4.16), (4.17) we obtain

§ 1-4].

) , we obtain £/i/2es£/"2f e L2(0, Tx\ V).

€ L2(0, r,; V). (4.17)

, r,];L2) [5,Ch.III,

COROLLARY 4.3. Under the same conditions as those of Theorem 4.2, * , f/ie strong
solution of the MHD equations, is analytic on (0, To + T\) with respect to the Hr-norm
for r > 0.
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PROOF. Let t0 € (0, To + T,). Then there is a such that 0 < a < t0. Thus

By the above theorem, the right-hand side of the above inequality goes to zero. Thus
the left-hand side of the above inequality also goes to zero. Thus ^ is analytic in
//*+l-norms. And 4> is analytic in L2-norms by similar reasoning.

COROLLARY 4.4. Under the same assumptions as those of Theorem 4.2, 4>(?) 6
with eventual modification on a set measure zero on (0, To + 7i).

PROOF. If t e (0, To + Tt), then [<J>(OL is bounded for some a by the above
theorem. Thus <t>(0 is smooth in W by Lemma 2.1.

COROLLARY 4.5. IfN = 2, the strong solution is analytic on (a, T) with respect to
the norm of(@(jrfl/2eaar"2))2for sufficiently small a > 0.

PROOF. ||<l>|| is bounded on (0, T) by Theorem 3.2. Thus we are done by the above
theorem.
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