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A Perron–Frobenius analysis of wall-bounded
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The Perron–Frobenius operator (PFO) is adapted from dynamical-system theory to the
study of turbulent channel flow. It is shown that, as long as the analysis is restricted to the
system attractor, the PFO can be used to differentiate causality and coherence from simple
correlation without performing interventional experiments, and that the key difficulty
remains the collection of enough data to populate the operator matrix. This is alleviated by
limiting the analysis to two-dimensional projections of the phase space, and developing a
series of indicators to choose the best parameter pairs from a large number of possibilities.
The techniques thus developed are applied to the study of bursting in the inertial layer
of the channel, with emphasis on the process by which bursts are reinitiated after they
have decayed. Conditional averaging over phase-space trajectories suggested by the PFO
shows, somewhat counter-intuitively, that a key ingredient for the burst recovery is the
development of a low-shear region near the wall, overlaid by a lifted shear layer. This is
confirmed by a computational experiment in which the control of the mean velocity profile
by the turbulence fluctuations is artificially relaxed. The behaviour of the mean velocity
profile is thus modified, but the association of low wall shear with the initiation of the
bursts is maintained.

Key words: turbulent boundary layers, big data

1. Introduction

There is widespread agreement that physical phenomena have causes, but less consensus
on what this may mean. Several questions come to mind. The first is whether the concept
of cause has any meaning when the equations of motion are known, and whether, even if a
definition could be agreed upon, it would be of any practical value. For example, Russell
(1912) argued that, if the temporal evolution of a dynamical system is described by a set
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Figure 1. (a) The deterministic view of a dynamical system. The shaded plane represents the full phase space
at one instant in time, and each trajectory is one possible evolution of the system. (b) The effect of dissipation
and chaos. Phase points have to be substituted by neighbourhoods, and the flow becomes ill conditioned both
forward and backwards in time.

of deterministic differential equations, causality is equivalent to knowledge of the initial
conditions. This point of view can be traced to Newton and even to the classical world, and
implies that the only causes of the state of the system at time t are the state of the system at
any previous time. This is sketched in figure 1(a). Disregarding isolated singularities, any
point v(te) in phase space is the ‘effect’ of all the points v(tc < te) in a unique incoming
trajectory. Conversely, v(te) is the ‘cause’ of all the points in that trajectory for which
t > te.

However, Russell (1912) was probably thinking about reversible Hamiltonian mechanics
and, although true in theory, his conclusions are not necessarily useful in more general
cases. Many mechanical systems are dissipative, and identifying the (Russell 1912) cause
of a particular state implies integrating ill-posed equations backwards in time. This
certainly applies to Navier–Stokes turbulence, which is the system that mostly interests
us here. Similarly, Russell (1912) knew little about deterministic chaos, but we now
understand that most dynamical systems with many degrees of freedom are chaotic, and
cannot in practice be uniquely integrated forward. The evolution of turbulence is closer
to figure 1(b), in which v(te) has been substituted by a small neighbourhood, and the
forward and backward trajectories become irregular or fractal cones formed by bundles of
trajectories that contain the causes and effects of the points in the neighbourhood of v(te).
Russell’s question can be recast as whether, in such situations, something is retained of the
deterministic picture in figure 1(a).

A related problem is whether something can be said about causality without performing
interventional experiments. The usual answer is that it cannot, because the correlations
that result from observations do not imply causation (Granger 1969; Pearl 2009). But the
discussion in the previous paragraph suggests that this may not be the whole story, and
that a sufficiently careful observation of the temporal evolution of a system may lead to the
identification of the ‘causal’ trajectories that cross a neighbourhood of interest (Angrist,
Imbens & Rubin 1996).

The coarse graining inherent in figure 1(b) suggests that the dynamical system can be
simplified by partitioning the phase space into disjoint neighbourhoods of finite size,
at least for a fixed temporal horizon. This is common practice in chaotic dynamical
systems (Beck & Schlögl 1993) and, although the reasons given are often that it avoids
singular measures in the statistics and that numerical experiments are anyway discrete,
figure 1(b) suggests that there is a more fundamental justification. If chaos prevents us from
predicting the behaviour of infinitesimally close neighbouring points, it makes little sense
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to insist on treating them as if they were different, and we may as well consider finite-size
neighbourhoods as our fundamental dynamical units. This has important consequences for
the definition of the system. The main one is that the system propagator is substituted by
the ‘symbolic’ dynamics of how often and in which order the system visits the different
cells, and that the deterministic equations are substituted by the transition probabilities
incorporated in the Perron–Frobenius (transfer) operator introduced in § 2.

Turbulence is well suited for these techniques, because it is a chaotic deterministic
system with many degrees of freedom for which the (Navier–Stokes) equations are known.
The difficulty is not how to integrate the equations, which are in principle within reach of
a sufficiently powerful computer, but how to explain and predict turbulent flows in terms
of simpler rules. Direct simulations are exact but expensive, and we would like to have
reduced models that reproduce the flow, if not in full detail, at least well enough to provide
general rules about its future behaviour and, ideally, about how that behaviour could be
influenced. Shear-driven turbulence is particularly appropriate because it can be made
statistically steady, as in pipes or channels, but also because it is believed to be partially
controlled by linear processes (del Álamo & Jiménez 2006; McKeon & Sharma 2010;
Jiménez 2013), and at least in part describable in terms of coherent structures that play the
role of objects in a dynamical system (Adrian 2007; Jiménez 2018a).

Especially interesting is the regeneration cycle of wall-bounded turbulence, whose
persistence has been explained by the interaction between the perturbations of the
streamwise and cross-flow velocities (Jiménez 1994; Hamilton, Kim & Waleffe 1995;
Waleffe 1997). There is fairly general consensus that the wall-normal velocity generates
fluctuations of the streamwise velocity by deforming the mean shear, and that the shear
interacts with the cross-flow fluctuations to amplify them (Orr 1907; Jiménez 2013, 2015).
But this amplification is transient in most models (Butler & Farrell 1993; Farrell & Ioannou
1996; Schoppa & Hussain 2002; Jiménez 2013), and the details of how the cycle closes
after the burst decays are unclear. The elucidation of this regeneration process is the
underlying ‘application’ of our investigation, although much of the paper is dedicated to
the development of the analytical procedure itself. Early examples of the use of transfer
operators for burst identification in reduced-order models of the wall-turbulence cycle are
Schmid, García-Gutiérrez & Jiménez (2018a) and Schmid et al. (2018b).

Note that most of the results of our analysis will not be causal in the sense of Granger
(1969) or Pearl (2009), since they involve no intervention from the observer. But we are
more interested in predictability and perhaps in coherence, and in the search for states
of the system that best allow us to draw conclusions from partial flow information. The
fundamental question of causality will be outsourced here to the equations of motion,
and its direction to the direction of time. The main purpose of our analysis is to identify
flow configurations in which the equations of motion give us the best possible information
about the future of the system without necessarily solving them in detail, and which could
perhaps lead to effective control strategies.

However, a simple interventional experiment will also be presented towards the end of
the paper to help us confirm our conclusions, and to address certain limitations of the
non-interventional analysis that will become apparent in the course of our discussion.

The organisation of the paper is as follows. Section 2 introduces the Perron–Frobenius
operator, which is particularised to a small-box turbulent channel in § 3. Techniques for its
use are developed in §§ 3.2 and 3.3, leading in § 4 to the study of conditional trajectories
in phase space. Finally, the interventional experiment is described in § 5 and conclusions
are offered in § 6.
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2. The Perron–Frobenius operator

Assume a statistically stationary ergodic system

v(t + T) = S(T; t) v(t), (2.1)

for which temporal and ensemble averages can be interchanged. The probability density of
the state variable, v, over the cells of a partition {Cj| j = 1 . . .N} of the phase space, can
be approximated by the fractional distribution, q = {qj}, of the time spent by the system
within each cell. After a sufficiently long time, or for a sufficiently large ensemble of
experiments, these probabilities tend to an equilibrium distribution that we denote by q∞.
More locally, if we consider the probability distributions at two different times, q(t) and
q(t + T), the two-dimensional Perron–Frobenius operator (PFO) P̂e, relates the past to the
future (Beck & Schlögl 1993),

q(t + T) = P̂e(T; t) q(t). (2.2)

Because probabilities represent the results of mutually independent tests, P̂e is linear and,
for a finite partition, reduces to an N × N matrix, where N is the number of cells in the
partition, which is potentially much larger than the number of degrees of freedom of the
original dynamical system. We will assume P̂e to be independent of t.

When applied to a perfectly concentrated initial distribution, q(a)(t) = {δaj}, where δaj

is Kronecker’s delta, the ath column of P̂e represents the probability that a system initially
within the ath cell evolves into the different cells of the partition after the time interval
T . Note that these concentrated initial probability distributions can be interpreted as
non-interventional experiments, in which a statistical knowledge of the causal structure
of the coarse-grained system can be gained by observing the system over a sufficiently
long time (Angrist et al. 1996).

The PFO is equivalent to the Bayesian conditional probability matrix (Feller 1971), and
can be estimated, after a sufficiently long observation, as (Ulam 1964)

Qij(t, t + T) ≡ Qij(T) = probt(v(t + T) ∈ Ci, v(t) ∈ Cj), (2.3)

normalised to unit column sums

Pe
ij = Qij

/∑
s

Qsj, (2.4)

so that an input probability q(t) for which
∑

qj = 1 results in a similarly normalised output
probability q(t + T). The matrix Pe is generally not symmetric, and there is a dual matrix

Pc
ij = Qji

/∑
s

Qis, (2.5)

which generates q(t − T) given q(t), allowing us to estimate the statistical distribution of
the causes of a given effect. Note that, even if

q(t − T) = P̂c(T) q(t) (2.6)

looks like the inverse of (2.2), P̂e is not the inverse of P̂c, because the marginal
probabilities q(t) and q(t + T) have different meanings in (2.2) and in (2.6). In the former,
q(t) is observed, and q(t + T) is the conditional probability distribution at t + T given
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that observation, while their meaning in (2.6) is reversed. One of the effects of the
coarse-grained partition is to destroy any reversibility that might have been present in
the original dynamical system.

Another consequence of discrete partitions is to suppress the semigroup character of
the dynamical system, by which S(T1 + T2) = S(T1) ◦ S(T2). Indeed, even if the original
dynamical system is Markovian in the sense that its future depends only on its present
state (i.e. on its ‘initial conditions’), the discretised system is generally not Markovian. The
cells of almost any partition of a high-dimensional phase space are projections of infinite
‘cylinders’ whose base is the cell, and whose ‘axis’ extends along all the neglected system
dimensions. Two trajectories that intersect a cell at a given time may actually intersect its
cylinder at very different places along the axis, and the only way to distinguish different
trajectories is often to consider the sequence of cells visited over their entire past. Even this
may not be enough, and very little is known about partitions that preserve Markovianity
in high-dimensional systems (Beck & Schlögl 1993, § 3.6). The transfer operator bypasses
this limitation by acting on the transition probabilities, and is again Markovian in the sense
that q(t + T) formally only depends on q(t) (Feller 1971, § X), but we regain Markovianity
at the expense of losing determinacy, and we will see in § 3.1 that the semigroup property,
Pe(nT) = Pe(T)n, is very quickly lost for the approximate transfer operator of turbulent
channels.

There are several reasons why Pe is not a perfect estimator of the true operator P̂e, but the
most important one has to do with the existence of an attractor. Dissipative systems, such
as turbulence, typically evolve towards a lower-dimensional attracting subset of the full
phase space, and the observations used in (2.4) only reflect the statistics of this subset. As
such, Pe is a restriction of P̂e to the system attractor, and contains little or no information
about how the system reacts outside it. It is thus useful in modelling the physics, where
the interest is on how the system evolves in time, but it may need additional information
in control applications, where we may wish to act in ways outside the attractor.

There are two ways in which the PFO can be used to analyse a complex dynamical
system. The first one is to treat it as a matrix whose properties reflect the behaviour of the
attractor as a whole. ‘Stochastic’ matrices like Pc or Pe, with non-negative elements and
unit column sums, have useful properties that have been extensively studied, especially if
care is exercised in dealing with the zero entries that represent cells that are never visited by
the system (Lancaster 1969). Their best known property is that they possess a unit leading
eigenvalue with a real eigenvector with non-negative entries, which can be interpreted as
a probability distribution over the partition. For Pe, this eigenvector satisfies, q1(t + T) =
Pe(T)q1(t) = q1(t), and defines a probability density that remains invariant as the system
evolves, and which is therefore identical to the natural invariant density, q∞, mentioned
earlier in this section. The subdominant eigenvalues control the approach to q∞ when the
initial distribution is different from the natural one, as well as whether the attractor can be
partitioned into approximately disjoint subsets (Froyland 2005).

As already mentioned, these are examples of global properties that apply to the full
attractor. The same is true of other approximation strategies, such as proper orthogonal
decomposition (POD, Berkooz, Holmes & Lumley 1993) or dynamic-mode decomposition
(Schmid 2010), which use ergodicity to minimise global errors of reduced models but are
of limited use for our purpose. The root of the problem is that neither is the PFO a true
matrix, nor is the probability distribution q a true vector. Neither of them forms a linear
space (e.g. 2q or −q are not probability distributions), and concepts required for most
global optimisation strategies, such as norms or inner products, take a different meaning.
For example, the min–max property of eigenvectors (Courant & Hilbert 1953) that is
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behind some of the global methods mentioned above, is unlikely to survive in the presence
of constraints such as qj ≥ 0. We are more interested in local analyses that use the PFO
as a joint probability distribution to compute state-dependent conditional averages, and to
study the expected short-term behaviour of the system in the neighbourhood of a particular
cell. Our goal is to find whether some cells are more likely than others to form the basis
for better predictions, and are thus ‘more causal’.

The main problem in constructing the PFO is the choice of a partition in which the
two-dimensional histogram (2.3) can be populated with a given set of data. Consider a
system that has been projected onto a subspace of dimension D, each of whose variables
is discretised into nb bins. The D-dimensional bins in the histogram can be indexed as a
vector of length N = nD

b , so that the N × N matrix Q has

nQ = N2 = n2D
b (2.7)

elements. Interpreting (2.3) as a probability density requires that the number of available
‘training’ data be sufficiently larger than (2.7). For example, using O(10) data per
bin results in expected errors in Qij of the order of 1/

√
10 ≈ 30 %. If we assume a

moderate nb ≈ 10, this implies a minimum of nD ≈ 102D+1 data, and limits in practice
the dimension to D � 2, requiring nD � 105 data. Increasing it to D = 3 would increase
the required number of data by a factor of 100, as well as the cost of creating and analysing
them. We will see below that this limit can be relaxed a little because D is the dimension of
the attractor rather than of the phase space, but the attractor of a turbulent flow is unlikely
to have D < 3, and the savings are at most a factor of O(1). Our strategy will thus be to
analyse two-dimensional projections of the phase space, using different combinations of
physically motivated variables, and choose those pairs that produce interesting results.

Note that, although the discretised variables are treated as a single long vector, the
probabilities in Q correspond to the simultaneous occurrence of D independent variables,
allowing us to study effects depending on the coincidence of several ‘causes’ (Pearl 2009).
Although we use D = 2 in this paper, this could in principle be extended to the increasingly
unlikely coincidence of three or more independent causes, but, as mentioned above, this
quickly runs into the limitation of the number of available data.

3. Application to minimal channels

Most of our analysis centres on a data set already used in Jiménez (2015). A
pressure-driven spatially periodic turbulent channel flow is simulated between parallel
plates separated by 2h. The wall-parallel periods of the computational box are Lx = πh/2
and Lz = πh/4, and the nominal friction Reynolds number is h+ = huτ /ν = 950, where
x, y and z are the streamwise, wall-normal and spanwise coordinates, respectively, and
the corresponding velocity components are u, v and w. Capital letters, as in U( y), denote
y-dependent ensemble averages, 〈 〉, and lower-case ones are perturbations with respect to
this average. Primes are reserved for root-mean-squared intensities, and the kinetic energy
of the fluctuations is defined as E = u2 + v2 + w2. The ‘+’ superscript denotes ‘wall’
normalisation with the kinematic viscosity ν, and with the friction velocity uτ = √

ν∂yU.
The code is standard fully dealiased Fourier–Chebyshev spectral, as in Kim, Moin &
Moser (1987), and the mass flux is kept constant. Time is usually normalised with the
eddy turnover time h/uτ , and is then denoted by an asterisk, t∗ = uτ t/h. More details can
be found in Jiménez (2013).

To improve statistics, the simulation was extended in time to t∗ ≈ 650, and sampled at a
time interval between frames,�t∗ ≈ 0.025. Such simulations are minimal within a band of
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Figure 2. The coloured patches are profiles of the cumulative variance of the harmonics retained in this paper.
From bottom to top, and dark to light: [00], [01] + [01∗], [10], [20], [11] + [11∗], [21] + [21∗]. The solid
black line is the total variance of the velocity component. (a) Streamwise velocity. (b) Wall-normal velocity.
(c) Spanwise velocity.

wall distances y/h ≈ 0.2–0.6 (Flores & Jiménez 2010), in the sense that a non-negligible
fraction of the kinetic energy is contained in the first few largest wall-parallel Fourier
modes. Closer to the wall, the flow contains a wider range of energy-containing scales,
and cannot be considered minimal. Farther from it, the simulations cannot be directly
compared with canonical turbulence, because some of the largest scales are missing. The
range of wall distances mentioned above approximately includes a single largest structure
that bursts irregularly. Since it was shown by Flores & Jiménez (2010) that the typical
interval between bursts is t∗ ≈ 2–3, the simulation analysed here contains several hundreds
of bursts per wall, and approximately 100 samples per burst. Moreover, since the box is
too small to allow healthy large scales in the central part of the channel, the two walls are
treated as independent realisations (the cross-correlation coefficient is less than 0.05 for
the variables discussed below). The total number of data snapshots is thus approximately
5 × 104.

If we define Fourier expansions of the three velocity components along x and z as

a(x, y, z) =
∑
m,n

ãmn( y) exp[i(kxx + kzz)], (3.1)

where a is the variable to be expanded, kx = 2πm/Lx and kz = 2πn/Lz. Whenever there
is no ambiguity in the variable being expanded, Fourier coefficients are designated as
[mn]. As mentioned above, only the largest structures at a given distance from the wall
can be expected to be describable by relatively few degrees of freedom whose dynamics
can be easily studied, and our analysis only retains the first few modes, m = 0, 1, 2 and
n = −1, 0, 1. Appendix A explains how modes with n /= 0 are used as combinations
of the ±n pair, resulting in two equivalent modes displaced spanwise by a quarter of
a wavelength. Although spanwise homogeneity ensures that the interactions of these
combinations with the n = 0 modes are statistically equivalent, they interact non-trivially
among themselves, and both combinations are retained. They are designated, for example,
as [21] and [21*]. Profiles of the cumulative variance of all the modes retained in the
paper are given in figure 2. They show that their overall energy is a comparatively small
but non-trivial fraction of the total, and we will see later that they follow fairly independent
dynamics. In addition, the retained modes account for approximately 65 % of the tangential
Reynolds stress, −〈uv〉 (not shown). Note that, because of the small computational box,
there is substantial energy in the [00] modes of u and w, whose only fluctuations are
temporal. They can be considered as approximately modelling the spatial variation of the
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mean velocity profile over wall patches of the order of the size of the computational box.
An example of instantaneous flow field synthesised from the retained modes can be found
in figure 17 in Appendix B.

This limited subset of data still contains a large number of degrees of freedom, because
each Fourier component is a function of y with O(100) grid points. Even if we will see later
that the wall-normal resolution can be reduced to O(10) points through judicious filtering,
the raw degrees of freedom for each velocity component is O(100) complex numbers,
and we mostly restrict ourselves to analysing the behaviour of a few integrated ‘summary
variables’ that represent global properties of the velocity within the chosen band of wall
distances. In particular, if we are interested in the band y ∈ ( y0, y1), we follow Jiménez
(2013, 2015) in using an integrated intensity,

I2
a,mn = 1

y1 − y0

∫ y1

y0

|ã+
mn|2 dy, (3.2)

which stands for the velocity magnitude and, when kx /= 0, an average tilting angle

ψa,mn = − arctan

⎛⎜⎜⎝Im

∫ y1

y0

ã†
mn∂yãmn dy

kx

∫ y1

y0

|ãmn|2 dy

⎞⎟⎟⎠ , (3.3)

where ‘Im’ is the imaginary part, and the dagger stands for complex conjugation. This
angle varies from −π/2 to π/2, and describes the wall-normal structure of the phase of
the Fourier mode.

Several other summary variables were considered, either based on physical arguments
or on standard statistical methods (e.g. individual POD modes), but they did not add
appreciably to the argument or to the conclusions. They are not discussed in the rest of
the paper, except for the use of PODs as a filtering device to balance the wall-parallel and
wall-normal resolutions of the retained flow fields, as explained in Appendix B.

Because the retained harmonics exclude the smallest scales, they can be trusted closer
to the wall than the full flow, and all our results use an integration band y+ > 40 and
y/h ≤ 0.6. Somewhat narrower or wider ranges were tested with little effect on the results.

Not all the summary variables defined in this way are mutually fully independent.
Figure 3 presents their correlation coefficient

Cab = 〈(a − 〈a〉)(b − 〈b〉)〉
〈(a − 〈a〉)2〉1/2 〈(b − 〈b〉)2〉1/2 . (3.4)

Several things stand out. The u and v components form reasonably well-correlated pairs,
particularly among similar summary variables and Fourier modes, but most quantities
involving w are not well correlated with u and v, or among themselves. The correlation
between the intensities of u and v are significant because, even if they involve integrated
quantities rather than the variables themselves, they reflect the generation of the tangential
Reynolds stress, −uv. The higher modes, [11] and [21], tend to be better correlated
among different variables than the lower ones, [10] and [20]. In particular, three
of the highest correlations in figure 3 are C(Iv01, Iw01∗) ≈ 0.70, C(Iu11, Iw11∗) ≈ 0.74
and C(Iv11, Iw11∗) ≈ 0.59, notwithstanding the generally poor correlation between the
summaries of w and those of other velocity components. Interestingly, these correlations
come in [m1,m1∗] pairs, representing flow structures offset from each other by a quarter
of a spanwise wavelength. They correspond to the inclined ‘rollers’ that have often been
described in wall-bounded flows.
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Figure 3. Correlation coefficient among the different summary quantities. Large squares outlined in red
correspond to the three velocity components. Smaller squares outlined in grey are summary variables, and
the smallest cells within each grey square are Fourier modes, in the order [01], [01*], [10], [20], [11], [11*],
[21], [21*], from bottom to top and from left to right. The main diagonal has been blocked for clarity, as well
as the inclinations for modes with kx = 0, which are undefined.

Somewhat surprisingly, angles and intensities are generally uncorrelated, including the
(Iv10, ψv10) pair that was shown by Jiménez (2013, 2015) and Encinar & Jiménez (2020)
to be particularly useful, because its joint probability distribution is traversed by the
flow in a physically interpretable way. This shows that correlations and coherence are
different concepts. As a simple example, the temporal evolutions of sin(t) and cos(t) are
orthogonal and uncorrelated, but they form a coherent pair in the sense that they transverse
a one-dimensional circular sub-manifold of their phase space.

It could be tempting to use as summary variables the eigenvectors of the dominant
eigenvalues of the matrix in figure 3, since they represent combinations of variables that
optimally explain the variance of the data (Berkooz et al. 1993), but they turn out to be
especially bad at describing the dynamics. This can best be understood by looking at the
joint probability density of (Iv10, ψv10) in figure 4(a). It is clear that Iv10 does not explain
ψv10, nor vice versa, which is precisely why the pair can be used to define two-dimensional
causal combinations.

Nevertheless, we have already mentioned that correlation does not imply causation, and
figure 3 can at most be taken as indicative of which variables could be considered as
causally related. We have just discussed reasons why a causal variable pair may not be
correlated. We will see in § 3.2 how the opposite situation allows us to draw conclusions
about the dynamics of specific structures.
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Figure 4. (a) Two-dimensional joint probability distribution, q∞, for the integrated inclination and amplitude
of the [10] mode of the wall-normal velocity component (i.e. kx = 2π/Lx, kz = 0), averaged over y+ > 40 and
y/h < 0.6. The inclination is partitioned in 15 equal bins, and the amplitude in 13 bins. The red contours contain
30 % and 95 % of the probability mass, and only cells within the outer contour are plotted. (b) Binary map of
the non-zero elements of the joint probability Q(T∗ = 0.076) in (2.3), obtained by collating the variables in
(a) into a single vector. Rows and columns with zero sum have been eliminated, and the rest are arranged
in order of decreasing column sum. The diagonal is highlighted in red. (c) The L1-norm Markov test for the
Perron–Frobenius matrices. ——, Pe; – – –, Pc.

3.1. The transfer operator of the minimal channel
We saw at the end of § 2 that the main problem in constructing the PFO for a given
system is the choice of variables to express the underlying partition. Figure 4 presents
results for the minimal channel just described, using as variables the inclination angle
of the wall-normal velocity, ψv10, and its root-mean-squared amplitude, Iv10, whose joint
probability distribution is shown in figure 4(a). Most of the distribution is contained within
the inner probability contour, but the outer fringe is interesting because Jiménez (2015)
showed that its upper edge can be modelled as a linearised burst in which the mean shear
amplifies the velocity perturbations by tilting them forward (Orr 1907; Jiménez 2013).

The construction of the PFO starts by organising the 15 × 13 partition of the parameter
space of figure 4(a) into a single vector of length 195, and constructing the two-time joint
distribution, Q(t, t + T), from all the snapshots in the data sequence. The interval used
in figure 4, T∗ = 0.076, is chosen from the experience in Jiménez (2015) and Encinar &
Jiménez (2020), and is the time taken by the system to traverse an increment �ψ ≈ 0.3
along the upper edge of figure 4(a). It is also the time over which Jiménez (2015) shows
that the flow can be linearly predicted in that region of the phase plane.

Columns and rows of Q that contain only zeros are discarded, and those with non-zero
elements are normalised using (2.4). The reduced Q is shown in figure 4(b), where cells
have been sorted in order of decreasing column sum for graphical purposes. The restriction
of the full P̂e to the on-attractor estimate Pe is done when discarding zeros at this step.

We can now quantify the effect of the limited number of data discussed at the end of
§ 2. The 5 × 104 snapshots used here have to populate the 1382 matrix Pe in figure 4(b),
giving an average of 2.5 phase points per matrix element. In practice, they range from
O(100) data for the better populated matrix elements to zero for elements outside the
attractor. The limitation is not as strict for the smoother distribution in figure 4(a), which
is essentially an eigenvector of the PFO (see § 2). Its dimension is just 138 cells, and each
cell represents O(300–1000) data points. Tests with partitions of the order of 10 × 10 cells
did not qualitatively change the results described below, but attempts to use much finer
partitions ran into problems at the interesting edge of the distribution.
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As a consequence, we restrict ourselves to two-dimensional projections of the phase
space, and explore in § 3.2 which pairs of summary variables give more interesting
results. This is supplemented in § 3.3 by conditionally averaging other variables over these
projection planes, recovering part of the three-dimensional dynamics.

In addition, to ensure that the noise in our results is a consequence of the discrete
partition rather than of an insufficient number of data, the distribution in figure 4(a), and
similar later ones, are only drawn within the probability isocontour containing 95 % of
the total probability mass. Each cell along this contour contains O(100) data snapshots.
The global averages in § 3.2 are also computed within this high-probability region, and the
analysis was repeated with half the number of data, with similar conclusions.

Figure 4(c) tests the non-Markovian behaviour of Pc and Pe discussed in § 2, which
would imply that P(nT) = P(T)n for all n and T . The figure shows the relative Frobenius
norm of the difference between P(nT) and P(T)n for the shortest available time interval,
T∗ = 0.025, which should be the most deterministic case. The relative difference between
uncorrelated stochastic matrices depends on the ratio between the standard deviation
and the mean of individual matrix columns, but is approximately unity for cases such
as those in figure 4. It is clear that the two matrices being tested become essentially
uncorrelated after O(10) time steps, corresponding to one quarter of a turnover time.
Assuming Markovianity therefore modifies the dynamics of the system, and we use P(nT)
as our basic operator from now on.

Figure 5 shows how the PFO can be used to extract the probability distributions of
the causes and effects of a given observation. Figure 5(a) assumes that we know that the
system is within the cell marked with a solid circle at t = 0. The conditional probability
distribution at t = T is given by the corresponding column of the transfer operator, Pe, and
is displayed in the figure in dashed blue contours. Conversely, the conditional probability
distribution of causes at t = −T is the corresponding column of the backwards operator
Pc. It is displayed in solid black lines, and the difference between the two distributions
illustrates the temporal evolution of the system in the clockwise direction of the figure, as
in Jiménez (2015).

The segregation into forward and backward distributions does not hold for all cells.
Figure 5(b) applies the procedure to a cell in the high-probability core of the invariant
density distribution. Its forward and backward distributions are marked as in figure 5(a),
but they overlap each other and are difficult to tell apart.

Figure 5(c) is a representation of this mean displacement for all the cells in the
distribution. The arrows join the centre of each reference cell to the mean position of
its effects after a given time interval. Figure 5(d) does the same for the causes, and both
figures show a mean clockwise displacement of the system along the upper edge of the
distribution (see figure 3(b) in Jiménez 2015, for comparison). In addition to this circular
displacement, the arrows spiral towards the centre of the distribution in figure 5(c), and
outwards in figure 5(d). This tendency increases for longer time intervals, and is due to the
non-Markovian component of the probability evolution.

Any random displacement from the periphery tends to move towards the most probable
locations in the central part of the distribution, and random displacements ending in the
periphery are most likely to come from the core. This is best seen in figure 5(e, f ), which
is computed in the same way as figure 5(c,d) after randomly shuffling the time stamps of
the flow snapshots. In fact, since temporal relations are destroyed by the shuffling, effects
and causes become randomly chosen states of the system and their conditional average
coincides with the overall mean of the invariant distribution. These randomised figures are
independent of the time interval.
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Figure 5. (a) For the variables in figure 4(a), and an interval T∗ = 0.076, the solid black contours are the
probability distribution of possible T-precursors to an observation of the cell marked with a solid circle, and
the dashed blue contours are the distribution of possible effects after T . Contours contain 30 % and 95 % of
the probability mass. (b) As in (a), for an observation in the core of the invariant density distribution. (c) Mean
system displacement in the parameter plane. The coloured background is the invariant density, and the arrows
join the cell taken as cause with the mean system location after time T . (d) As in (c), but the arrows join the
mean location of the systems that will pass through the cell taken as reference, after time T . The red contours
contain 30 % and 95 % of the invariant density. (e, f ) As in (c,d), but using randomised time stamps for the
data.
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3.2. Quality indicators
We have mentioned several times that the main problem in constructing the PFO
is collecting enough data to populate the two-dimensional histogram, Q, making it
unpractical to consider distributions over more than two independent variables. We have
also mentioned that our strategy is to test many possible variable pairs in the hope of
identifying couples whose statistical behaviour is optimal, but the 36 variables used in
figure 3 can be paired into 630 possible ways, and automating the search requires indicators
that are simpler to implement than the visual inspection of the two-dimensional plots in
figure 5. Four such indicators are discussed in this section.

The statistical uncertainty of the displacement vectors is addressed in figure 6(a),
which displays the ratio between the standard deviation of the conditionally averaged
displacement of the system over a given time and its mean. To compensate for the
different magnitudes of the two variables in the figure, which generally have incompatible
units, each of them is normalised with its global standard deviation before computing the
conditional statistics. The result is a measure of the error bars associated with each of the
arrows in figure 5(c).

Having a small relative standard deviation does not guarantee that a quantity is
physically relevant. Inspection of figure 5(c– f ) reveals that deterministic and random
evolutions behave differently with respect to the asymmetry between causes and effects.
The displacement vectors of the causes and effects rotate in the same direction in
figure 5(c,d), because both represent the deterministic evolution of the system. But the
randomised vectors in figure 5(e, f ) point in opposite directions, because they move
from the conditioning cell towards the densest part of the distribution, independently
of the direction of time. As a consequence, we can define a ‘determinacy’ index for an
observation cell v0 as the normalised inner product

Cce(v0, T) = (ve − v0) · (v0 − vc)

‖ve − v0‖‖v0 − vc‖ , (3.5)

where ve − v0 and v0 − vc are, respectively, the conditionally averaged displacement of
effects and causes over the time interval ±T . As in figure 6(a), variables are normalised
with their standard deviation before computing (3.5). This index is an indication of how
deterministic is the evolution of the system in the neighbourhood of v0, and of how
much information is gained by the observation of the variable pair. When the system
is completely deterministic in the subspace being considered, Cce ≈ 1, and when it is
essentially random, Cce ≈ −1. Figure 6(b) displays Cce for the data in figure 5, and shows
that the evolution of this particular Fourier mode is deterministic almost everywhere in
this parameter plane.

Along the upper edge of the distribution, this agrees with the physically based
conclusions of Jiménez (2015), but not along its lower edge, where both Jiménez (2015)
and Encinar & Jiménez (2020) conclude that the average displacement is opposite to
the predictions of the model that explains the upper edge, and that the uncertainty of
the displacements is too large for the means to be trusted. The high uncertainty in this
region is clear in figure 6(a), but figure 6(b) suggests that this part of the distribution
is also deterministic. Part of the reason is the longer time interval used in figure 6(a)
compared with 6(b). The apparent randomness of the evolution increases for longer
intervals, as the non-Markovian behaviour takes over. The determinacy index is almost
unity in figure 6(b), where the displacements are of the order of one distribution cell, but
decreases to Cce ≈ 0.8 when the figure is drawn for the more physically relevant time
interval used in figure 6(a), and decreases further to Cce ≈ 0.5 for the even longer interval
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Figure 6. As in figure 4. (a) Ratio between the averaged displacement of the effects and their standard
deviation. The aspect ratio of the geometry normalises each variable with its overall standard deviation to
compensate for the different units. (b) Determinacy index (3.5) between the average displacement of causes
and effects. Drawn for T∗ = 0.025. (c) Hellinger segregation index (3.6) between the forward and backwards
conditional distributions, as function of the observation cell. (d) Kullback–Leibler information gain (3.8) from
the distributions of the effects and the causes, measured in bits. Warm colours represent creation of information,
and cooler ones represent information loss. All panels refer to the [10] mode of the wall-normal velocity, and
use only cells within the 95 % probability contour of q∞. In all panels, except (b), T∗ = 0.076.

used in Jiménez (2015). Encinar & Jiménez (2020), who use a different method from
the one above, and a different set of data, compute a figure of merit equivalent to the
relative dispersion in figure 6(a). Normalising their time offset with the average distance,
ȳ, from the wall of their filtered fields (Flores & Jiménez 2010; Jiménez 2015), it varies
between uτT/ȳ = 0.048 and 0.19. The resulting standard deviations are negligible for the
shortest of those intervals, but large enough to reverse some of the displacements for the
largest one. When these values are applied to the present case, assuming ȳ ≈ 0.3 for our
integration band, the time interval in figure 6(b) is uτT/ȳ = 0.087, and that in figure 6(a)
is uτT/ȳ = 0.26, explaining the apparent discrepancy between figures 6(a) and 6(b).

Figure 6(c) quantifies the temporal segregation between the conditional probability
distributions of causes and effects in figure 5(a,b). The distance between two normalised
probability distributions q(1) and q(2) can be characterised by the Hellinger norm
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(Nikulin 2001), defined as

H2(q(1), q(2)) = 1
2

∑
j

(√
q(1)j −

√
q(2)j

)2

, (3.6)

which vanishes for q(1) = q(2), and reaches its maximum, H = 1, for disjoint distributions.
In the case of figures 5(a,b) and 6(c), the distance between the conditional distributions
of causes and effects varies from H ≈ 0.9 at the edge of the density distribution, where
they are clearly different, to H ≈ 0.1 at the centre, where past and future are almost
indistinguishable.

The information provided by the indices (3.5) and (3.6) is related but not identical. While
a high value of (3.6) implies that causes and effects are different, a high value of (3.5) also
shows that the directions of the mean drift associated with each of them are similar, and
that the flow of probability can be described as a smooth vector field.

When figure 6(a–c) is considered, together the panels suggest that the top-right and
top-left edges of the probability distribution are populated by systems which evolve in a
fairly deterministic manner, while the lower edge of the distribution, and especially its
central core, are more random.

Finally, figure 6(d) addresses the question of whether this evolution has any effect
in the probability distribution of the variables used in this section; in essence, whether
the effects conditioned to a given cell are more or less organised than its causes. The
Kullback–Leibler information of a distribution q(1), relative to a reference distribution
q(2), is defined as

K(q(1), q(2)) =
∑

j

q(1)j log2(q
(1)
j /q(2)j ), (3.7)

which is measured in bits, is always non-negative and only vanishes when q(1) = q(2).
Intuitively, it describes how much more organised is q(1) compared with q(2). Note that
(3.7) is only finite if the support of q(1) is within the support of q(2), so that K can be
understood as a measure of how much information is gained by restricting q(2) to one
of its subsets. Here, we will always use as reference the invariant distribution q∞, so
that K is guaranteed to exist both for the distribution qc of the conditional causes and
for the distribution qe of the effects. This choice also implies that a distribution with
K = 0 is statistically indistinguishable from q∞, and represents an unconstrained set of
phase points. The assumption that the system is restricted to a single cell at t = 0 almost
guarantees that information is lost when this concentrated distribution is allowed to spread
in the past or in the future, but the information contained in the two distributions cannot be
compared directly, because they do not generically share a common support. Figure 6(d)
displays the difference

Kce = K(qe, q∞)− K(qc, q∞), (3.8)

between the information of conditional effects and of conditional causes with respect to
the reference. It is positive along the left (growth) edge of the distribution, and negative
along the right (decay) edge, suggesting that coherence is first created and later destroyed
as the system drifts clockwise. Because the system is stationary, the two effects cancel,
and the mean generation of information vanishes.

The real power of the four indicators just described is in the large-scale screening of less
obvious variable pairs. Figure 7 displays the value of the determinacy (3.5) and segregation
(3.6) indices for all the combinations of modal inclination and intensity of the three

968 A10-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

51
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.515


J. Jiménez

01

0
1

01∗

0
1

∗

10

1
0

20

2
0

11

1
1

11∗

1
1

∗

21

2
1

21∗

2
1

∗

01

0
1

01∗

0
1

∗

10

1
0

20

2
0

11

1
1

11∗

1
1

∗

21

2
1

21∗

2
1

∗

01

0
1

01∗

0
1

∗

10

1
0

20
2
0

11

1
1

11∗

1
1

∗

21

2
1

21∗

2
1

∗

01

0
1

01∗

0
1

∗

10

1
0

20

2
0

11

1
1

11∗

1
1

∗

21

2
1

21∗

2
1

∗

01

0
1

01∗

0
1

∗

10

1
0

20

2
0

11

1
1

11∗

1
1

∗

21

2
1

21∗

2
1

∗

01

0
1

01∗

0
1

∗

10

1
0

20

2
0

11

1
1

11∗

1
1

∗

21

2
1

21∗

2
1

∗

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

01

0
1

01∗

0
1

∗

10

1
0

20

2
0

11

1
1

11∗

1
1

∗

21

2
1

21∗

2
1

∗

01

0
1

01∗

0
1

∗

10

1
0

20

2
0

11

1
1

11∗

1
1

∗

21

2
1

21∗

2
1

∗

01

0
1

01∗

0
1

∗

10

1
0

20

2
0

11

1
1

11∗

1
1

∗

21

2
1

21∗

2
1

∗

01

0
1

01∗

0
1

∗

10

1
0

20

2
0

11

1
1

11∗

1
1

∗

21

2
1

21∗

2
1

∗

01

0
1

01∗

0
1

∗

10

1
0

20

2
0

11

1
1

11∗

1
1

∗

21

2
1

21∗

2
1

∗

01

0
1

01∗

0
1

∗

10

1
0

20

2
0

11

1
1

11∗

1
1

∗

21
2
1

21∗

2
1

∗

ψu Iu ψv
Iv ψw Iw

ψu

Iu

ψv

Iv

ψw

Iw

ψu Iu ψv
Iv ψw Iw

ψu

Iu

ψv

Iv

ψw

Iw

0

0.05

0.10

0.15

(a)

(b)

Figure 7. As in figure 3. (a) Determinacy index (3.5), averaged over the invariant distribution for different
combinations of modal inclination and intensity. (b) Segregation index (3.6). The main diagonal and the
inclinations of the kx = 0 modes are blocked in magenta in both cases.
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Figure 8. As in figures 5 and 6, for the roller variables, (Iv11, Iw11∗). (a) Quiver plot of the effects, as in
figure 5(c), T∗ = 0.076. (b) Determinacy index (3.5), as in figure 6(b), T∗ = 0.025. (c) Kullback–Leibler
information gain (3.8), as in figure 6(d), T∗ = 0.076.

velocity components, averaged over the corresponding distributions. Not surprisingly, the
most deterministic combinations are those involving the inclination and intensity of the
same Fourier mode, but it is interesting that v10, which was the mode selected on physical
grounds in Jiménez (2015), is also the most deterministic by a substantial margin. Slightly
less deterministic is v20, which is a harmonic of v10 for which the same theory applies.
The meandering modes, v11, v21, u11, u21, are less organised but not fully incoherent.
The spanwise velocity is not well described by an inclination and an intensity, but an
interesting pair is (Iv11, Iw11∗) or (Iv11∗, Iw11), which was already identified as an inclined
roller from the correlations in figure 3. Its appearance in the two indicators in figure 7
shows that this roller has its own causal dynamics, and that the same is true for the second
harmonic, (Iv21, Iw21∗). Interestingly, the streamwise-uniform roller (Iv01, Iw01∗) does not
appear in figure 7, even if it is one of strongest pairings in the correlations in figure 3, and
one of the largest contributors to the fluctuation energies in figure 2. Such two-dimensional
streamwise structures do not interact with the shear and, even if they grow to be strong,
have little own dynamics.

Figure 8 displays the drift diagram and two quality indicators for the (Iv11, Iw11∗) roller.
The two variables are relatively well correlated, probably by continuity, but the distribution
rotates counter-clockwise. This implies that the roller is first created as an ejection (or
sweep) of the wall-normal velocity, and later spreads spanwise. Figure 8(c) shows that, as
in figure 6(d), coherence is created when the structure strengthens, and destroyed when it
weakens.

3.3. Conditional averages
The analysis in the previous sections reveals which variable pairs evolve in a deterministic
way, but says little about the associated flow fields. A first step in that direction is
figure 9, which displays the averages of other flow variables conditioned to the basic
(ψv10, Iv10) pair. Most conditional averages provide relatively little information. They are
either distributed almost uniformly over the invariant probability distribution, or track the
evolution of the base variables, saying little more than that strong structures are strong in
most variables. A few are more interesting.

Figure 9(a) shows that the streamwise velocity becomes more non-uniform in the
streamwise direction (u10) as the wall-normal velocity bursts. It follows from the choice of
conditioning variables that this is also true for the wall-normal velocity, but is not true for
the spanwise component (not shown). The coupling of u10 and v10 is required by continuity,
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Figure 9. (a–c) Average intensity of different velocity modes, conditioned to the variable pair (ψv10, Iv10):

(a) u10, (b) all modes of u with kz /= 0, (c)
√
v2

11 + w2
11. (d–f ) Conditioned to (Iv11, Iw11∗): (d) u11, (e) u10,

( f ) all modes of u with kz /= 0. (g–i) Conditional tangential Reynolds stress, θ : (g) all the retained harmonics,
(h) θ10, (i) all harmonics with kz /= 0.

and the two variables are part of the two-dimensional burst described in Orr (1907) and
Jiménez (2013). However, self-sustaining turbulence requires three-dimensionality, and
this is provided by the kz /= 0 modes in figure 9(b). This figure displays the sum of all the
modes of u that form a possibly non-uniform streak. They grow along the decay leg of the
burst, and are therefore probably consequences, rather than precursors of the burst. It can
be shown that most of the growth in figure 9(b) is due to the [01] mode, which measures the
intensity of a streamwise-uniform streak, and is also responsible for most of the asymmetry
of the figure along the ψ axis. The higher modes, [11] and [21], only grow weakly, and
do so along the ascending leg of the burst. On the other hand, the cross-flow (v,w) roller
grows along the descending branch, as shown in figure 9(c) for the [11] harmonic. This is
also true for the [01] streamwise roller, which has similar intensity, but much less for the
[21] mode, which is weaker and less coherent. In all these cases, the two signs of kz are
grouped in the figure.

When the intensity of the x-dependent modes is substituted by a non-uniformity index

Ωa,mn = Ia,mn/Ia,0n, (3.9)
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figure 9 changes somewhat. The growth of the roller in figure 9(c) is transferred to the
bottom of the distribution. Its non-uniformity begins with w11 in the descending leg
of the burst, and moves to u11 and v11 along its left-going bottom edge. This wavy
quasi-streamwise roller is very weak in that region, but also very non-uniform, and it
is tempting to conclude that its waviness is part of what eventually triggers a subsequent
burst.

Figure 9(d– f ) shows conditional averages in the plane of the (Iv11, Iw11∗) meandering
roller. Figure 9(d) is equivalent to figure 9(a), and confirms that the roller is a
three-dimensional structure in which the streamwise velocity increases as v11 and w11∗
do. The effect is much stronger for u11 than for u11∗, showing that the active streamwise
velocity is collocated with the wall-normal component, v11, rather than with w11∗. The
three-dimensionality extends to other harmonics, and figure 9(e) shows that one effect
is to enhance the streamwise non-uniformity of the spanwise-uniform component u10.
This figure is dual to figure 9(a), and suggests that the intensification of the roller takes
place along the upper edge of the (ψv10, Iv10) burst, although where exactly cannot be
decided from this representation. For example, the conditional Iv10, which would be a
direct indicator of the position along the (ψv10, Iv10) burst, does not produce a clear signal
in the (Iv11, Iw11∗) plane. Figure 9( f ) shows the conditional kz /= 0 component of u, which
is the same quantity in figure 9(b), and gives more information. Figure 9(b) shows that
the streak of u grows along the descending leg of the clockwise evolution of (ψv10, Iv10),
while figure 9( f ) shows that it grows along the ascending leg of the counter-clockwise
evolution of (Iv11, Iw11∗). Both legs therefore presumably correspond to the same stage of
the flow, in agreement with the location in figure 9(c) of the high roller intensity.

Also interesting is figure 9(g–i), which shows the conditional tangential Reynolds stress,
θmn = −Re(ũmnṽ

†
mn), integrated as in (3.2). Although the quantity in the equations of

motion is ∂yθ , rather than θ itself, a positive stress tends to make the mean velocity profile
more turbulent, steeper near the wall, and negative ones tend to lower the wall shear.
Figure 9(g) displays the conditional Reynolds stress due to all the retained harmonics,
which we saw in § 3 to account for approximately two thirds of the total flow stress. It is
positive everywhere, and stronger in the upper edge of the distribution, where other flow
features are also strong. It is also asymmetric in the (ψv10, Iv10) plane, stronger during the
growth of the burst than along its decay. The reason is shown in figure 9(h), which displays
the stress due to the Orr (1907) harmonic, θ10. It is almost antisymmetric in ψv10, positive
during the growth of the burst and negative during its decay. This is what makes the burst
transient, since its decay undoes the effect of the growth. The [10] mode is the only one
that generates counter-gradient stresses. Figure 9(i) displays the tangential stresses from
all the other modes. They are positive everywhere, and the net effect of the burst, although
transient in itself, is to generate a three-dimensional structure along its decay leg.

Although not shown in the figure, it is interesting that, when θ10 is conditioned to
the (Iv11, Iw11∗) plane, it is also negative in the uppermost tip of the roller distribution,
confirming our previous conclusion that strong rollers correspond to the burst decay.

In a loose sense, both the down-going right-hand edge of the probability distribution in
figure 9(a–c) and the up-going right-hand edge of figure 9(d– f ), portray the evolution of
a non-uniform u-streak into a (v,w) roller. In the top row of figure 9 we see the decay of
the streak, and in the middle one we see the growth of the roller. The comparison of the
conditioned variables in both sets of figures suggests that the coherent right-hand edge of
the evolution of the roller corresponds to the decay of the burst, so that the approach to the
lower-right vertex of the triangle in figure 9(a–c) corresponds to the top of the distribution
in figure 9(d– f ). In this interpretation, the low-intensity evolution of the burst along the
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bottom edge of the distribution in figure 9(a–c) should correspond to the decay of the
roller along the left edge of the distribution in figure 9(d– f ). This phase of the burst will
be examined in more detail in the next section.

4. Conditional trajectories

It may be useful at this point to recall that the maps in figures such as 9 are not the PFO, but
its leading eigenvector rearranged as a two-dimensional matrix for human convenience.
The operator itself is the larger matrix in figure 4(b), or a stack of such matrices at
different time intervals. The maps in figure 9 are probability distributions of the state of
the flow in phase space, and the delta-function distribution used to generate figure 5(a,b)
represents a measurement that particularises that probability to a combination of variables
describing a given flow configuration. For the rest of the paper we will study these
collapsed probabilities, and the statistical properties of the trajectories connecting two
or more such states. The PFO then becomes mostly a guide to which cells can be expected
to provide the most interesting information, and to how the trajectories connecting them
should be chosen.

For example, consider the statistical characterisation of trajectories that satisfy
conditions at two different times, such as in the recurrence test in which approximate
periodic behaviour is identified by monitoring when a trajectory approaches itself after
a given delay (Kawahara, Uhlmann & van Veen 2012). The statistical equivalent is
whether the conditional probability distribution of the effects of a given cell includes
the conditioning cell after some delay. In practice, this reduces to identifying among the
diagonal of the matrix Pe(T) those cells that result in maximum probability of recurrence
for each time delay. An example is figure 10(a), which plots the maximum of the diagonal
of the PFO for the (ψv10, Iv10) plane. It is unity at T = 0, when trajectories are still at
their initial position, and quickly decays to approximately 0.05, which is the probability
that a random trajectory intersects some cell in the core of the invariant distribution q∞.
However, the curve peaks again at T∗ = 0.66, and, interestingly, at twice that delay, T∗ =
1.35. Moreover, since the PFO contains information about all the cells in the distribution,
it allows us to recover which conditioning cell is responsible for the probability maximum,
and therefore which cell has the highest probability of recurring. This is marked as ‘B’
(for burst) in figure 10(b), and turns out to be an extreme high-amplitude event beyond the
95 % threshold used up to now as the practical edge of our distribution. In the trajectories
discussed in this section, closed symbols mark the position at t = 0, and the open triangles
along some trajectories are equispaced by �t∗ = 0.025.

Two other cells are labelled in figure 10(b), marking the right- (‘R’) and left-hand (‘L’)
corners of the triangular distribution. We will maintain this nomenclature for the rest of
the section, with some adjustments in the location of the cells. Trajectories spanning the
up-going (L → B), down-going (B → R) and bottom (R → L) legs of the periphery of
the triangle will be denoted as growth, decay and recovery trajectories, respectively. The
growth and decay legs form the burst (Jiménez 2013). The upper half of these two legs is
deterministic, and can be predicted linearly (Jiménez 2015), but linearised bursts do not
recur. There is no obvious theory for the bottom recovery leg, which is required if bursting
is to explain self-sustaining turbulence. Most of this section is dedicated to analysing the
recovery process.

Out of our 5 × 104 snapshots, only eight trajectories cross the extreme B in figure 10.
Most of them do not recur, and the line of open black triangles in figure 10(b) traces the
average conditional trajectory during the recurrence period. As is true for most trajectories,
it approaches the high-probability core of the distribution. However, individual trajectories
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Figure 10. (a) Recurrence test for trajectories in the (ψv10, Iv10) plane. See text for explanation. (b) Black
symbols are the mean trajectory passing through the most probable recurrent cell, for the period marked by the
dark circle in (a). The red symbols are the only recurrent orbit crossing that cell, which is thus responsible for
the local maximum in (a). (c) As in (b), in the (Iv11, Iw11∗) plane of the meandering roller. (d) As in (b) but all
the non-recurrent trajectories are plotted as simple lines, each one starting with a solid circle.

can be tested, and the line of red triangles in figure 10(b) shows the trajectory responsible
for the peak in figure 10(a). Centring ourselves on this orbit, its growth, decay and recovery
legs last approximately T∗ = 0.25, 0.25 and 0.16, respectively, for a total recurrence time
T∗ ≈ 0.66, as in figure 10(a). The total length of its two bursting legs, T∗ ≈ 0.5, also
agrees with the width of the bursting correlations for this flow in Jiménez (2015).

Although the recurrent trajectory very approximately closes on itself in the plane of
figure 10(b), its recurrence is weaker when more variables are included. For example,
figure 10(c) plots the same trajectories in the plane of the (Iv11, Iw11∗) roller. As before,
the recurring trajectory is displayed as red triangles. It loiters for a while near the
high-probability core of the (Iv11, Iw11∗) distribution, and joins the counter-clockwise
coherent circulation during the growth period of the (ψv10, Iv10) burst. The black triangles
of the mean trajectory are again very different from the recurrent one, and never join the
coherent circulation.

However, the divergence between the recurrent trajectory and the other trajectories that
cross B is mostly a long-time phenomenon. This can be seen in figure 10(d), which is
equivalent to figure 10(b) but plots all the individual trajectories going through B. The
recurrent orbit is still plotted with open red triangles, while other trajectories are plotted
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Figure 11. Probability distributions of the causes and effects for several delay intervals, as in figure 5(a,b).
(a) Effects conditioned to the cell marked as R in the lower right-hand corner of the invariant density
distribution. From blue to yellow, T∗ = 0.025(0.025)0.15. (b) As in (a), for the causes leading to the cell
marked as L in the lower left-hand corner.

as lines of different colours without symbols, in no particular order. All the trajectories
in the figure start from the same cell and behave similarly for a while. It is only after
they have decayed to approximately half their initial Iv10 that they deviate towards the
high-probability core. A similar plot in the (Iv11, Iw11∗) plane, not shown, shows the same
trends, although slightly more complicated because trajectories do not start in the same
cell any more. The recurrent orbit is special in that it starts with a relatively weak and
decaying roller, which only strengthens towards the end of the orbit. This is probably the
reason why its (ψv10, Iv10) projection is able to proceed undisturbed for a relatively long
time.

That the approximately recurrent orbit includes an infrequent extreme event suggests
that it may not be very relevant to the flow statistics, or even to its evolution. Its interest
resides in that it includes a recovery leg that traverses the lower edge of the parameter space
in the ‘wrong’ direction, showing that coherent recovery connections exist, and suggesting
how to study them. The question is whether other trajectories exist that cross the lower
edge of the distribution in the same direction, even if they do not follow the recurrent orbit
around the full (ψv10, Iv10) plane.

Figures 11 and 12 address this question. Figure 11(a,b) is equivalent to the cause and
effect distributions in figure 5(a), but applied to the R and L corner cells for several values
of the delay interval. Even if we saw in figure 6(a) that the lower edge of the distribution
is a region of large scatter for the system drift, figure 11(a) shows that the flow propagates
steadily from R towards L as the delay increases, and that it only spills slowly into the
high-probability core of the distribution. The same is true for the causes of cell L in
figure 11(b). When similar plots are drawn for a cell in the central part of the lower edge
of the distribution, the drift is slower and the scatter higher (not shown), suggesting that
the propagation in figure 11(a,b) can be interpreted as a direct connection between R and
L that bypasses some of the intermediate states of the probability distribution.

This is further analysed in figure 12(a–c). Each of these panels represents a leg of the
burst that traverse the periphery of the distribution in the (ψv10, Iv10) plane. For example,
figure 12(a) represents the growing leg, from the cell marked as L to the one marked as B
(note that the latter has been chosen substantially lower than in figure 10, to bring it within
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Figure 12. (a–c) Grey lines are the phase trajectories that cross a causal cell at t = 0. Blue ones are those that
also cross the effect cell within a given range of time intervals. (a) Growth leg of the burst, from L → B in
T∗ = 0.2–0.3. (b) Decay from B → R in T∗ = 0.2–0.3. (c) Recovery leg from R → L in T∗ = 0.15–0.175.
(d– f ) Averaged evolution of the flow along the blue trajectories in (a–c), respectively, reconstructed from the
retained harmonics. Flow is from bottom left to top right, and time increases from top to bottom. Translucent
orange isosurface, u+ = 0.7; translucent grey, u+ = −0.7; cyan, v+ = 0.4; purple, v+ = −0.4. Panels (d–e)
show t∗ = 0.075(0.05)0.225. Panel ( f ) shows t∗ = 0(0.05)0.15, and v+ = ±0.3.
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the 95 % probability contour). It takes the system T∗ ≈ 0.25 to move from one to the
other, and the grey lines are the O(500) trajectories that pass through L at t = 0. Of these,
only the six trajectories drawn in blue also pass through B in the interval T∗ = 0.2–0.3.
Figure 12(b,c) is similarly drawn for the decay and recovery legs of the burst, respectively.
The trajectories in these three legs are not continuations of each other. For example, there
is a single trajectory linking cells L, B and R, in that order, three trajectories linking R, L
and B and no trajectory linking B, R and L. The only trajectory approximating a full cycle
in this plane is the one in figure 10.

This lack of continuity is a direct consequence of the non-Markovian behaviour
discussed in § 2 and in figure 4(c). Cell R is not the initial condition for cell L, or for the
recovery leg, but only the projection onto the (ψv10, Iv10) plane of many initial conditions,
most of which will not fully follow that leg or continue into the growth one. In moving from
probabilities based on one cell to two-point trajectories, we have in essence abandoned the
two-dimensional PFO for a higher-dimensional version based on the state of the system
at two points in time. In a different interpretation, we have moved from a Markovian
probabilistic predictor to a more complex dynamics.

Figure 12(d– f ) displays the mean evolution of the flow field, reconstructed from the
retained harmonics along the blue trajectories in figure 12(a–c), respectively, with time
increasing from top to bottom. Because the problem is homogeneous in x and z, the flow
in the different trajectories has to be aligned to a common origin before averaging. This
is done at t = 0 by translating each case so that the deepest low-speed perturbation of the
streamwise velocity is located at the centre of the display box. To facilitate visual tracking,
the frame of reference is then advected with a velocity U+

ad = 8, which keeps the structures
approximately stationary near the wall.

The forward tilting of the v-structures by the shear is clear in the growth and decay legs
of the burst (figure 12d,e). The recovery leg in figure 12( f ) is harder to interpret, in part
because everything is much weaker than in the other two cases, but the clearest difference
is that, while the growth and decay are dominated by high-streamwise-velocity structures
near the wall, the high-speed regions of the recovery leg are predominantly farther into
the flow. The near-wall layer only contains a weak discontinuous low-speed streak. Since
the structures in figure 12(d– f ) are defined with respect to a long-term-averaged velocity
profile, this difference in organisation implies that the box-averaged instantaneous velocity
profile differs among legs.

This is confirmed in figure 13(a,b), which shows that the burst is characterised by high
velocities and steep profiles near the wall. Figure 13(c) shows that the recovery takes place
in regions where the velocity is lower near the wall, and the shear is displaced away from
it. The flow enters the recovery leg with a steep velocity gradient at y/h ≈ 0.2, which
decays as the recovery proceeds (red to blue). Figure 13(d– f ) shows the evolution of the
fluctuation energy at the same times. During the burst, in figure 13(d,e), the fluctuations
stay relatively close to the wall ( y/h ≈ 0.12), and the energy peak extends all the way to it.
During the recovery leg, in figure 13( f ), a new peak grows at the location of the detached
shear layer ( y/h ≈ 0.22), and forms a new secondary peak at the wall.

Note that the streamwise velocity perturbations in most panels of figure 12(d– f ) are
short and discontinuous, in agreement with the recent evidence in Jiménez (2022) that
long streaks are not directly linked to the regeneration cycle of wall turbulence.

The conclusion that the recovery of the burst depends on a low-shear region near the
wall is inconsistent with the intuitive notion that, since the shear is the ultimate source
of turbulent energy, a higher shear should be a prerequisite for higher turbulent activity.
Indeed, it has been known for some time that turbulent intensity and shear are correlated
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Figure 13. Box-averaged velocity profiles, for the trajectories marked in blue in figure 12. (a–c) Mean velocity,
ũ00. (d– f ) Kinetic energy of the retained harmonics. (a,d) Growth leg. (b,e) Decay leg. (c, f ) Recovery. Time
increases from red to blue, separated by t∗ = 0.025 among curves.

(Marusic, Mathis & Hutchins 2010; Jiménez 2012; Mathis et al. 2013), but the implied
model is usually that the turbulence intensity evolves to be in equilibrium with the shear.
Our discussion suggests that the causality is the other way around (figure 9), and that the
shear is created by the Reynolds stresses of the fluctuations. In fact, since the mass flux in
our channels is constant, a low shear near the wall implies a higher one further up. What
our previous discussion suggests is that the decay of a burst induces a mild shear at the
wall, which in turn steepens the velocity profile away from it. The steep off-wall profile is
what triggers the new burst, which is the blue/magenta structure growing away from the
wall in the downstream part of figure 12( f ). Flores & Jiménez (2010) showed that stress
waves travel to and from the wall in small-box simulations such as the present one, with
a wall-normal velocity of the order of uτ . It is difficult to decide from such kinematic
observations which of the two directions is the primary causal one, but the discussion
above suggests that at least the descending wave is causal, in agreement with previous
reports that the structure of the logarithmic layer in wall-bounded flows is relatively
independent from the details of the wall, which is therefore not the primary, or at least not
the only, seat of causality (Townsend 1976; Mizuno & Jiménez 2013; Kwon & Jiménez
2021).

5. An interventional experiment

The analysis in the previous sections gives strong hints about which variables evolve
coherently in wall-bounded flows, and about how this evolution can be interpreted in terms
of causality within the attractor in phase space. However, the second question posed in the
introduction, whether this information has any practical value, generally takes us outside
the attractor, and can only be answered by more classical interventional experiments or by
theoretical models. Strictly speaking, this is beyond the scope of the present paper, whose
goal is to develop a methodology and to give examples of how it can be used to motivate
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more classical work, but we present in this section an example of how that work might
proceed, building on our discussion of figure 12.

The main result of that discussion is that a particular, weakly sheared, configuration of
the mean velocity profile is a requirement for burst recovery. This is not a new idea: what
is probably the oldest theory of how wall turbulence is controlled is based on the two-way
interaction between shear and turbulence intensity (Malkus 1956). It is also known that
forcing a locally steeper or shallower velocity profile leads to equilibrium intensities that
correlate with the local shear (Tuerke & Jiménez 2013), and many low-order models of
the turbulence cycle include a variable that stands for the mean velocity profile (Waleffe
1997).

However, the original linear version of the Malkus (1956) model was disproved by
Reynolds & Tiederman (1967), who found no trace of the marginal instability of the
velocity profile that that model assumes for turbulent channels, and the analysis in
Waleffe (1997), although highly suggestive because the effect of a strong wall shear is
to inhibit the instability of the streaks, only applies to permanent travelling waves in
marginally turbulent low Reynolds number flows. Similarly, Tuerke & Jiménez (2013) refer
to long-term flow averages, and it is unclear whether these are relevant to the short-term
behaviour of an intermittent bursting cycle. The hypothesis to be tested is whether a
feedback cycle involving the modification of the mean profile by the turbulent fluctuations,
and the control of the latter by the former, can explain at least part of the mechanism that
sets the frequency and amplitude of the bursts.

We do this by smoothing the evolution equation that links the fluctuations to the
mean profile, defined as the deviation from the long-term mean velocity profile of the
(x, z)-averaged streamwise velocity fluctuation, ũ00( y). In a regular channel it satisfies

∂tũ00 = R − P + ν∂yyũ00, (5.1)

where R = −∂y(ũv)00 is the instantaneous mean Reynolds-stress gradient, and the
pressure gradient P is determined by the ancillary flux-conservation condition∫ 2h

0
ũ00 dy = 0. (5.2)

In our experiment, we substitute (5.1) by

∂tũ00 = Q − P + ν∂yyũ00, (5.3)

where
∂tQ = (R − Q)/τ, (5.4)

which, after a transient in which the effect of the initial conditions decays exponentially,
is solved by

Q( y, t) = τ−1
∫ t

0
exp[(ξ − t)/τ ] R( y, ξ) dξ. (5.5)

The modified right-hand side, Q, is therefore a smoothed version of R, with a smoothing
time τ . The integral of R or Q across the channel can be considered as a body force that
must be compensated by the pressure gradient, but it is easy to see from its expression that∫

R dy = 0 for impermeable walls, and that the same holds for Q after the initial transient.
Figure 14 shows some results from the experiment, using a smoothing time, τ ∗ = 2.27,

of the order of the expected bursting period (Flores & Jiménez 2010). Figure 14(a)
shows the history of the friction Reynolds number for the natural and modified channels.
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Figure 14. (a) Instantaneous friction velocity of the temporally smoothed and natural experiments, (5.1)–(5.4).
(b) As in (a), for the box-averaged fluctuating kinetic energy, E = u′2 + v′2 + w′2, measured with respect to
its long-time average. (c) Mean velocity profiles. (d) Mean kinetic energy. In all cases: blue, natural channel;
red, τ ∗ = 2.27. (e–h) Temporal evolution of the mean profiles as functions of time. (e, f ) Mean streamwise
velocity fluctuation, with respect to its long-time average. (g,h) Kinetic energy. (e,g) Natural channel.
( f,h) Case τ ∗ = 2.27.

It only increases slightly for the smoothed case, from 〈h〉+ = 950 to 975, although its
temporal oscillations become much slower. More interesting is figure 14(b), which shows
the oscillations of the box-averaged kinetic energy. They are somewhat deeper for the
smoothed case, and substantially less frequent and more regular. An approximate count,
using a method explained below, gives �t∗ ≈ 3.9 for the mean distance between bursts
in the natural case, and �t∗ ≈ 5.2 in the smoothed one. Both are longer than in Flores &
Jiménez (2010), who find�t∗ ≈ 2 from the temporal spectrum of the integrated Reynolds
stress, probably because their method is sensitive to weaker oscillations than the present
one.

The effect on the integrated velocity profiles is slight. Figure 14(c) shows the mean
velocity, and reveals that the main effect is to decrease the wake component above
y/h ≈ 0.3, but this is also the height at which this channel begins to be constrained
by the numerical box, and where the profile in any case deviates from the natural one.
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Figure 14(d) shows that the fluctuations of the kinetic energy are also slightly higher, as
expected from figure 14(b).

Figure 14(e–h) shows the temporal evolution of the profiles, and give more information.
Figure 14(e, f ) shows the deviation, ũ00, of the mean velocity profile with respect to its
long-time average. Each vertical section of these images is an instantaneous box-averaged
profile. Blue regions are slower that usual, and yellow ones are faster. They should
be compared with the instantaneous profiles in figure 13(a–c), although the flows in
figure 14 are not filtered or conditioned in any way. Figure 14(e,g) is the natural flow, and
figure 14( f,h) is temporally smoothed. The white dashed vertical lines in figure 14(e–h)
mark the time of the bursts of the kinetic energy, whose evolution is represented in
figure 14(g,h). To detect them, the kinetic energy is integrated in y/h ∈ (0, 0.4), and bursts
are defined as intervals where the integrated energy rises above the level isolating the top
15 % of the time.

The most interesting differences are those between the mean velocities in figures 14(e)
and 14( f ). The evolution in the natural case in figure 14(e) is clearly more complex than
the temporally smoothed case in figure 14( f ), and there is no clear correlation between
the mean velocity and the position of the bursts marked by the dashed white lines. The
opposite is true for the smoothed case in figure 14( f ), in which the mean profile rises and
falls in a series of diagonal waves, and the lines marking the bursts correspond, even to the
naked eye, to low-velocity intervals marked by bluish areas near the wall. The inclined red
line in the four panels of the figure mark the friction velocity, dy/dt = uτ , which is known
to be the vertical advection velocity of strong Reynolds-stress structures (Flores & Jiménez
2010; Lozano-Durán & Jiménez 2014). This agrees with the inclination of the rising and
falling patterns in the energy evolution maps in figure 14(g,h). It also approximately
describes the vertical advection velocity of the fine structure of the velocity profiles
in figure 14(e), most probably because the mean profile is controlled by the Reynolds
stress through (5.1). On the other hand, this influence is broken in figure 14( f ), where
the Reynolds stresses only acts indirectly on the mean profile because of the smoothing
effect of (5.4), and the vertical advection is much slower. This strongly suggests that any
correlation between figures 14( f ) and 14(h) reflects a causal effect of the mean velocity on
the burst, rather than the other way around.

This is directly tested in figure 15, which shows the conditionally averaged temporal
evolution of different quantities obtained by centring them on the time of all the detected
energy bursts. Figure 15(a) shows the conditional evolution of the mean profile, and
clearly shows the low-velocity period preceding the burst, which is later substituted by
a steeper wall profile created by the Reynolds stress of the burst, shown in figure 15(b).
The conditional Reynolds stress is displayed in figure 15(c), which shows that it is a local
effect due to the burst itself. An attempt to repeat this process for the natural flow in
figure 15(e,g) fails, no doubt in part because the more complex structure of the flow field
makes the identification of the bursts harder. In fact, even the conditioning of the burst on
the burst position, as in figure 15(b), fails in that case. The experiment was repeated for
smoothing times of the order of two or four bursting periods, with comparable results.

6. Conclusions

This paper can be divided in two parts. In the first one, up to § 3, we adapt the PFO
of dynamical-system theory to the probabilistic description of the evolution over a
phase-space partition of a turbulent channel flow. We show that the main difficulty for
doing so is collecting enough data to populate the operator matrix, and we bypass it
by restricting ourselves to two-dimensional projections of the phase space. This leads

968 A10-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

51
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.515


A Perron–Frobenius analysis of wall-bounded turbulence

–1 0 1

–0.02

0

0.02

–1 0 1
0

2

4

–1 0 1

0

0.5

0

0.5

0

0.5

0

0.5

1.0

1.5

y/h

y/h

y/h

t∗

(a)

(b)

(c)

Figure 15. Time evolution of the (x, z)-averaged profiles conditioned to the bursts of the kinetic energy in the
smoothed experiment. (a) Mean streamwise velocity fluctuation, as in figure 14( f ). (b) Kinetic energy. This is
the conditioning field. (c) Tangential Reynolds stress, −(ũv)+00.

to the question of how to choose the best pair of variables, and forces us to develop
simple indicators of the quality of a particular representation. Several such indicators are
developed, and shown to be interpretable in terms of causality and coherence within the
attractor. It is argued that this last restriction allows us to draw conclusions about causality
and information flux from flow histories, without the need for interventional experiments.

In particular, we show that we can use these indicators to distinguish between correlation
and coherence, and to separate, for example, relatively weak structures that have their own
dynamics, such as wavy rollers and streaks, from stronger and more correlated ones that
have no dynamics of their own, such as streamwise-uniform streaks and rollers.

We show in § 3.2 how the indicators allow us to differentiate less promising variable
pairs from those more likely to be useful in developing coherent physical models. Out of
630 possibilities, two promising pairs are found for the case analysed here. The first one
is the intensity and inclination of the wall-normal velocity, which was already used by
Jiménez (2015) to represent an approximately linear Orr (1907) burst, and the second is a
more novel inclined wavy vortex.

The rest of the paper applies the techniques derived in the first sections to analyse the
Orr (1907) burst, with emphasis on the poorly understood recovery process by which bursts
are re-initiated after they decay. As was the case with previous attempts to use massive
searches to choose among different analysis possibilities (e.g. Jiménez 2018b, 2020), the
present one mostly suggests mechanisms that have to be confirmed by more classical
means, mainly because of the original limitation to on-attractor dynamics. In this case,
the PFO guides us in the choice of phase-space trajectories that connect interesting flow
configurations within a known range of time intervals, including trajectories describing
the recovery process, in what we note is equivalent to extending the PFO to higher
dimensions. At least in our relatively small computational box, conditional averaging
over these connections shows, somewhat counter-intuitively, that the key ingredient for
regeneration is the development of a low-shear region near the wall. New bursts are seeded
from a detached shear layer overlying it. Their Reynolds stress returns the shear to the wall,

968 A10-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

51
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.515


J. Jiménez

and no new burst is possible until the decay of the old one again detaches the shear. It is
not known whether this process generalises to larger boxes containing more than one burst.

To extend our conclusions outside the attractor, we finally perform a simple
computational experiment in which the control of the mean shear by the burst is relaxed.
The behaviour of the mean profile is thus modified, but the association of low wall shear
with the initiation of the bursts is shown to be maintained.
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Appendix A. Modes with non-zero spanwise wavenumber

The modes with non-zero spanwise wavenumber require special treatment. For kz = 0, the
variable a is expressed as

a(x) =
∑
α

ãαeiαx + c.c., (A1)

where ‘c.c.’ stands for the complex conjugate. A translation x → x +�x appears as a
phase in ãα → ãα exp(iα�x), and the variables used in the main text are chosen to be
invariant to such translations. For modes depending on z, the expansion becomes,

a(x, z) =
∑
α,β

ãα,+β exp(i(αx + βz))+ ãα,−β exp(i(αx − βz))+ c.c.. (A2)

Each (α, β)mode has associated two independent coefficients, which transform differently
under spanwise translations. The physically relevant expansion is

a(x, z) =
√

2
∑
α,β

[
ã+
α,β cos(βz)+ iã−

α,β sin(βz)
]

eiαx + c.c., (A3)

where ã±
α,β = ãα,+β ± ãα,−β . We can choose to observe the flow at any convenient

spanwise location. Keeping the cosine term in (A3) corresponds to observing at z = 0,
while keeping the sine corresponds to βz = π/2, but neither ãα,+β nor ãα,−β are physical
observations. The new coefficients, â±

α,β , are also independent Fourier coefficients, and
are used throughout the manuscript.

Appendix B. Proper orthogonal filtering

The POD was introduced to fluid mechanics by Berkooz et al. (1993) as a variant of the
older principal component analysis approximation of Pearson (1901). It seeks to represent
a vector field u as an expansion of POD modes φ(k)

u(n) =
n∑

k=1

ûkφ(k), (B1)

in such a way that the two-point covariance of u(n) approximates as well as possible the
covariance of the true vector field, even when the order of the expansion is much less
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Figure 16. (a) Energy fraction of the different harmonics contained in first npod modes. Solid black, [00] mode;
solid red, [10]; dashed red, [10]; chaindotted red, [20]; dotted red, [11]; dotted blue, [21]. (b,c) Wall-normal
intensity profiles of typical POD modes of the [10] harmonic. Black, npod = 1; red, npod = 5; blue, npod = 20.
(b) u10. Panel (c) shows w01. (d– f ) Intensity profiles of all the retained harmonics, approximated with different
number of POD modes. Colours as in (b). The dashed magenta line, is the true intensity profile; (d) u, (e) v,
( f ) w.

than the number of degrees of freedom in u. As already mentioned in §§ 2 and 3, POD
modes are not good choices to reduce a dynamical system to a few variables, because they
minimise the integral of the error over the attractor as a whole, instead of, as has been
our interest in this paper, differentiating among different phase-space neighbourhoods.
However, they can approximate the flow field using a somewhat reduced number of spatial
modes.

It is clear that our choice to represent the flow using nine Fourier modes in the (x, z)
plane is a drastic reduction of numerical resolution in that plane, but there is no simple
equivalent way of reducing the resolution along the non-homogeneous direction, y. The
result is a strongly anisotropic flow field with spurious thin wall-parallel layers which are
not justified by the wall-parallel resolution. POD modes provide a useful basis to balance
the resolution in a statistically significant way. In fact, Fourier modes are POD modes
along homogeneous directions, such as x and z, and we saw in figure 2 that the few retained
modes account for a significant fraction of the kinetic energy (most of the mathematical
properties mentioned in this appendix are drawn from Berkooz et al. (1993), although this
will not be mentioned from now on). The POD analysis can be extended to y by expanding
individual Fourier modes, and figure 16(a) shows the fraction of the total energy of each
Fourier mode contained in its first n POD modes. The first few modes do not represent
the energy well, but approximately 20 modes account for most of it. Because the POD
modes in (B1) are eigenvectors of the covariance matrix, successive eigenvectors contain
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Figure 17. Example of the effect of POD filtering on a streamwise section of the w field. (a) Reconstructed
with the nine retained Fourier modes and full resolution in y. (b) Using 20 PODs in y.

an increasing number of ‘waves’, as shown in the examples in figure 16(b,c). Broadly
speaking, the 20 modes mentioned above are equivalent to a wall-normal resolution of ten
points, which is a reasonable compromise for the number of wall-parallel Fourier modes.
Figure 16(d– f ) shows that this resolution is enough to account for most of the energy
profile of the retained Fourier approximation.

Several precautions are necessary for a consistent approximation. In the first place,
expansion (B1) optimises the approximation of the flow field in terms of the L2 norm
defined over the collocation nodes of the numerical grid, while it makes more physical
sense to use an integral norm

∫ |u|2 dy. This requires scaling the flow field by the square
root of the grid spacing, and undoing the scaling upon reconstruction. Similarly, although
figure 16 displays modes as associated with individual velocity components, it is important
to compute the PODs over the three velocities at the same time, catenated as a single
compound vector. This minimises the total kinetic energy of the approximation error, and
ensures, among other things, that the reconstructed field satisfies continuity.

An example of the effect of filtering the w field with the first 20 PODs is shown in
figure 17. Most of the results in this paper are obtained from flow fields filtered with 20
POD modes. There is very little difference between these results and those from unfiltered
variables, except for the somewhat cleaner flow fields such as the one in figure 17(b).
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