Corrigenda

Volume 97 (1985), 357-379 and 541-549

'Asymptotic shapes of inflated noncircular elastic rings'
and
'Asymptotic shapes of inflated spheroidal nonlinearly elastic shells'

By STUART S. ANTMAN
Department of Mathematics, University of Maryland, College Park, MD 20742, USA
and M. CARME CALDERER
Department of Mathematics, University of Delaware, Newark, DE 19717, USA

(Received 12 August 1986)
Formulae (2.12) of both papers, giving an expression for the curvature $\bar{\kappa}$, are wrong. To correct them, let $\omega(s)$ be the angle between $\overline{\mathbf{r}}^{\prime}=\bar{\nu} \mathbf{a}+\eta \mathbf{b}$ and \mathbf{i}. Then

$$
\begin{equation*}
\tan \omega=\frac{\bar{v} \sin \theta+\eta \cos \theta}{\bar{v} \cos \theta-\eta \sin \theta} \tag{A}
\end{equation*}
$$

$$
\begin{equation*}
\bar{\kappa}=\frac{\omega^{\prime}}{\left(\bar{\nu}^{2}+\eta^{2}\right)^{\frac{1}{2}}}=\frac{\theta^{\prime}}{\left(\bar{\nu}^{2}+\eta^{2}\right)^{\frac{1}{2}}}+\frac{\bar{\nu} \eta^{\prime}-\eta \bar{\nu}^{\prime}}{\left(\bar{\nu}^{2}+\eta^{2}\right)^{\frac{3}{2}}}, \tag{B}
\end{equation*}
$$

whence formulae ($3 \cdot 2$) of both papers imply that

$$
\begin{equation*}
\kappa=\frac{\theta^{\prime}}{\left(\nu^{2}+\epsilon^{2} \eta^{2}\right)^{\frac{1}{2}}}+\frac{\epsilon\left(\nu \eta^{\prime}-\eta \nu^{\prime}\right)}{\left(\nu^{2}+\epsilon^{2} \eta^{2}\right)^{\frac{1}{2}}} . \tag{C}
\end{equation*}
$$

Formula (C) corrects the erroneous expression for κ by adding the second term on the right-hand side of (C). Since this term is of order ϵ, the analysis in the remainder of both papers is unaffected by this correction. (The analyses of higher-order terms do not include a study of corrections to the curvature.)

