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Numerical studies of dimple and jet formation from a collapsing cavity often model the
initial cavity shape as a truncated sphere, mimicking a bursting bubble. In this study, we
present a minimal model containing only nonlinear inertial and capillary forces, which
produces dimples and jets from a collapsing capillary wave trough. The trough in our
simulation develops from a smooth initial perturbation, chosen to be an eigenmode to the
linearised O(ε) problem (ε is the non-dimensional amplitude). We explain the physical
mechanism of dimple formation and demonstrate that, for moderate ε, the sharp dimple
seen in simulations is well captured by the weakly nonlinear O(ε3) theory developed here.
For ε � 1 the regime is strongly nonlinear, spreading surface energy into many modes,
and the precursor dimple now develops into a sharply rising jet. Here, simulations reveal a
novel localised window (in space and time) where the jet evolves self-similarly following
inviscid (Keller & Miksis, SIAM J. Appl. Maths, vol. 43, issue 2, 1983, pp. 268–277)
scales. We develop an analogy of this regime to a self-similar solution of the first kind,
for linearised capillary waves. Our first-principles study demonstrates that, at sufficiently
small scales, dimples and jets can form from radial inward focusing of capillary waves, and
the formation of this may be described by a relatively simple model employing (nonlinear)
inertial and capillary effects. Viscosity and gravity can, however, significantly influence
the focusing process, either intensifying the singularity or weakening it (Walls et al., Phys.
Rev. E, vol. 92, issue 2, 2015, 021002; Gordillo & Rodríguez-Rodríguez, J. Fluid Mech.,
vol. 867, 2019, pp. 556–571). This leads, in particular, to critical values of Ohnesorge and
Bond numbers, which cannot be obtained from our minimal model.
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Figure 1. Three-dimensional rendition of an axisymmetric simulation (generated via rotation of the pink curve
about the symmetry axis in all plots). (a) Cross-section of the interface at t̂ = 0. (b) Trough with precursor
dimple at t̂ = 0.7947 T̂ . (c) Rising jet at t̂ = 1.0526 T̂ . Here, ε ≈ 2.3, l15 = 47.9, the full simulation domain is
not shown and T̂ is the linear time period of the eigenmode that has been excited.

1. Introduction

Nonlinear surface waves, ranging in wavelengths from metres to micrometres, remain a
bountiful source of curious observations. A phenomenon of sustained attention has been
jet formation during cavity collapse (Kientzler et al. 1954). Owing to its relevance to
applications such as the generation of sea spray from bursting oceanic bubbles (Blanchard
1963) or the spread of aroma (Séon & Liger-Belair 2017), research on this has been
sustained (Blanchard 1963; MacIntyre 1972) and intense (Zeff et al. 2000; Duchemin
et al. 2002; Bolaños-Jiménez et al. 2008; Gordillo 2008; Gañán-Calvo 2017; Lai, Eggers &
Deike 2018; Gordillo & Rodríguez-Rodríguez 2019), continuing actively into the present
(Ji, Yang & Feng 2021). The event appears quite ubiquitously and we refer the reader to
table 1 in Basak, Farsoiya & Dasgupta (2021) where a comprehensive literature has been
summarised.

An estimate of the span of lengths where these jets are observed is instructive. Consider
the ‘spike wave’ rising up to 6 m in height (see figure 1 in McAllister et al. (2022)) at
the centre of a circular wave tank. At these large scales, the jet dynamics is governed by
fluid inertia and gravity (McAllister et al. 2022). At the lower extreme in length scales,
surface tension dictates the dynamics of an ejecting ethanol jet rising to about 100 μm
due to the collapse of a 35 μm bubble (see figure 1, top row, in Lee et al. (2011) and
supplementary movie 1 in that paper). In this study, we focus on small-scale jets where
the dominant restoring force is surface tension, with gravity playing a negligible role. In
contrast to prior numerical studies, which obtain the jet by deforming the initial interface
in the shape of a truncated spherical cavity (Duchemin et al. 2002; Lai et al. 2018), the
initial deformation here is chosen to be an eigenmode to the linearised problem, viz. the
zeroth-order Bessel function (figure 1). This choice of the initial condition is crucial from
a theoretical perspective as we justify below.

From a modal expansion viewpoint, a truncated cavity with relatively sharp corners
and overhang (see figure 3, lower panel, in Duchemin et al. (2002)), while being a
faithful representation of an incipient bursting bubble, is a multi-valued, highly nonlinear
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surface deformation, which does not lend itself to eigenfunction expansion (in the radial
coordinate). In contrast, the smooth perturbation that we study here excites a single
eigenmode initially. Further, unlike a truncated nearly spherical bubble cavity (at small
Bond number; see Duchemin et al. (2002) or figure 2 in Gordillo & Rodríguez-Rodríguez
(2019)), no precursor capillary waves are generated in our simulations. It will be seen that,
similar to the truncated cavity (Duchemin et al. 2002), this initial perturbation produces
a dimple at moderate amplitude, giving way to a jet at larger amplitudes. This initial
deformation further justifies its choice by yielding to a first-principles (weakly) nonlinear
analysis employing eigenfunction expansion. The advantage of the theory, devoid of any
fitting parameters, is that it describes the onset of dimple formation from a capillary wave
trough. In addition, it also provides a simple physical picture explaining the birth of the
dimple due to wave focusing.

In previous studies from our group, this initial condition has been explored in two
regimes, viz. the ‘inviscid, gravity–capillarity’ regime in Basak et al. (2021), where
an O(ε2) theory was presented, and the ‘viscous, linear, gravity–capillarity regime’ in
Farsoiya, Mayya & Dasgupta (2017), where the O(ε) linear problem was studied. In
particular, it was shown in Basak et al. (2021) that, while the O(ε2) theory can describe
the jet qualitatively, it does not capture the onset of sharp dimple formation seen in our
numerical simulations. An additional difficulty with the capillarity–gravity calculation in
Basak et al. (2021) is the presence of singularities in the theory due to second harmonic
resonance.

Our current nonlinear minimal model based only on capillary and inertial forces
surmounts the deficiency of the second-order theory of Basak et al. (2021), obviates its
singularities (Kochurin et al. 2020) and allows a mechanistic interpretation of dimple
formation. We present a minimal model that demonstrates dimple and jet formation at
sufficiently small scales, retaining only nonlinear curvature and inertial contributions but
no contributions from gravitational or viscous forces. The absence of viscosity in our
model is particularly important, as in recent literature there has been significant debate
on the physical mechanism of jet formation and the role of viscosity in bubble bursting
(Gañán-Calvo 2017, 2018a; Gordillo & Rodríguez-Rodríguez 2018, 2019; Gañán-Calvo &
López-Herrera 2021).

While it is known now that the fastest jets from bubble bursting occur at finite viscosity
(Duchemin et al. 2002; Deike et al. 2018), our study demonstrates that one can also
obtain jets from inviscid wave focusing. Viscosity or gravity, both of which are neglected
in our study, however, can significantly influence the jetting process, leading to regions
on the Bond number versus Ohnesorge number plane (Bo–Oh) where jetting or droplet
ejection is not expected. Owing to the neglect of gravity and viscosity in our study, these
phase boundaries, however, cannot be predicted from our model. The nonlinear capillary
waves and the accompanying flow generated in our simulations arise purely due to initial
interfacial curvature, requiring accurate estimation of the same via the nonlinear theory.
In what follows, gravity effects are neglected by restricting attention to wavelengths much
smaller than the air–water capillary length scale (≈2.7 mm). Similarly, viscous effects are
ignored, as the capillary-viscous length scale for air–water, ρν2/T ≈ 0.01 μm (Duchemin
et al. 2002), is much smaller than wavelengths of interest.

Figure 1 represents three snapshots (at different times) obtained from axisymmetric
simulations of the inviscid, incompressible Euler’s equation with surface tension using
the open-source code Basilisk (Popinet 2009, 2014). The undisturbed interface is flat,
with quiescent water in a cylindrical container of radius R̂0. Figure 1(a) represents the
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initial interface excitation η̂(r̂, 0) = â0J0(lq(r̂/R̂0)), with J0( · ) being the zeroth-order
Bessel function and q ∈ Z

+ indicates the number of zero crossings of J0( · ) within the
computational domain. The blue surface in the background is the axisymmetric rendition
of the interface (pink curve). Evolving from the initial perturbation, the interface develops
a trough (figure 1b), and as this trough rises, a dimple forms at its base. This dimple
subsequently develops into a jet (figure 1c), rising significantly more than the initial
perturbation at r̂ = 0.

For simplicity, in our theoretical analysis, the container is assumed to be deep, implying
that the longest capillary wave (λ̂max) in our domain satisfies λ̂max � Ĥ, where Ĥ is
the undisturbed water depth (dimensional variables have a hat). The simulations are
described by two non-dimensional parameters, viz. ε ≡ â0(lq/R̂0) and a number lq, with
q being the index of the primary Bessel mode that we excite initially. These provide a
non-dimensional measure of the initial perturbation amplitude â0 and wavelength λ̂ (see
figure 1), respectively. The numbers lq satisfy J1(lq) = 0 (Weisstein 2020), necessary for
respecting the no-penetration condition at r̂ = R̂0 (see next section). A rough estimate
of the width of the crest in figure 1, viz. λ̂ ≈ 2πR̂0/lq, is obtained from the asymptotic
expression of J0( · ) at large radius (Abramowitz & Stegun 1972). We may treat λ̂ as a
measure of the initial perturbation wavelength, noting that this is an approximation, as the
zeros of J0( · ) are not exactly equally spaced. In order to minimise container wall effects
on dimple and jet formation, we require R̂0/λ̂ ≈ lq/2π � 1, which can be ensured by
choosing q to be sufficiently large. In this study, we have chosen q � 15 to stay consistent
with this requirement.

1.1. Physical mechanism of dimple formation
Figure 2 explains the physical mechanism of dimple formation. Plotted in figure 2(a) is
â0J0(lq(r̂/R̂0)) for large and small amplitudes, viz. ε = â0(lq/R̂0) ≈ 2.7 (brown curve)
and ε ≈ 0.27 (orange curve), with l15 ≈ 47.9 for both cases. Figure 2(b) shows the
initial curvature profile κ̂(r̂, 0) for the two Bessel modes in figure 2(a) using the same
colour legend. With η̂(r̂, 0) = â0J0(lq(r̂/R̂0)) and ε � 1, the linearised approximation
to curvature is −∂2η̂/∂ r̂2 − (1/r̂)(∂η̂/∂ r̂) ∝ â0J0(lq(r̂/R̂0)) (using the Bessel equation).
Thus for a small-amplitude Bessel mode (figure 2a, orange curve with ε = 0.27), its
curvature profile (figure 2b, orange curve) is also a Bessel function, implying that the
curvature is zero at the location(s) where the interface has zero crossings with the
undisturbed liquid level. Cyan dots in figure 2(a) show the first zero crossing, and the
corresponding dots in figure 2(b) verify that the curvature at this radial location is (nearly)
zero at small ε. As the flow due to this initial perturbation is driven by interfacial curvature,
the above implies that, if the interface is initialised as a small-amplitude Bessel mode
(e.g. ε = 0.27), we expect a standing wave whose shape at all subsequent time remains
proportional to the initial Bessel mode. In particular, there are well-defined nodes in the
linear description (cyan dots in figure 2a) where the velocity of the interface is zero at all
time within a linear description.

The description changes qualitatively as ε is increased towards unity and exceeds it. For
ε > 1 (ε = 2.7), the curvature profile indicated by the brown curve in figure 2(b) appears
quite distinct from the corresponding shape of the interface in figure 2(a) (brown curve),
the latter being just a large-amplitude Bessel function. Notice that, unlike the small-ε
case described in the previous paragraph, the interface in figure 2(a) has finite positive
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Figure 2. (a) Plot of η̂(r̂, 0) = â0J0(lq(r̂/R̂0)) with ε ≈ 2.7 (brown curve) and ε ≈ 0.27 (orange curve).
(b) Curvature profile κ̂(r̂, 0) of the initial interface using the same colour legend as panel (a). (c) Radial
inward movement (yellow arrow) of the interface zero crossing in the numerical simulation for ε = 2.7, at
t̂ = 0 (purple curve) and t̂ = 30�t̂ (brown curve); the blue arrows show the velocity field. (d–g) Radial inward
focusing of the wave (indicated in blue) leading to dimple formation.

curvature at its zero crossing (brown curve in figure 2b). A finite curvature at the zero
crossing implies, in general, that a finite velocity will arise subsequently at this location
(which is equivalent to saying that the zero crossings of a nonlinear interface do not behave
as nodes). The local velocity field obtained from numerical simulations, around the zero
crossing of the interface for the case ε = 2.7, is depicted in figure 2(c) at t̂ = �t̂ and
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Figure 3. (a–d) Interface shape at different time instants from simulations and from second- and third-order
theory for ε = 0.8 and l15 = 47.9. The green arrows indicate the instantaneous direction of interface motion.
The black dotted curve in panel (d) indicates the wave trough at an earlier instant t̂ = 0.45 T̂ , before the
emergence of the dimple (the bottom of the trough is not seen within the vertical scale of the figure and
extends further downwards). (e) Hankel transform of the interface following (5.3) in Basak et al. (2021) at
the instant of dimple formation in panel (d). The vertical axis in panel (e) is a measure of the surface energy
in higher-order modes (j = 15 is the primary mode here but not shown in the figure). The O(ε3) theory (red
symbols) describes the surface energy nearly up to j = 45 = 3 × 15, but the O(ε2) theory (blue symbols) does
not, and predicts zero surface energy in modes beyond j = 30 = 2 × 15.

t̂ = 30�t̂ (where �t̂ is the computational time step). It is seen from that figure that the
effect of this velocity field is to move the interface locally vertically downwards in such
a manner that its zero crossing moves radially inwards – the yellow arrow in figure 2(c)
highlights the inward movement of the zero crossings. This radially inward motion persists
further, eventually producing a trough (figure 2d), which is significantly narrower than
what would result had the initial perturbation evolved as a linear standing wave.

Figures 2(d)–(g) depict the subsequent inward motion of the zero crossing(s) and the
two capillary humps (shaded in blue) in time. Note that figure 2(d) depicts the trough that
forms from our large-amplitude Bessel mode excited at time t = 0 (in brown in figure 2a).
This trough is saddled by two capillary humps on either side, as seen in figure 2(d), and the
radially inward motion of these two capillary humps is strongly reminiscent of capillary
wave focusing in bubble bursting (Lai et al. 2018).
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Dimples, jets, self-similarity in nonlinear capillary waves

An important difference to note is that, unlike the bubble bursting case where a train
of precursor capillary waves are typically observed especially at low Ohnesorge numbers
(see figure 2, upper panel, in Deike et al. (2018) or figure 4a in Blanco-Rodríguez &
Gordillo (2021)), here only two parent waves (shaded in blue) are seen in figure 2(d).
Their inward focusing produces a region of large curvature at the symmetry axis, which
subsequently triggers the dimple (shaded pink region in figures 2e–g). Analogous focusing
of capillary waves is implicated in the formation of dimples and jets from a bursting
bubble (Duchemin et al. 2002; Gañán-Calvo 2017; Gordillo & Rodríguez-Rodríguez 2018,
2019; Gañán-Calvo & López-Herrera 2021). In the following section, we develop a weakly
nonlinear perturbative approach to mathematically describe the formation of this dimple.
The motivation for doing this lies in the observation that the dimple is already seen at
moderate values of ε ≈ 0.8 (figure 3), rendering its formation accessible to first-principles
theory.

1.2. Weakly nonlinear regime: ε < 1

We use ε ≡ â0lq/R̂0 < 1 to solve the potential flow equations with cylindrical,
axisymmetric surface tension terms (Mathur et al. 2007) perturbatively up to O(ε3).
Equations (1.1a–i) are non-dimensionalised using the capillary scales, lq/R̂0 and
(Tl3q/ρR̂3

0)
1/2, respectively, with surface tension T , density ρ and container radius R̂0.

Equation (1.1a) is the Laplace equation governing the perturbation velocity potential φ,
(1.1b,c) are the kinematic boundary condition and the Bernoulli equation at the interface,
respectively. Equations (1.1d,e) are the no-penetration and free-edge boundary conditions
at the wall, respectively, ensuring that the contact angle is π/2. Equation (1.1f ) ensures
that the perturbation conserves volume, while (1.1g–i) represent initial conditions:

∇2φ = 0, (1.1a)

∂η

∂t
+ ∂η

∂r

(
∂φ

∂r

)
z=η

=
(
∂φ

∂z

)
z=η

, (1.1b)

(
∂φ

∂t

)
z=η

+ 1
2

[(
∂φ

∂r

)2

+
(
∂φ

∂z

)2
]

z=η
−

⎡
⎢⎢⎢⎢⎢⎣

∂2η

∂r2{
1 +

(
∂η

∂r

)2
}3/2 + 1

r

∂η

∂r{
1 +

(
∂η

∂r

)2
}1/2

⎤
⎥⎥⎥⎥⎥⎦

= 0, (1.1c)(
∂φ

∂r

)
r=lq

= 0,
(
∂η

∂r

)
r=lq

= 0,
∫ lq

0
dr rη(r, t) = 0,

η(r, 0) = εJ0(r),
∂η

∂t
(r, 0) = 0, φ(r, z, 0) = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.1d–i)

These equations contain the dimensionless group ε and parameter lq. The analytical
procedure is similar to the capillarity–gravity case in Basak et al. (2021) with the important
difference that we obtain corrections up to cubic order here. The necessity of going up to
O(ε3) is seen from the exact curvature expressions in (1.1c). For η(r, 0) ∝ εJ0(r), the first
nonlinear contribution from curvature appears at O(ε3).
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To eliminate resonant forcing of primary mode (q), we have τ = t[1 + ε2Ω2 + · · · ].
Following Basak et al. (2021), we expand both φ(r, z, τ ) = ∑3

i=1 ε
iφi(r, z, τ ) and

η(r, τ ) = ∑3
i=1 ε

iηi(r, τ ). Taylor-expanding all the z-dependent terms about z=0,
we obtain coupled linear partial differential equations at every order O(εi),
with nonlinearity appearing at i � 2. Using the Dini series (Basak et al. 2021)
φi(r, z, τ ) = ∑∞

j=0 p(j)i (τ ) exp(αj,qz)J0(αj,qr) and ηi(r, z, τ ) = ∑∞
j=0 a(j)i (τ )J0(αj,qr) with

αj,q ≡ lj/lq, the task of determining φi and ηi becomes that of determining p(j)i (τ ) and
a(j)i (τ ). These satisfy simple harmonic oscillator equations with inhomogeneities at O(ε2)

and O(ε3), which may be solved subject to the initial conditions in (1.1g–i). The final
expressions for η1(r, τ ), η2(r, τ ) and η3(r, τ ) are provided below (the expressions for the
modal coefficients are lengthy and so are provided in the supplementary material available
at https://doi.org/10.1017/jfm.2022.854):

η1(r, τ ) = cos(τ )J0(r), (1.2a)

η2(r, τ ) = 1
2

∞∑
j=1

[ζ (1)j,q cos(ωj,qτ)+ ζ
(2)
j,q cos(2τ)+ ζ

(3)
j,q ]J0(αj,qr), (1.2b)

η3(r, τ ) =
⎡
⎣μ(q) cos(τ )+ κ(q) cos(3τ)

+
∞∑

m=1,m /= q

{γ (q)m cos[(ωm,q + 1)τ ] + χ(q)m cos[(ωm,q − 1)τ ]}
⎤
⎦ J0(r)

+
∞∑

j=1,j /= q

⎡
⎣μ(j) cos(τ )+ κ(j) cos(3τ)+ ν(j) cos(ωj,qτ)

+
∞∑

m=1,m /= q

{γ (j)m cos[(ωm,q + 1)τ ] + χ(j)m cos[(ωm,q − 1)τ ]}
⎤
⎦ J0(αj,qr). (1.2c)

The expressions for η2(r, τ ) and η3(r, τ ) clearly show the excitation of modes not present
initially in the spectrum, implying that surface energy initially injected into a single mode
(index q) gets redistributed among other modes, and this is crucial for resolving dimple
formation. Note the presence of bound and free wave components in the expressions for
η2(r, τ ) and η3(r, τ ) in (1.2b,c) (ω2

j,q ≡ α3
j,q).

Figure 3 compares the shape of the interface at different time instants for moderate
ε = 0.8 between theory and simulations. It is clear that the O(ε3) theory does significantly
better than its second-order counterpart, particularly in capturing the instantaneous shape
and location of the dimple (figure 3d). Note that the width of this dimple is substantially
smaller than the width of the collapsing wave trough (black dotted curve in figure 3d).
Figure 3(e) presents the Hankel transform of the interface (following (5.3) in Basak et al.
(2021)) as obtained from simulations and from theory at O(ε2) and O(ε3). Note that, for
this simulation, the 15th mode (l15) is the primary mode and we expect the O(ε3) theory
to describe well the surface energy in modes up to l = 45 = 3 × 15. This is indeed seen
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Figure 4. (a) Dimple velocity as a function of ε for l15; the inset shows a power-law fit to the simulation
data (log–log), with the exponent being ≈1.6. ‘Approx’ indicates the two-term order-of-magnitude balance
discussed in the text. (b) Time signal for ε = 1.8 and l15 = 47.9. At ε � 1, the weakly nonlinear theory
becomes inadequate.

to be so, as seen from figure 3(e), where it is also clear that the O(ε2) theory does not
capture the surface energy in modes beyond twice the primary mode, i.e. beyond modes
with index 30 = 2 × 15.

Figure 4 presents the vertical velocity of the dimple at its formation from simulations
(red plus signs) and from O(ε3) theory (blue diamonds). Good agreement between the two
can be seen up to ε = 1.1. Beyond ε > 1.1, sharply rising jets are seen in simulations and
the weakly nonlinear theory systematically underestimates its velocity. A better estimate
may be obtained by a two-term order-of-magnitude balance, in (1.1c). Approximating the
dimple velocity to be predominantly vertical, we have v2

z ∼ (T/ρ)(1/R1 + 1/R2), where
R−1

1 and R−1
2 are estimated from simulations. This is shown in figure 4(a) (black circles),

where it is seen that, for ε � 1, this approximation does better than the O(ε3) theory. The
limitation of the weakly nonlinear approach as ε � 1 is also seen clearly in figure 4(b),
where we track the interface in time at r = 0 for ε = 1.8. It is seen (insets) that the dimple
becomes very narrow with increasing ε. Such sharp dimples involves energy transfer to
modes with indices � 3q in the spectrum (Basak et al. 2021) and fall into the strongly
nonlinear regime that we discuss next.

1.3. Strongly nonlinear regime (ε � 1): self-similar evolution
As ε � 1, we approach the strongly nonlinear regime where the curvature at the symmetry
axis, as a consequence of wave focusing, increases sharply (singularity). This is reflected
in the progressive shortening of the radial extent of the dimple as ε is increased; see
figure 4(b) inset (also see figure 2f ). In the context of jets generated from bubble bursting
and Faraday waves, such local singularities have been studied and self-similar solutions
obtained in their vicinity (Zeff et al. 2000; Duchemin et al. 2002; Gañán-Calvo 2017; Lai
et al. 2018). We anticipate an analogous singularity in local curvature as ε is increased,
generating sharply shooting jets.

Resorting to dimensional analysis, the functional dependence of η̂ on the physical
parameters of the problem is expressed as η̂ = f̂ (r̂, t̂; â0, R̂0, T/ρ, lq). This may be
rewritten non-dimensionally as

η ≡ η̂lq
R̂0

= f

⎛
⎝ lq

R̂0
r̂,

√√√√ Tl3q
ρR̂3

0

t̂; ε, lq

⎞
⎠ = f (r, t; ε, lq). (1.2)
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Figure 5. (a,b) Unscaled data and (c,d) scaled data for (a,c) ε = 2.3, l15 = 47.9, and
(b,d) ε = 2.3, l24 = 74.18. The linear time period of the standing wave in units of t is 2π. The inset
in panel (b) shows the instant of dimple formation t0.

We hypothesise that, for sufficiently large ε and lq, the local curvature at the axis of
symmetry becomes singular due to wave focusing. Consequently, the temporal evolution
of the jet that emerges from the dimple must be independent of R̂0 and lq (locally in space).
This can occur only if, in a narrow region around the jet (where the local singularity is
effectively felt), η depends only on the combination r3/t2, i.e. is independent of the ratio
lq/R̂0. We thus have the ansatz that η̃(r̃) ≡ (η − zb)/(t − t0)2/3 = g(r̃; ε, lq) (following
Gekle & Gordillo 2010; Lai et al. 2018), where r̃ ≡ r/(t − t0)2/3, t0 is the instant of dimple
formation and zb is the (scaled) location of the first minimum nearest to the symmetry
axis. The scaled data are depicted in figure 5(c,d) for ε = 2.3 and l15 and l24. Figure 5(a,b)
depict the unscaled data at different times while figure 5(c,d) show the scaled data. The
excellent collapse in a region around the jet is apparent.

The similarity scales above are the Keller & Miksis (1983) scales noted in the context
of the singularity at pinch-off for a fluid wedge. Figure 5 shows that, while the temporal
evolution of the jet happens self-similarly, the initial and boundary parameters are not
forgotten as the scaled interface shape η̃ = f (r̃) depends on the parameters (ε, lq). This is
analogous to Keller & Miksis (1983), where the self-similar wedge shape is not universal,
but depends on the initial wedge angle. Interestingly, the localised self-similar behaviour
observed here in the strongly nonlinear regime may also be found in the linearised regime
for capillary waves (Keller & Miksis 1983).

For a radially unbounded domain (i.e. no confining walls) and with only
an initial interface deformation (zero surface impulse), the solution to the
axisymmetric linearised Cauchy–Poisson problem (Debnath 1994; Kang & Cho 2019) is
η̂(r̂, t̂) = ∫ ∞

0 k J0(kr̂)η̄0(k) cos(ωt̂) dk, with η̄0(k) being the Hankel transform of η̂(r̂, 0).
This solution lacks adequate length scales and, unless the initial condition introduces
these, the resultant waves evolve self-similarly. A classic example is for pure gravity
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η̃̃

r̃̃
1 2 3 4

-0.1

0

0.1

Asy.

t̂ = 12

t̂ = 9

t̂ = 6

t̂ = 3

Figure 6. Plot of η̂(r̂, 0) = V̂0δ(r̂)/2πr̂. The interface evolves self-similarly at all times. ‘Asy’ denotes the
asymptotic solution from the stationary phase for large r̂ and t̂.

waves in two dimensions. This solution (due to Cauchy and Poisson) is discussed by
Lamb (1924, art. 238). Applying the arguments of Lamb (1924) and Debnath (1994)
to pure capillary waves on a radial pool, we considered a localised initial perturbation,
viz. η̂(r̂, 0) = (V̂0/2πr̂)δ(r̂), where V̂1/3

0 is the only length scale in this initial condition.
Dimensional reasoning predicts that, instead of η̂ being a function of r̂ and t̂ individually,
it should be possible to express the scaled interface in terms of a single scaled variable, i.e.
η̂T ′ t̂2/r̂V̂0 = ψ(r̂/((T ′)1/3 t̂2/3)), where T ′ ≡ T/ρ. The functional form of ψ( · ) may be
obtained by solving the aforementioned integral numerically. Alternatively, the asymptotic
form for ψ( · ) is deduced by applying the stationary phase technique (r̂, t̂ → ∞ with
r̂/t̂ fixed) (Debnath 1994) to evaluate the integral (see supplementary material). This
predicts ˜̃η ≡ η̂T ′ t̂2/V̂0r̂ ∼ (2

√
2/9π) sin( 4

27
˜̃r3), with ˜̃r ≡ r̂/((T ′)1/3 t̂2/3), and we note the

Keller–Miksis scale in this.
Figure 6 compares the stationary phase solution (Asy) with the numerical solution

to this problem at different time instants, showing self-similar behaviour. Addition of
further length scales into the initial condition breaks this self-similarity. Consider linear
capillary waves generated from a volume-conserving perturbation of finite width (Miles
1968; Debnath 1994), i.e. η̂(r̂, 0) = d̂(1 − r̂2/â2) exp(−r̂2/â2). This initial condition has
two length scales, viz. d̂ and â, and dimensional analysis predicts three groups, viz.
π1 ≡ η̂(T ′)3 t̂6/d̂â4r̂5, π2 ≡ r̂/((T ′)1/3 t̂2/3) and π3 ≡ â2r̂4/((T ′)2 t̂4), implying from the
stationary phase, π1 ∼ (8

√
2/729) exp(− 4

81π3) sin( 4
27π3

2), which is not a self-similar
result (see supplementary material).

1.4. Comparison with results from the literature
In this section, we compare velocity predictions at the instant of dimple formation from
our weakly nonlinear theory, and simulations in the strongly nonlinear regime with the
inviscid theory presented in Gordillo et al. (2020). In this study, the authors examine a
closely related problem of a liquid with a free surface contained in a narrow cylindrical
tube, where a jet is triggered at the symmetry axis by focusing a laser pulse in the liquid
bulk. This leads to the creation of a vapour bubble, which induces a uniform velocity in
the liquid bulk below the free surface; see figure 1(c) in Gordillo et al. (2020). Also closely
related to this are similar experiments in the same study where an impulse is imparted to
the bottom of the tube, the ‘Pokrovski experiment’ in Antkowiak et al. (2007) and other
similar experiments (Bergmann et al. 2008; Kiyama et al. 2016). The theory in Gordillo
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et al. (2020) adopts a potential flow approach similar to our present case and predicts that
in a narrow region around the axis of symmetry, the velocity at the free surface (due to
the uniform velocity induced in the bulk) is nearly radial (the initial meniscus is spherical
for Gordillo et al. (2020)) and given by v̂r = v̂n cos(k̂ψ) for ψ � 1, where ψ is the angle
measured from the centre of the circle; see figure 1(c) in Gordillo et al. (2020). As this
formula is valid for small ψ , we compare this velocity with the vertical component of
velocity v̂z obtained from our numerical simulations (for large ε) and with our weakly
nonlinear theory (at smaller ε) at the instant of dimple formation.

Note that in Gordillo et al. (2020) the parameters v̂n and k̂ in the above formula are
functions of the contact angle that the meniscus makes in their case with the tube wall and
are obtained from the numerical solution to the Laplace equation. For our present study,
the contact angle is π/2 and, as discussed in our introduction, we are primarily interested
in the regime where the contact angle effects are minimal. This is ensured by suitably
choosing lq for our initial perturbation, which assures that the wavelength λ̂ of the initial
perturbation (see figure 1a) is much smaller than the cylinder radius (see discussion below
figure 1). Hence while comparing with the theoretical prediction for the velocity v̂r with
Gordillo et al. (2020), we treat v̂n and k̂ purely as fitting parameters that are influenced not
by the actual contact angle but by some equivalent local contact angle. It is useful to recall
that in our case the width of the dimple is far smaller than the cylinder radius (figure 2d)
and it is thus expected to be relatively independent of the contact angle at the cylinder
wall.

Figure 7(a) depicts a circle fitted to match the local shape of the dimple at the
instant when it first emerges in our numerical simulations (ε = 2.3). The angle ψ is
defined with respect to the centre of this circle, as also done in Gordillo et al. (2020).
Figure 7(b) (comparison with weakly nonlinear theory), figure 7(c) (comparison with
strongly nonlinear simulation at ε = 2.3) and figure 7(d) (comparison with strongly
nonlinear simulation at ε = 2.7) show comparisons with the formula of Gordillo et al.
(2020) for specified values of the fitting parameters, depicting in general good agreement.

1.5. Critical analysis of our model and results
In this section, we critically analyse the strengths and weaknesses of our theoretical and
numerical model. A comparison of the vertical component of the instantaneous fluid
acceleration was reported earlier for the O(ε2) inviscid irrotational theory with both
gravity and surface tension in Basak et al. (2021) (see § 4 in the supplementary material
in Basak et al. (2021)), where a qualitative analogy of the flow structure within the jet was
found with that of Gekle et al. (2009). The recent discussion (Gañán-Calvo 2017, 2018b;
Gordillo & Rodríguez-Rodríguez 2018, 2019; Gañán-Calvo & López-Herrera 2021) on
the physical mechanism of jet formation in the context of bubble bursting has extensively
debated the wavelength of the wave that dominates the focusing process. Stated in terms
of time, a part of the debate relates to whether the ejection of the jet is dominated by
the arrival at the symmetry axis of the smallest non-damped ripple (see discussion below
figure 4 in Gordillo & Rodríguez-Rodríguez (2019)) or the main steep wavefront (using
the same terminology as in Gañán-Calvo & López-Herrera (2021); see their discussion on
p.4, paragraph 1). Note that the steep wavefront is much longer than the ripples and thus
they have different phase speeds.

Also under debate has been the role of viscosity in setting the critical Ohnesorge number
at which jetting is observed to peak. In this context, our results provide strong evidence that
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Figure 7. (a) A circle of radius r̂c fitted locally to the dimple (blue symbols) arising for ε = 2.3 in our
numerical simulations at the instant of its formation. The angle ψ is measured from the centre of this circle.
(b) Comparison of the radial velocity in Gordillo, Onuki & Tagawa (2020) with the vertical velocity prediction
of the dimple from our weakly nonlinear theory for ε = 0.8, with v̂n = 86.42, k̂ = 2.7. (c) Comparison
with simulation for ε = 2.3, with v̂n = 489, k̂ = 2.2. (d) Comparison with simulation for ε = 2.7, with
v̂n = 516.5, k̂ = 3.2.

η̂

0
0

–5

–10

–15

–0.01

–0.02

–0.01 0 0.01 –0.01 0 0.01

(×10–3)

R̂c
Ẑc
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Figure 8. (a) Cavity produced in our simulations starting with a Bessel mode perturbation, with ε = 2.7 and
l15. Here, λ̂ and â0 provide a measure of the initial perturbation wavelength and amplitude, respectively, and
the resultant cavity dimensions are approximately proportional to these. (b) A bubble cavity for Bo = 0.001
generated using the Basilisk sandbox code (Berney 2022), which generates the static bubble shape solving
equations analogous to Toba (1959).

a nonlinear inviscid irrotational model with only capillarity has the essential ingredients
for generating a dimple at small ε and a jet (with tip ejection of droplets) at larger values
of this parameter (with fixed lq). This conclusion aligns with the suggestion of Gordillo
& Rodríguez-Rodríguez (2019) that the jet is generated by an inertial mechanism (but
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where viscosity can significantly influence the process; see discussion below). Notably,
our initial condition does not generate a precursor capillary wave train (see figure 2d–g)
allowing us to identify the wave whose focusing generates the dimple and the jet in our
simulations. We note that precursor ripples are typically absent in a bubble only when
the viscosity is sufficiently high (see figure 3 in Deike et al. (2018) or figure 4b in
Gordillo & Rodríguez-Rodríguez (2019)). As expected, our minimal model has limitations,
particularly due to the neglect of viscosity (but also gravity, see below). From the results
of Duchemin et al. (2002) and the subsequent numerical and experimental phase boundary
on the Oh and Bo plot reported by Walls, Henaux & Bird (2015), the following important
points emerge (for a bubble of equivalent radius R̂c, we define Bond number Bo ≡ ρgR̂2

c/T
and Ohnesorge number Oh ≡ μ/ρTR̂c Walls et al. (2015)):

(i) No jet drops are produced from sufficiently large bubbles (Bo > 3) even in the
inviscid (Oh = 0) limit.

(ii) At any finite viscosity, sufficiently small bubbles (e.g. those satisfying Oh > 0.037
and Bo ≈ 10−3) do not eject droplets and presumably no jets as well.

(iii) Even at Bo → 0, the fastest jets are produced at finite and not zero viscosity, i.e. there
is a critical Ohnesorge number at which the jet velocity is maximum (Duchemin
et al. 2002; Gordillo & Rodríguez-Rodríguez 2019).

In analogy with bubble bursting simulations, we may also define a Bond number based
on the wavelength of our initial perturbation, viz. BoB ≡ ρgλ̂2/T , and an Ohnesorge
number OhB ≡ μ/ρTλ̂ (the subscript ‘B’ for Bessel). An approximate expression relating
λ̂ to the parameter lq and the radius of the container R̂0 has been discussed in the
introduction to this study. Our current results without viscosity or gravity thus correspond
to the limit OhB → 0, BoB → 0. As we argue below (see next paragraph), λ̂ in our
simulations behaves like the bubble radius R̂c, and we thus expect proportionality between
the two sets of non-dimensional numbers, viz. BoB ∝ Bo and OhB ∝ Oh. Thus our results
are consistent with those of Walls et al. (2015) (their figure 4), where, on their Bond
number versus Ohnesorge number plane, the Oh → 0, Bo → 0 limit lies within the jetting
(jet drop) region. Additionally, a quantitative explanation of why sufficiently large bubbles
(the first point above) do not produce drops (or even jets) may also be obtained from our
theory, as we explain next.

Refer to figures 8(a) and 8(b), where we compare the cavity that is generated from
the initial condition in our numerical simulations to a bubble cavity generated by
solving the Young–Laplace equations (Berny et al. 2020) without the bubble cap. It is
visually apparent that the wavelength λ̂ for the cavity generated from our perturbation is
qualitatively like the effective diameter 2R̂c of a bubble cavity (based on the volume of
an equivalent sphere), while the amplitude â0 for our cavity (generated from a Bessel
mode) is akin to the submergence depth Zc of the bubble (Puthenveettil et al. 2018).
Consequently, the ratio Ẑc/2R̂c for a submerged static bubble behaves like the steepness
parameter ε ≡ â0lq/R̂0 for our initial perturbation. For a static bubble, Ẑc/R̂c is uniquely
determined by the Bond number and, as Bo is increased, Ẑc/R̂c decreases monotonically
(the static bubble becomes larger, deforms radially and protrudes out of the liquid more and
more as Bo increases; see figure 5 in Walls et al. (2015)). This implies that, with increasing
Bond number, the equivalent ε for a bubble tends to zero, which is the linear limit in our
theory, where jetting is not observed. It may thus be anticipated that, at large Bond number,
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a relatively large and radially extended bubble generates a spectrum of capillary waves
(after bursting) whose subsequent time evolution is well described by linear superposition.
As this is a linear description, there is no dimple or jet formed from such a bubble, thereby
explaining why large bubbles fail to produce jet drops.

Our theory cannot, however, rationalise the last of the two aforementioned points
because these relate to viscosity. We note here that, while the divergence of curvature is
sufficient in our model to trigger the dimple, in reality, viscous dissipation also diverges at
the symmetry axis as wave focusing proceeds in time. This has been demonstrated clearly
by Boulton-Stone & Blake (1993) (their figure 11c,d). As our theory does not model this
phenomenon, it cannot describe the critical Ohnesorge number(s) where jetting peaks
or ceases. As a first step towards a viscous description employing our initial condition,
we have also conducted viscous simulations presented in the Appendix. Note that, in a
confined simulation geometry such as ours, it is inconsistent to have a viscous simulation
with a moving contact line due to the associated singularity (Huh & Scriven 1971). To
alleviate this issue, we have conducted simulations employing eigenmodes which have
been obtained from pinning the interface at the cylinder wall. For a partially liquid-filled
circular cylinder with a flat interface pinned at the cylinder wall, the radial eigenmodes
have been recently reported in Shao et al. (2021). As shown in figure 9(a), we choose the
15th axisymmetric eigenmode obtained by following the calculation in Shao et al. (2021).
This eigenmode is provided as an initial surface perturbation with a sufficiently large
perturbation amplitude to our viscous Navier–Stokes solver. It is seen from figure 9(a–d)
that, in qualitative agreement with the inviscid simulations presented earlier employing
Bessel modes, the pinned viscous simulation also shows a clear dimple and subsequent
jet. The theoretical analysis of this situation using a weakly nonlinear viscous theory is
underway and will be reported subsequently.

In conclusion, we have employed a single Bessel mode to produce dimples in the
weakly nonlinear regime and jets in the strongly nonlinear regime. The choice of initial
condition is crucial, as it allows us to theoretically explain wave focusing and radial inward
motion of the capillary humps in terms of (nonlinear) generation of new eigenmodes.
Our first-principles calculation establishes that a minimal nonlinear inviscid irrotational
model with capillary forces only can demonstrate dimple and jet formation. Both viscosity
and gravity, however, retain strong influences, especially when 0.001 < Oh < 1 and
0 < Bo < 1, a range that is very important for bursting bubbles at a liquid–gas free surface.
The inviscid self-similarity observed in our simulations retains memory of boundary and
initial parameters, in contrast to that observed in capillary pinch-off of an axisymmetric
drop, where memory of initial parameters is lost (Day, Hinch & Lister 1998).

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.854.
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Appendix

Please see figures 9 and 10 below, where the pinned, viscous simulations described in the
main text are presented.
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Figure 9. (a–d) Simulation is initiated using the 15th radial axisymmetric eigenmode with amplitude
â0 = 0.0018 cm employing a pinned boundary condition at the cylinder wall. Here R̂0 = 0.4 cm, μ = 0.89 cP
and T̂ is the linear time period. The four panels do not show the entire radial extent of the domain. Green arrows
depict the instantaneous direction of motion of the interface.
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Figure 10. The interface pinned at the wall of the container at r̂ = 0.4 cm at various instants of time
corresponding to the simulation presented in figure 9.
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