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Three-dimensional panel models are widely used in empirical analysis. Researchers
use various combinations of fixed effects for three-dimensional panels while the
correct specification is unknown. When one imposes a parsimonious model and the
true model is rich in complexity, the fitted model inevitably incurs the consequences
of misspecification including potential bias. When a richly specified model is
employed and the true model is parsimonious, then the consequences typically
include a poor fit with larger standard errors than necessary. It is therefore useful
for researchers to have good model selection techniques that assist in determining
the “true” model or a satisfactory approximation. In this light, Lu, Miao, and Su
(2021, Econometric Reviews 40, 867–898) propose methods of model selection.
We advance this literature by proposing a method of post-selection inference for
regression parameters. Despite our use of the lasso technique as the means of model
selection, our assumptions allow for many and even all fixed effects to be nonzero.
This property is important to avoid a degenerate distribution of fixed effects which
often reflect economic sizes of countries in gravity analyses of trade. Using an
international trade database, we document evidence that our key assumption of
approximately sparse fixed effects is plausibly satisfied for gravity analyses of trade.
We also establish the uniform size control over alternative data generating processes
of fixed effects. Simulation studies demonstrate that the proposed method is less
biased than under-fitting fixed effect estimators, is more efficient than over-fitting
fixed effect estimators, and robustly allows for inference that is as accurate as the
oracle estimator.
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1. INTRODUCTION

Consider the three-dimensional panel model

yijt = x′
ijtβ +αi +γj +λt︸ ︷︷ ︸

Fixed Effects

+εijt (1.1)

for (i,j,t) ∈ {1, . . . ,N} × {1, . . . ,M} × {0, . . . ,T}, where yijt denotes an outcome
variable of unit (i,j) at time t, xijt denotes k-dimensional explanatory variables of
unit (i,j) at time t, and αi, γj, and λt are fixed effects associated with indices i,
j, and t, respectively. To fix ideas, consider the gravity model (Tinbergen, 1962)
from the empirical trade literature where yijt denotes the logarithm of the volume
of exports from country i to country j in year t, and the k-dimensional covariates
xijt contain observed characteristics of the trade pair (i,j) in year t, including the
log Gross Domestic Product (GDP) of country i in year t (GDPit), the log GDP of
country j in year t (GDPjt), the log distance between countries i and j (DISTij), and
a dummy variable capturing the presence of a bilateral trade agreement between
countries i and j (TAij), among others. The fixed effects, αi, γj, and λt, represent
the unobserved exporting country effects, destination country effects, and year
effects, respectively. Researchers are often interested in the coefficient of DISTij

interpreted as the trade elasticity or the trade cost. Another important parameter of
empirical interest is the coefficient of TAij interpreted as the effect of bilateral trade
agreements on trade volumes. See Head and Mayer (2014) for a comprehensive
review of gravity analysis.

To date, variants of the three-dimensional panel model (1.1) have been exten-
sively used in empirical analysis of international trade (see Baltagi, Egger, and
Erhardt, 2017 for a survey), housing (see Baltagi and Bresson, 2017 for a survey),
migration (see Ramos, 2017 for a survey), and consumer prices. In these analyses,
researchers employ various combinations of fixed effects, including (I) αi +γj, (II)
αi +γj +λt, and (III) αit +γjt, among others.1 See Balazsi, Matyas, and Wansbeek
(2017), Tables 1.1–1.3) for a comprehensive list of empirical papers and their
specifications of the combinations of fixed effects. Typically, researchers do not
know which combination of fixed effects correctly specifies the model of their
interest. If the true model is parsimonious and a researcher erroneously assumes a
rich specification, then naïve fixed effect estimators generally entail exacerbated
variances. On the other hand, if the true model is rich and a researcher erroneously
assumes a parsimonious specification, then naïve fixed effect estimators generally
entail misspecification biases. The lack of knowledge of the true model specifica-
tion therefore leads to undesired econometric results in any event.

1Parameters β of certain types of controls are not identified under more general combinations of fixed effects.
For example, the coefficients of GDPit and GDPjt are not identified under the fixed effect model (III) due to the
collinearity. However, the coefficients of DISTij and TAij would be identifiable under any of the three models. In
empirical analysis of bilateral trade flows, the latter two coefficients are of more common interest. In fact, substituting
fixed effects (such as αit and γjt) for observed proxies (such as GDPit and GDPjt) is “now common practice and
recommended by major empirical trade economists” (Head and Mayer, 2014) because GDP is often inaccurately
measured especially for poor countries.
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A recent paper by Lu, Miao, and Su (2021) develops a method of model
selection—also see Lu and Su (2020). Their method provides useful guidance to
empirical researchers aiming to choose the correct combination of fixed effects
in three-dimensional panel models. When a researcher uses a selected model to
compute estimates of β and their standard errors, it is also important that she
takes into account the statistical effects of the model selection. To the best of
our knowledge, the existing literature does not provide a method of post-selection
inference for three-dimensional panel models. In this light, we extend the frontier
of this existing econometric literature (Lu, Miao, and Su, 2021) by providing
a method of inference for β accounting for the effect of the model selection.
To this end, we make use of the lasso technique along with de-biasing. Our
method, however, does not require exactly sparse fixed effects. In other words,
our assumptions allow for many and even all of the fixed effects to be nonzero in
a general combination of fixed effects. Furthermore, we argue in Section 7.1 that
the approximately sparse fixed effects are plausible in gravity analysis based on
world trade data.

All Models Are Wrong: We use such terminologies as “correct specifications”
and “true models” throughout the paper following the convention in the literature.
However, we want to acknowledge a common aphorism in statistics that “all
models are wrong” (Box, 1976), and a reasonable position that there may be no true
model in the probability space considered by econometricians (Phillips, 2005). Our
use of the naïve terminologies is for the sake of succinctness, but we emphasize
that these qualifications need to be borne in mind.

Related Literature: A three-dimensional panel model was suggested by
Mátyás (1997) for gravity analysis. The literature on multidimensional panels
is extensive, and is surveyed in the article collection edited by Mátyás (2017). Its
chapter written by Baltagi, Egger, and Erhardt (2017) provides a comprehensive
list of empirical research papers employing multidimensional panel models.

Methods of model selection in three-dimensional panels are developed by Lu,
Miao, and Su (2021) and this contribution serves as the primary motivation for
our paper. As stated earlier, we aim to extend this frontier of the literature by
developing post-selection inference for the regression parameters. We emphasize
that this is a nontrivial contribution to the literature, as consistent model selection
does not guarantee that it has no effect on the subsequent inference and postmodel-
selection estimators are often irregular (Leeb and Pötscher, 2005).

We use the lasso technique for model selection and post-selection inference,
but our assumptions do allow for all fixed effects to be nonzero. This is because
we rely on the approximate sparsity condition as opposed to the exact sparsity.
Post-selection inference via lasso is studied by an extensive body of literature in
various contexts. This literature includes, but is not limited to, Belloni et al. (2012)
for IV models, and Belloni, Chernozhukov, and Hansen (2014), Javanmard and
Montanari (2014)), van de Geer et al. (2014), Zhang and Zhang (2014), and Caner
and Kock (2018a) for linear regression models, and by Belloni et al. (2018) and
Caner and Kock (2018b) for generalized method of moments.
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Lasso estimation for panel models is suggested by Koenker (2004), Galvao and
Montes-Rojas (2010), Lamarche (2010), Kock (2013), Caner and Han (2014), Lu
and Su (2016), Li, Qian, and Su (2016), Qian and Su (2016), and Caner, Han,
and Lee (2018)), among others. Classification and estimation by lasso for panel
models is proposed by Su, Shi, and Phillips (2016)—also see Lu and Su (2017),
Su and Ju (2018), and Su, Wang, and Jin (2019). For post-selection inference with
panel data using lasso, Belloni et al. (2016) work with de-meaned fixed effect
models with high-dimensional controls using a postdouble-selection estimator.
Kock (2016) and Kock and Tang (2019) work with correlated random effect panel
models and dynamic panel models with sparse fixed effects via de-biased lasso,
respectively. We extend the frontier of this literature to three-dimensional panels. In
addition to studying three-dimensional panels instead of two-dimensional panels,
this paper differs from Kock (2016) and Kock and Tang (2019) in the following
four technical points. First, we extend the theory of nodewise lasso by allowing for
different convergence rates and thereby incorporate a larger class of fixed effect
models. Second, we use a different proof strategy with the sparsity requirement of
ssl(log(p ∨ (NM)))2/(N ∧ M) = o(1) inspired by Belloni et al. (2012, Lemma 8),
whereas an adaptation of the proof strategies of Kock (2016)2 and Kock and Tang
(2019)3 to our framework would require ss2

l (log(p ∨ (NM)))2/(N ∧ M) = o(1).
This feature further extends the class of models that can be handled under our
framework. Third, the subgaussianity assumption of covariates, which is assumed
by the majority of papers in the de-biased lasso literature, is not required. Fourth,
we allow for nonsparse coefficients based on the notion of approximate sparsity
following that of Belloni et al. (2012) instead of the Lv sparsity for 0 < v < 1 as in
Kock and Tang (2019). We take advantage of the existing techniques of Caner and
Kock (2018a) and Kock and Tang (2019) in establishing the uniform size control
property over alternative data generating processes of fixed effects.

With all these technical relations to the existing literature, we once again
emphasize that our main contribution is a method for robust inference in the context
of three-dimensional panels. Unlike two-dimensional panels, there are a number of
alternative combinations of fixed effect specifications in three-dimensional panels,
and hence model selection is more important in these models (Lu, Miao, and Su,
2021). We apply and extend state-of-the-art technology (e.g., Belloni et al., 2012;
Kock, 2016; Kock and Tang, 2019) to this three-dimensional panel framework
common to many applied settings.

Notation: We introduce the following notation. 1n denotes an n-dimensional
vector of ones. a∨b = max{a,b} and a∧b = min{a,b}. || · ||0 denotes the support
cardinality (the L0 norm), || · ||1 denotes the L1 norm, || · || denotes the Euclidean
norm, and || · ||∞ denotes the (essential) supremum. Xn � Y indicates weak
convergence, and Xn = op(Yn) indicates that Xn/||Yn|| converges in probability to

2See Assumption A3 (b) of Kock (2016).
3See Assumption 5 (c) of Kock and Tang (2019).
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zero. For a given integer p and l ∈ {1, . . . ,p}, let el denote the column vector of the
lth standard basis .

Organization: The rest of this paper is organized as follows. We introduce the
model framework in Section 2. An overview of our proposed method is presented
in Section 3. The main theoretical result is presented in Section 4, followed
by sufficient conditions discussed in Section 5. We conduct simulation studies
in Section 6. We discuss the key assumption in the context of gravity analysis
of international trade and then apply our proposed method to empirical data in
Section 7. Section 8 concludes the paper. Supplementary Material to this article
is available online. It contains auxiliary lemmas for the theoretical results and
additional simulation results.

2. THE MODEL FRAMEWORK

Consider the following representation of a general class of three-dimensional panel
models with large N and large M.

yijt = x′
ijtβ +

N∑
i′=1

αi′1i=i′ +
M∑

j′=1

γj′1j=j′ +
T−1∑
t′=1

λt′1t=t′

+
N∑

i′=1

T−1∑
t′=1

αi′t′1i=i′1t=t′ +
M∑

j′=1

T−1∑
t′=1

γj′t′1j=j′1t=t′ + εijt (2.1)

This representation consists of a k-dimensional parameter vector β, N-dimensional
parameter vector α[N] = (α1, . . . ,αN)′, M-dimensional parameter vector γ[M] =
(γ1, . . . ,γM)′, (T − 1)-dimensional parameter vector λ[T−1] = (λ1, . . . ,λT−1)

′,
N(T − 1)-dimensional parameter vector α[N(T−1)] = (α11, . . . ,αN(T−1))

′, and
M(T − 1)-dimensional parameter vector γ[M(T−1)] = (γ11, . . . ,γM(T−1))

′. In total,
there are k +N +M + (T −1)+N(T −1)+M(T −1) parameters involved in this
representation (2.1). We remark that the summations over t′ run from 1 to T −1 to
avoid the perfect multicollinearity among the time fixed effects.

Recall that conventional fixed effect models include

(I) αi +γj,
(II) αi +γj +λt, and

(III) αit +γjt,

among others. Model (I) entails k + N + M possibly nonzero parameters
(β ′,α′

[N],γ
′
[M])

′, while the rest of the (T − 1) + N(T − 1) + M(T − 1) parameters
(λ′

[T−1],α
′
[N(T−1)],γ

′
[M(T−1)])

′ are all zero. Similarly, Model (II) entails k+N +M +
(T − 1) possibly nonzero parameters (β ′,α′

[N],γ
′
[M],λ[T−1])

′, while the rest of the
N(T − 1) + M(T − 1) parameters (α′

[N(T−1)],γ
′
[M(T−1)])

′ are all zero. Likewise,
Model (III) entails k + N(T − 1) + M(T − 1) possibly nonzero parameters
(β ′,α′

[N(T−1)],γ
′
[M(T−1)])

′, while the rest of the N + M + (T − 1) parameters
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(α′
[N],γ

′
[M],λ

′
[T−1])

′ are all zero. Furthermore, the representation (2.1) includes
many combinations other than these three models.

When Model (I) is true, for example, then the representation (2.1) has
(T − 1) + N(T − 1) + M(T − 1) redundant parameters and hence estimating
the model (2.1) generally yields much larger standard errors for the parameters
β of interest than necessary. This motivates the need for model selection. We
propose to use the lasso to select such redundant fixed effect parameters out of
the representation (2.1), and then conduct inference robustly accounting for the
statistical effects of model selection.

Remark 1. The representative model (2.1) appears to be redundant, and all of
Models (I)–(III) can be succinctly represented by Model (III), i.e.,

yijt = x′
ijtβ +

N∑
i′=1

T∑
t′=1

αi′t′1i=i′1t=t′ +
M∑

j′=1

T∑
t′=1

γj′t′1j=j′1t=t′ + εijt. (2.2)

Therefore, the method that we present in this paper can be conducted based on
(2.2) as well as (2.1). However, we emphasize important advantages of using
the representation (2.1). When the true model is Model (I), for instance, the
parsimonious representation (2.2) will select as many as (N + M)(T − 1) fixed
effects, α[N(T−1)] and γ[M(T−1)], whereas the representation (2.1) will select only
N +M fixed effects, α[N] and γ[M]. Therefore, the representation (2.1) allows for a
much smaller number of regressors in the post-lasso selection, leading to preferred
asymptotic properties. A similar remark applies to the case where the true model
is Model (II). �

For ease of conducting econometric analysis, we further rewrite the representa-
tion (2.1) as

yijt = x′
ijtβ +d′

1,itα +d′
2,jtγ + εijt, (2.3)

where xijt = (x′
ijt,1t=1, . . . ,1t=T−1)

′ and β = (β ′,λ1, . . . ,λT−1)
′ are of dimen-

sion k0 = k + (T − 1), d1,it = (1i=1, . . . ,1i=N,1i=11t=1, . . . ,1i=N1t=T−1)
′ and

α = (α′
[N],α

′
[N(T−1)])

′ are of dimension N0 = N + N(T − 1), and d2,jt =
(1j=1, . . . ,1j=N,1j=11t=1, . . . ,1j=M1t=T−1)

′ and γ = (γ ′
[M],γ

′
[M(T−1)])

′ are of
dimension M0 = M +M(T −1).

Suppose that we can decompose the fixed effects α into α and α − α and
decompose the fixed effects γ into γ and γ −γ so that

‖α‖ is bounded and
N∑

i=1

M∑
j=1

T−1∑
t=1

(
d′

1,it (α −α)
)2 � ‖β‖0 +‖α‖0 +‖γ ‖0 (2.4)

and

‖γ ‖ is bounded and
N∑

i=1

M∑
j=1

T−1∑
t=1

(
d′

2,it (γ −γ )
)2 � ‖β‖0 +‖α‖0 +‖γ ‖0 (2.5)
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hold, where we recall that ‖·‖0 denotes the support cardinality (the L0 norm).4 Such
a decomposition is constructed by setting α� equal to α� for those coordinates �

for which |α�| is large and setting α� equal to zero for those coordinates � for
which |α�| is small, and similarly for γ . Consequently, we can further rewrite the
representation (2.3) as

yijt = x′
ijtβ +d′

1,itα +d′
2,jtγ + rijt + εijt,

where rijt is the approximation error defined by

rijt = d′
1,it (α −α)+d′

2,jt (γ −γ ),

which satisfies

N∑
i=1

M∑
j=1

T−1∑
t=1

r2
ijt � ‖β‖0 +‖α‖0 +‖γ ‖0 .

Stacking the three-dimensional panel data across the NMT observations, we in
turn construct the matrix representation

Y = Xβ +D1α +D2γ +R+ ε = Zη+R+ ε, (2.6)

where Y = (y111, . . . ,yNMT)′, R = (r111, . . . ,rNMT)′, and ε = (ε111, . . . ,εNMT)′, are
vectors of dimension NMT , X = (x111, . . . ,xNMT)′ is a matrix of size NMT × k0,
D1 = (d1,11, . . . ,d1,NT)′ ⊗ 1M is a matrix of size NMT × N0, D2 = 1N ⊗
(d2,11, . . . ,d2,MT)′ is a matrix of size NMT ×M0, Z = [X D1 D2], and η = [β ′ α′ γ ′]′
is a vector of dimension p = k0 + N0 + M0. k0, N0 and M0 can vary with sample
size unless otherwise stated.

To understand the requirement (2.4), let us assume that αit indicates the loga-
rithm of country is GDP adjusted by its price index. If we have a large number
of very small log GDPs, then we can set their αit to zero and treat their small
differences αit − αit as approximation errors. Since αit is not precisely zero and
there is heterogeneity in both country-level GDPs and price indices, allowing for
R 
= 0 accommodates a realistic scenario. The requirement that ||α|| is bounded in
(2.4) can be interpreted as a finite bounded sum of squares of these price-adjusted
GDPs worldwide.

Example 1. To better understand the decomposition of the fixed effects (FEs)
in (2.4)–(2.6), consider Model (I) with k0 = 0 for simplicity and the following two
fixed effect designs.

4With this said, we emphasize that this decomposition is merely theoretical, and a researcher need not implement
such a decomposition in practice. Precise requirements for the decomposition are stated in Assumptions 2 and 5 (4)
ahead, followed by a discussion in Remark 4 in the context of our motivating application (1.1). In Section 7.1, we
use world trade data to argue that these assumptions are plausible in the application (1.1).
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1. (Exactly sparse FE) αi = 1/
(
i · (log(i+1))3/2

)
for all i ∈ {1, . . . ,�CαN1/3�},

αi = 0 for all i ∈ {�CαN1/3� + 1, . . .}, γj = 1/
(
j · (log(j+1))3/2

)
for all

j ∈ {1, . . . ,�Cγ M1/3�}, and γj = 0 for all j ∈ {�Cγ M1/3� + 1, . . .}, where Cα

and Cγ are some positive constants.
2. (Approximately sparse FE) αi = 1/

(
i · (log(i+1))3/2

)
for all i ∈ N and

γj = 1/
(
j · (log(j+1))3/2

)
for all j ∈ N.

Under the exactly sparse FE, let αi = αi for all i ∈ N and let γ j = γj for all
j ∈N. Since ||α|| and ||γ || are bounded and α−α = γ −γ = 0, this decomposition
satisfies (2.4) and (2.5). Under the approximately sparse FE, let αi = αi for
all i ∈ {1, . . . ,�CαN1/3�}, αi = 0 for all i ∈ {�CαN1/3� + 1, . . .}, γ j = γj for all
j ∈ {1, . . . ,�Cγ M1/3�}, and γ j = 0 for all j ∈ {�Cγ M1/3�+1, . . .}, where Cα and Cγ

are some positive constants. Since ||α||, ||γ ||, and ||R|| are bounded while ||α||0
and ||γ ||0 diverge, this decomposition also satisfies (2.4) and (2.5). We will revisit
this example more formally in Section 5. On the other hand, the following fixed
effect design is ruled out by the above decomposition.

3. αi = (−1)i for all i ∈ N and γj = (−1)j for all j ∈ N.

In order to achieve a bounded ||α|| as in (2.4), αi has to diminish at the rate of
1/(

√
i log(i)1/2+δ) after rearrangement for some δ > 0. But this forces ||R|| to grow

at the rate of
√

N under this fixed effect design, whereas we require ||R|| to be of
order ||α||0 in (2.4) (which in turn should be of a strictly smaller order than

√
N by a

formal assumption to be stated ahead). More generally, fixed effects generated i.i.d.
from a nondegenerate distribution are not accommodated by the decomposition. �

If the true model is parsimonious, like Model (I), then a large number of the
elements of the high-dimensional parameters, α and γ , will be zero. Thus, a large
number of the elements of α and γ will be zero. Furthermore, for those coordinates
of α and γ that are small in absolute value, the corresponding coordinates of
α and γ are set to zero in the decomposition in light of the relatively smaller
approximation errors caused by setting them to zero. We propose to use the
lasso technique to select such redundant parameters in α and γ out of this high-
dimensional model as the means of model selection for the purpose of obtaining
smaller standard errors. Furthermore, accounting for the statistical effects of this
model selection, we then conduct robust inference for the main parameters β in the
panel model. Section 3 illustrates an overview of our proposed method. A formal
theoretical analysis will then follow in Sections 4 and 5.

3. OVERVIEW OF THE METHOD: PRACTICAL GUIDE
OF IMPLEMENTATION

Our proposed method consists of four steps. The first step is a lasso estimation of
the parameter vector η entailing model selection. The second step is an auxiliary
step to calculate an approximate inverse of the Gram matrix to be used in the
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subsequent two steps. The third step de-biases the regularized lasso estimate from
the first step. The fourth step is a calculation of the asymptotic variance of the
de-biased lasso estimator of β.

Step 1: For the representative equation (2.6), define the lasso estimator

η̂ ∈ arg min
η∈Rp

‖Y −Zη‖2 +2μP(η), (3.1)

where μ ∈ [0,∞) is a regularization tuning parameter and the penalty function P
is defined by

P(η) = ∥∥ϒ̂1β
∥∥

1 + 1√
N

∥∥ϒ̂2α
∥∥

1 + 1√
M

∥∥ϒ̂3γ
∥∥

1

for some diagonal normalization matrix ϒ̂m and for each m ∈ {1,2,3}.5 In prac-
tice, the regularization tuning parameter μ can be chosen using cross validation
methods via software packages.

Step 2: The next step is an auxiliary process to obtain a p × p matrix 
̂ of the
approximate inverse of the Gram matrix to be used in Step 3. We define the
nodewise lasso estimator6

φ̂� ∈ arg min
φ∈Rp−1

{∥∥Z� −Z−�φ
∥∥2 +2μ�

node

∥∥∥∥ 1√
NM

S−�ϒ̂�
nodeφ

∥∥∥∥
1

}
(3.2)

of the �th column Z� of Z on all the other (p − 1) columns Z−� of Z for each
� ∈ {1, . . . ,p}, where μ�

node ∈ [0,∞) is a regularization tuning parameter, ϒ̂�
node

is some diagonal normalization matrix for each � ∈ {1, . . . ,p}, and S−� is the
(p − 1) × (p − 1) matrix obtained by removing the �th row and the �th column
of

S =
⎡⎣

√
NMIk0 0 0

0
√

MIN0 0
0 0

√
NIM0

⎤⎦ .

As above, the regularization tuning parameter μ�
node may be chosen using cross

validation methods via software packages.
Once the nodewise lasso estimates φ̂� are obtained, a p × p matrix 
̂ approxi-

mating the inverse Gram matrix can be constructed by

5See Remark B.1 in Appendix B.1 in the Supplementary Material.
6Similarly to the rate normalization factors N−1/2 and M−1/2 in (3.1), the role of matrix S−� is to adjust for differences
in effective sample sizes for the main covariates and different fixed effects. For the i-specific fixed effects, the effective
sample size is of the order O(M). In contrast, for each of the j-specific fixed effects, only O(N) of them are observed.
Without this rate adjustment matrix S, we would over-penalize the fixed effects. Note that, here we regress each
column on columns. These are transposes of rows in nodewise regression. The 
̂ in equation (3.3) is not symmetric,
but it converges to a symmetric limit in probability asymptotically.
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̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ̂ −2
1 0 · · · 0 0

0 τ̂ −2
2 0 0

...
. . .

...

0 0 τ̂ −2
p−1 0

0 0 · · · 0 τ̂ −2
p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −φ̂ 1
1 · · · −φ̂ 1

p−2 −φ̂ 1
p−1

−φ̂ 2
1 1 · · · −φ̂ 2

p−2 −φ̂ 2
p−1

...
. . .

...

−φ̂
p−1
1 −φ̂

p−1
2 · · · 1 −φ̂

p−1
p−1

−φ̂
p
1 −φ̂

p
2 · · · −φ̂

p
p−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(3.3)

with τ̂� given by

τ̂ 2
� = 1

NM

∥∥Z� −Z−�φ̂�
∥∥2 + μ�

node

NM

∥∥∥∥ 1√
NM

S−�ϒ̂�
nodeφ̂

�

∥∥∥∥
1

for each � ∈ {1, . . . ,p} where φ̂�
l denotes the lth coordinate of the nodewise lasso

estimate φ̂� for each � ∈ {1, . . . ,p} and l ∈ {1, . . . ,p−1}.
Step 3: Shrinkage by the regularization μP(η) forces a subvector of the lasso
estimates η̂ to be zero, and this mechanism serves as the means of model selection.
Since this regularization biases the second-stage lasso estimator η̂ , we further “de-
bias” it according to

η̃� = η̂ � + 1

NM

̂′

�Z′(Y −Z η̂ ), (3.4)

for each � ∈ [p], where 
̂� is the �th column of 
̂ and 
̂ is the p×p approximate
inverse Gram matrix constructed in Step 2. The subvectors of η̃ are denoted by

η̃ =
(
β̃

′
,α̃′,γ̃

)′
.

Step 4: The asymptotic variance of
√

NM
(
β̃� −β�

)
for � ∈ {1, . . . ,k0} is approxi-

mated by

V̂�� = 
̂′
�̂
̂�,

where 
̂� is defined in Step 3, ̂ is given by

̂ = 1

NM

N∑
i=1

M∑
j=1

(
T∑

t=1

Zijt̂εijt

)(
T∑

t=1

Zijt̂εijt

)′
,

and ε̂ijt is the residual from the lasso in Step 1.

Remark 2 (The De-biased Lasso). A derivation of the de-biased lasso (3.4)
follows naturally from the K.K.T. condition of equation (3.1). See Proof of
Theorem 1 for details.
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4. THE THEORY

In this section, we present the main theoretical results for the asymptotic normality
of the de-biased lasso estimator. Define the de-biased lasso estimator by

η̃ = η̂ + μ

NM

̂′P′( η̂ ), (4.1)

where P′ denotes the subgradient of P.

Remark 3. The de-biased lasso estimator η̃l = η̂ l + μ

NM 
̂′
lP

′( η̂ ) can also be
rewritten by replacing μP′( η̂ ) by Z′(Y −Z η̂ ) following the K.K.T. condition, i.e.,
η̃l = η̂ l + 1

NM 
̂′
lZ

′(Y −Z η̂ ). This representation yields the concrete de-biased lasso
formula proposed in (3.4). �

Recall that the subvectors of η̃ are denoted by η̃ = [β̃
′
,α̃′,γ̃ ]′, corresponding

to η = [β ′ α′ γ ′]′. This section presents a general limit distribution result for
each coordinate of the de-biased lasso estimator β̃ for the coefficients of xijt. We
focus on short panels with fixed T and large (N,M), although an extension to
large T cases may be feasible with alternative assumptions. While we maintain
high-level assumptions in the current section to allow for general applicability,
we will also provide lower-level sufficient conditions in Section 5.1 based on
common sampling assumptions made in the gravity analysis literature. Consider
the following assumption.

Assumption 1 (Asymptotic Normality). For all (N,M), there exists a p × p
matrix 
̂ such that the following conditions hold for an (N,M)-dependent choice
of μ as N,M → ∞.

(i) maxl∈[k0]

∣∣∣√NM
(

̂′

lZ
′Z
/

(NM)− e′
l

)
( η̂ −η)

∣∣∣ = op(1).

(ii) maxl∈[k0]

∣∣∣ 
̂′
lZ

′R
/√

NM
∣∣∣ = op(1).

(iii) For each l ∈ [k0], there exists Vll ∈ (0,∞) that can depend on (N,M) such that

V−1/2
ll 
̂′

lZ
′ε
/√

NM � N(0,1).

In the current general theoretical discussion, Assumption 1 merely requires the
existence of some 
̂l satisfying the three conditions, and does not say how it
should be constructed. Recall that the overview of the method in Section 3 suggests
a concrete way to construct such 
̂l. Section 5 ahead will discuss lower-level
sufficient conditions to guarantee that such a concrete construction of 
̂l satisfies
the three high-level conditions in Assumption 1. The following theorem provides
an asymptotic linear representation for the de-biased lasso estimator η̃ and the
asymptotic normality for β̃ l for each l ∈ [k0].
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THEOREM 1 (Asymptotic Normality). Suppose that Assumptions 1 (i) and (ii)
are satisfied. Then,

η̃l −ηl = 1

NM

̂′

lZ
′ε +op

(
1/

√
NM

)
for each l ∈ [p]. Furthermore, if Assumption 1 (iii) is also satisfied, then we have
√

NM(β̃ l −β l) � N(0,Vll)

for each l ∈ [k0].

A proof is found in Appendix B.1.

5. SUFFICIENT CONDITIONS, VARIANCE ESTIMATION, JOINT
INFERENCE, AND UNIFORMITY

In this section, we first propose lower-level sufficient conditions for the high-
level general statements in Assumption 1. These conditions provide a theoretical
guarantee for the practical procedure outlined in Section 3 to work. While the
general limit distribution result in Theorem 1 did not specify a concrete form
of the asymptotic variance Vll, the current section also provides a formula for it
under these sufficient conditions. Furthermore, we propose an analog variance
estimator V̂ll, and show its consistency under these sufficient conditions. We
also present as a corollary a theoretical guarantee for joint hypothesis testing
involving multiple parameters. Finally, given the asymptotic normality result and
the consistent variance estimation result, we establish the uniform size control
property.

For parsimony, we will assume ϒ̂1 = Ik0 , ϒ̂2 = IN0 , ϒ̂3 = IM0 and ϒ̂�
node =

Ip−1 for all � ∈ [k0] throughout this section, although these restrictions are not
at all essential—see Appendix B.1 in the Supplementary Material for essential
requirements. We also use the following notation to denote the supports of the
parameters: J1 = supp(β), J2 = supp(α), J3 = supp(γ ), and J = supp(η). Their
cardinalities are denoted by s1 = |J1|, s2 = |J2|, s3 = |J3|, and s = |J|. We note
that s is nondecreasing in N and/or M. Similarly to the decomposition (2.6) for the
main regression model, we also consider the decomposition

Z� = Z−�φ� +R� + ζ �, (5.1)

E[Z−�ζ �] = 0

for each coordinate � ∈ [k0] of the regressors.

5.1. Sufficient Conditions for Assumption 1

We present the sufficient conditions as five modules: Assumptions 2–6, listed
below.
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Assumption 2 (Approximate Sparsity). (1) ‖η‖ ≤ K. (2) ‖R‖ ≤ cs �
√

s with

probability 1−o(1). (3) ‖Z′R‖ = op

(√
NM

)
.

Recall that the fixed effects α are decomposed into α and α−α such that (2.4) is
satisfied, and the fixed effects γ are decomposed into γ and γ −γ such that (2.5)
is satisfied. These conditions, (2.4) and (2.5), are imposed to satisfy Assumption 2
(1) and (2). Assumption 2 (3) is a high-level condition that limits the growth rate of
the product of the data matrix and the approximation errors. It can be relaxed to a
weaker condition,7 but we present the current condition for ease of interpretation.
If there is no approximation error (i.e., R = 0), then Assumption 2 (2) and (3)
trivially holds, and a sufficient condition for Assumption 2 (1) is that Yijt has a
finite second moment.8 Note that we do not impose the orthogonality between Z−l

and rl in (4.1), and this is replaced by the weaker condition stated as Assumption 2
(3). That said, it is also plausible to assume that Z−l is orthogonal to rl in certain
applications—for example, because GDP or price does not directly feed back into a
distance measure in the gravity analysis of international trade—and Assumption 2
(3) can be trivially satisfied in such cases. We present concrete examples of fixed
effect designs that satisfy and fail to satisfy Assumption 2 in Example 2.

Remark 4 (Discussion of the Approximate Sparsity Condition). We emphasize
that the approximate sparsity condition in Assumption 2 (together with Assump-
tion 5 (4) to be stated below) allows for many and even all the fixed effects
(i.e., η as opposed to η) to be nonzero. The assumption should be interpreted
as a requirement for how the fixed effects can be decomposed into the sparse
components (α and γ ) and the remaining components (α − α and γ − γ ) gen-
erating R = D1 (α −α)+D2 (γ −γ ) . Indeed, the assumption implicitly imposes a
non-trivial restriction on sampling procedures. For example, an i.i.d. sampling of
fixed effects is not accommodated.9 This feature does not, however, contradict
our sampling assumption, which is stated below as Assumption 3. With this
said, the same limitations apply to all the preceding papers (cf. Section 1) that
employ (approximate) sparsity conditions on fixed effects in panel data. In fact,
approximate sparsity is a rather plausible assumption for the sampling process
in the context of our motivating application (1.1). In gravity analysis of trade,
researchers initially used only the G7 countries, later added the Organisation
for Economic Co-operation and Development (OECD) countries, and smaller
economies have been added more recently. Nearly half of all import and export
flows are determined by the top 10 largest economies. Newly added countries to
the sample tend to have very small trade volumes. This sampling process entails
fixed effects taking smaller values as sample size increases, and it therefore goes
along with the approximate sparsity requirement. �

7For example, sup ‖ξ‖=1
‖ξ‖0=Cs

‖ξ ′Z′R‖ = op(
√

NM) for some finite positive C.

8This follows from E[YY ′/NM] = η′E[ZZ′/NM]η+E[εε′/NM] ≥ �min(�)‖η‖2.
9An i.i.d. sampling of fixed effects would entail a fixed proportion of (approximately) nonzero fixed effects relative
to the sample size as the sample size increases, and this would contradict the (approximate) sparsity condition.
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Assumption 3 (Moments). For each (N,M), the random vectors (Y ′
ij1,Z

′
ij1, . . . ,

Y ′
ijT,Z

′
ijT)′, (i,j) ∈ [N] × [M], are independently distributed. Furthermore, there

exists q ∈ (4,∞) and K ∈ (0,∞) not depending on (N,M) such that the following
conditions hold for all l ∈ [k0].

(1)
(

1
NM

∑N
i=1

∑M
j=1 E

[
maxt≤T ‖Xijt‖2q

∞
])1/2q ≤ BNM and

(
E|Xijt,l|2q

)1/2q ≤ K

hold for all i,j,t,l, where BMN satisfies BNM

√
log(p∨ (NM)) � (NM)1/2−1/q;

(2) ‖(D1,D2)‖∞ = 1; and
(3) 1

NM

∑N
i=1

∑M
j=1

∑T
t=1 E[ε2q

ijt ]∨ 1
NM

∑N
i=1

∑M
j=1

∑T
t=1 E[(ζ l

ijt)
2q] ≤ K2q < ∞.

Discussions of this assumption are found in Remark 5 ahead. For any squared
matrix A, define the sparse eigenvalues by

ϕmin(A,m) = inf
‖ξ‖=1

‖ξ‖0≤m

ξ ′Aξ and ϕmax(A,m) = sup
‖ξ‖=1

‖ξ‖0≤m

ξ ′Aξ .

Define the p×p rate-adjusted Gram matrix

�̄ =

⎡⎢⎢⎢⎣
1

NM X′X 1
M

√
N

X′D1
1

N
√

M
X′D2

1
M

√
N

D′
1X 1

M D′
1D1

1√
NM

D′
1D2

1
N

√
M

D′
2X 1√

NM
D′

2D1
1
N D′

2D2

⎤⎥⎥⎥⎦ . (5.2)

Let [n] = {1, . . . ,n} for any n ∈ N. With this notation, we state the following
assumption of sparse eigenvalues for the rate-adjusted Gram matrix �̄.

Assumption 4 (Sparse Eigenvalues). For any C > 0, there exist constants
0 < k < k < ∞, which do not depend on (N,M), such that

k ≤ ϕmin(�̄,Cs) ≤ ϕmax(�̄,Cs) ≤ k

with probability approaching one.

A discussion of this assumption, jointly with Assumption 5, is found in Remark
5 ahead. Since the rate-adjusted Gram matrix �̄ has a specific structure consisting
of D1 and D2 that contain only zeros and ones as their elements, simpler statements
of sufficient conditions for Assumption 4 could be written only in terms of the
spectra of X. Variants of its sufficient conditions exist in the literature. For example,
suppose that ‖Xijt‖∞ is uniformly bounded almost surely and our Assumption
5 (3) holds, then sufficient conditions can be established by adapting Theorem
3.6 and its subsequent Lemmas in Rudelson and Vershynin (2008). That said, we
state the weaker statement as in Assumption 4 for the sake of generality. For each
(N,M), we write � = E[�̄] depending on (N,M). Using this notation, the auxiliary
decomposition (5.1) is made according to the following conditions.

Assumption 5 (Nuisance Parameters). The following conditions are satisfied.

(1) maxl∈[k0] ‖φl‖0 ≤ sl and maxl∈[k0] ‖φl‖+ (sl)
−1/2‖φl‖1 ≤ K;
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(2) For all l ∈ [k0], ‖Rl‖ ≤ csl �
√

sl;
(3) For all (N,M), 0 < L < �min(�) < �max(�) < U < ∞ for L, U independent

of (N,M); and

(4) maxl∈[k0](sl ∨ s)
√

(log(p∨(NM)))2

N∧M = o(1).

Accounting for possible dependence, we define the cluster-robust variance
matrix

 =E

⎡⎣ 1

NM

N∑
i=1

M∑
j=1

(
T∑

t=1

Zijtεijt

)(
T∑

t=1

Zijtεijt

)′⎤⎦ .

For each (N,M), we write 
 = (E[ Z′Z
NM ])−1 depending on (N,M). Let 
l denote the

lth column of 
. We state the following assumption of finite and nonzero variance.

Assumption 6 (Variance). For any (N,M) and for all l ∈ [k0], ‖‖ < ∞ and

′

l
l ≥ k > 0 for a constant k which is independent of the sample size.

Remark 5. Notice that the conditions above are imposed on the Gram matrices,
�̄ and �, re-weighted by effective sample size, rather than the original Gram
matrices, Z′Z/NM and E[Z′Z/NM]. Assumption 3 is weaker than the common
assumptions required in the literature, such as the subgaussianity or uniform
boundedness. With this said, we admit that Assumption 3 (1) would also imply
that the dimension of Xijt cannot increase too fast, which can be interpreted as
the price that we pay for not imposing the subgaussianity. Assumption 4 is also
assumed by Belloni et al. (2012) and Belloni et al. (2016). It requires some small
submatrices of the big p×p re-weighted Gram matrix to be well-behaved. Lower
level sufficient conditions are also possible by using Lemma P1 in Belloni et al.
(2018), but are not pursued here. Assumption 5 (1) and (2) impose sparsity on the
nodewise regression parameters and the approximation errors. Assumption 5 (1)

is equivalent to requiring the sparsity of rows of �−1. Assumption 5 (3) requires
�, the expectation of the re-weighted Gram matrix, to be positive definite uniform
over (N,M). These are rather standard in the literature. Assumption 5 limits the
models that can be handled in terms of their dimensionality and sparsity. Note that
we need only ssl(log(p ∨ (NM)))2/(N ∧ M) = o(1), whereas an adaptation of the
proof strategies of Kock (2016) and Kock and Tang (2019) to our framework would
entail ss2

l (log(p ∨ (NM)))2/(N ∧ M) = o(1). Finally, Assumption 6 requires  in
the sandwich form to be well-behaved. �

Example 2. Recall the exactly sparse FE and the approximately sparse FE from
Example 1. These two examples are admissible under our assumptions. In both of
these cases, let αi = αi for all i ∈ {1, . . . ,�CαN1/3�}, αi = 0 for all i ∈ {�CαN1/3�+
1, . . . }, γ j = γj for all j ∈ {1, . . . ,�Cγ M1/3�}, and γ j = 0 for all j ∈ {�Cγ M1/3�+
1, . . . }. In case (b), one can pick a pair of any arbitrary positive constants,
Cα and Cγ . Assumption 2 (1) follows from the fact that

∑∞
i=1 1/

(
i2 · log(i+1)3

)
is

finite. Assumption 2 (2) holds as ||R|| = 0 in case (a) and ||R|| is bounded in case
(b), while s diverges. Assumption 2 (3) holds under Assumption 3, since rijt = 0 in
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case (a) and supi,j,t |rijt| → 0 in case (b). On the other hand, the third fixed effect
design introduced in Example 1 is not accommodated by our assumptions. Recall:

3. αi = (−1)i for all i ∈ N and γj = (−1)j for all j ∈ N.

In order to achieve a bounded ||α|| to satisfy Assumption 2 (1), αi has to diminish

at the rate of 1/
(√

i log(i)1/2+δ
)

after rearrangement for some δ > 0. But this

forces ||R|| to grow at the rate of
√

N under this fixed effect design, whereas we
require ||R|| to be at most of order

√
N by Assumptions 2 (2) and 5 (4). Since

these requirements are not compatible, we rule out this fixed effect design. More
generally, fixed effects generated i.i.d. from a nondegenerate distribution are not
accommodated by our assumptions. �

The following proposition states that Assumptions 2–6 are sufficient for the
high-level conditions in Assumption 1, with a concrete variance formula moti-
vating the practical guideline of Section 3.

PROPOSITION 1. Assumptions 2–6 imply Assumption 1 with Vll = 
′
l
l.

A proof is found in Appendix B.2. Combining Theorem 1 and Proposition 1
together, we state the following corollary.

COROLLARY 1 (Asymptotic Normality). If Assumptions 2–6 are satisfied,
then

√
NM(β̃ l −β l) � N(0,Vll)

for each l ∈ [k0], where Vll = 
′
l
l.

5.2. Asymptotic Variance Estimation

Based on the asymptotic variance formula presented in Proposition 1, the cluster-
robust asymptotic variance of

√
NM

(
β̃� −β�

)
can be estimated by

V̂ll =
̂′
l̂
̂l,

as suggested in Section 3. This estimator is consistent under the current assump-
tions as formally stated in the following theorem.

THEOREM 2 (Variance Estimation). If Assumptions 2–6 are satisfied, then

max
l∈[k0]

∣∣V̂ll −Vll

∣∣ = op(1).

A proof is found in Appendix B.3.
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5.3. Joint Hypotheses Testing

In Corollary 1 and Theorem 2, one can replace (β̃l −βl) = e′
l(β̃ −β) by ρ ′(β̃ −β)

for any ρ = (ρ1, . . . ,ρk0)
′ ∈Rk0 with ‖ρ‖1 = 1 and we will still have the asymptotic

normality and consistency of the corresponding variance estimator. These results
facilitate joint hypothesis testing involving multiple parameters. Suppose that the
researcher is interested in testing the hypothesis H0 : H′β = θ0 for a vector θ0 ∈Rq

with fixed q where H is a k0 ×q matrix with rank q with each column Hj normalized
to ‖Hj‖ = 1. To this end, define the Wald test statistic by

W = NM(H′β̃ − θ0)
′
{
(H′,O′)
̂̂
̂′(H′,O′)′

}−1
(H′β̃ − θ0),

where O is an (N0 +M0)×q matrix of zeros. The following Corollary provides the
asymptotic distribution of this Wald test statistic.

COROLLARY 2 (Asymptotics of the Wald Test Statistic). Suppose that
Assumptions 2–6 are satisfied with k0 fixed and that 
X, the upper left k0 × k0

submatrix of 
, has its eigenvalues bounded and bounded away from zero. Then,
it holds that

√
NM{(ρ ′,o′)
̂̂
̂′(ρ ′,o′)′}−1/2ρ ′(β̃ − β) � N(0,1), where o =

(0, . . . ,0) ∈ RN0+M0 , and
∣∣∣(ρ ′,o′)
̂̂
̂′(ρ ′,o′)′ − (ρ ′,o′)

′(ρ ′,o′)′

∣∣∣ = op(1).

Hence,
W � χ2

q holds under the null hypothesis H0 : H′β = θ0.

The proof can be found in Appendix B.4.

5.4. Uniformity

We can further enhance the results of Corollary 1 and Theorem 2, so that they
hold uniformly over the set of η with sparse approximation η that lies in �0-ball
B�0(s) := {η ∈Rp : ‖η‖0 ≤ s}. The asymptotic normality result in Theorem 1 paves
the way for statistical inference given a fixed data generating process. Furthermore,
this result can be extended to a size control that is uniformly valid over alternative
sizes and over alternative data generating processes up to a given sequence of the
sparsity parameter. We state this uniformity result as a corollary below.

COROLLARY 3. If Assumptions 2–6 are satisfied, then

sup
a∈R

sup
η∈Rp:η∈B�0 (s)

∣∣∣∣∣P
(√

NM(β̂l −βl)

V̂1/2
ll

≤ a

)
−�(a)

∣∣∣∣∣ → 0

for each fixed l ∈ [k0]

Our proof follows similar strategies to those of Theorem 3 in Caner and Kock
(2018a) or Theorem 3 in Kock and Tang (2019), and can be found in Appendix B.5.
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6. SIMULATION STUDIES

6.1. Simulation Setting

Consider the following three fixed effect models of three-dimensional panel data.

Model (I): yijt = xijtβ +αi +γj + εijt,

Model (II): yijt = xijtβ +αi +γj +λt + εijt,

Model (III): yijt = xijtβ +αit +γjt + εijt.

Model (I) is nested by Model (II), and Model (II) is in turn nested by Model
(III). Therefore, Model (I) is the most parsimonious and subject to under-fitting,
whereas Model (III) is the richest and subject to over-fitting. If a researcher runs
a fixed effect estimator under Model (I) when Model (II) or (III) is true, then the
estimates generally suffer from misspecification biases. If a researcher runs a fixed
effect estimator under Model (III) when Model (I) or (II) is true, then the estimates
generally suffer from larger standard errors than necessary.

We run simulations for varying sizes of N and M = N − 1, while the length of
time is set to T = 5 throughout. This setting follows from our asymptotic theory
where N and M increase but T does not. The i and j fixed effects are generated by
αi = sα

/(
i · (log(i+1))3/2

)
and γj = sγ

/(
j · (log(j+1))3/2

)
, where sα = sγ = 1.

Notice that these fixed effects designs are introduced in Example 2 as concrete
examples that satisfy our approximate sparsity requirements. The t fixed effects
are generated by λt = 0 for all t but for one year t when a universal shock of λt = 2
is applied. The it and jt fixed effects are generated by αit = sα

/(
i · (log(i+1))3/2

)
and γjt = sγ

/(
j · (log(j+1))3/2

)
, where sα = sγ = 1. We generate X dependently

on the fixed effects according to the mixture

xijt = mx + sx · [(1−ρ) · x̃ijt +ρFijt
]
,

where mx = 0, sx = 2, ρ = 0.5, x̃ijt ∼ N(0,1), and Fijt is the standardized sum of
fixed effects for the unit (i,j,t), i.e.,

Under Model (I): Fijt = (
αi +γj

)/√√√√ 1

NM

N∑
i=1

M∑
j=1

(
αi +γj

)2
,

Under Model (II): Fijt = (
αi +γj +λt

)/√√√√ 1

NMT

N∑
i=1

M∑
j=1

T∑
t=1

(
αi +γj +λt

)2
,

Under Model (II): Fijt = (
αit +γjt

)/√√√√ 1

NMT

N∑
i=1

M∑
j=1

T∑
t=1

(
αit +γjt

)2
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for each (i,j,t) ∈ {1, . . . ,N}× {1, . . . ,M}× {1, . . . ,T}. The error term is generated
by εijt ∼ N(mε,s2

ε) independently where mε = 0 and sε = 10. The main coefficient
of interest is set to β = 1. Each set of simulations consists of 10,000 Monte Carlo
iterations of data generation, estimation, and inference.

We compare five methods of estimation and inference. These are the Ordinary
Least Squares (OLS) estimator without any individual fixed effects, the fixed effect
estimator based on Model (I), the fixed effect estimator based on Model (II), the
fixed effect estimator based on Model (III), and our proposed de-biased lasso
estimator and post-selection inference.10 Note that OLS is always under-fitting
the true data generating model, and hence is expected to produce misspecification
biases. The fixed effect estimator based on Model (I) is correctly specified when
the true data generating model is Model (I), but is under-fitting Models (II) and
(III). The fixed effect estimator based on Model (II) is over-fitting Model (I),
correctly specified when the true data generating model is Model (II), and under-
fitting Model (III). The fixed effect estimator based on Model (III) is over-fitting
Models (I) and (II), but is correctly specified when the true data generating model is
Model (III).

6.2. Simulation Results

Table 1 displays Monte Carlo simulation results under Model (I) (top panel), Model
(II) (middle panel), and Model (III) (bottom panel) with the sample size N = 200
(NMT = 1,900). Similarly, Tables D.1 and D.2 in the Supplementary Material
display Monte Carlo simulation results with the smaller sample sizes N = 10
(NMT = 450) and N = 15 (NMT = 1,050), respectively. The displayed statistics
are the averages, biases, standard deviations, and root mean squared errors of the
estimates. Also displayed are the coverage frequencies of the true value of β by the
95% confidence intervals. The first column of each table shows the OLS results
without any individual fixed effects. The next three columns of each table show
results of fixed effect estimators based on estimating equations of Models (I)–(III).
We shall call them FE-I, FE-II, and FE-III for succinctness. The last two columns
of each table show results of our proposed de-biased lasso estimator with valid
post-selection inference based on (2.1) and (2.2). We shall call them POST (2.1)
and POST (2.2) for succinctness.

In the top panel of Table 1, where the true data generating model is Model (I),
OLS is biased while FE-I, FE-II, and FE-III yield little bias. These results are
consistent with the current simulation setting as OLS misspecifies the true model
while FE-I, FE-II, and FE-III correctly specify the true model. The bias of POST
(2.1) is between that of OLS and those of FE-I, FE-II, and FE-III but much closer
to the latter group. In other words, POST (2.1) and POST (2.2) are de-biased to
a large extent but not to the full extent so that desired balance between the bias

10Throughout, we use cross validation to choose the tuning parameter. This is implemented by the cv.glmnet
function in R. For penalty weights, we set 1 for X, 1/

√
N for D1, and 1/

√
M for D2.
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Table 1. Monte Carlo Simulation Results Under Model (I) (Top Panel), Model
(II) (Middle Panel), and Model (III) (Bottom Panel) with Size N = 20 (NMT =
1,900).

True model = (I) Fixed effect estimators POST POST

N = 20 (NMT = 1,900) OLS FE-I FE-II FE-III (2.1) (2.2)

Under-fitting or over-fitting Under Correct Over Over Robust Robust

Average 1.256 1.000 0.999 0.998 0.981 1.027

Bias 0.256 0.000 −0.001 −0.002 −0.019 0.027

Standard deviation 0.165 0.233 0.233 0.243 0.205 0.206

Root mean square error 0.305 0.233 0.233 0.243 0.206 0.207

95% Coverage 0.656 0.946 0.945 0.934 0.956 0.957

True model = (II) Fixed effect estimators POST POST

N = 20 (NMT = 1,900) OLS FE-I FE-II FE-III (2.1) (2.2)

Under-fitting or over-fitting Under Under Correct Over Robust Robust

Average 1.255 1.257 0.999 1.003 1.037 1.051

Bias 0.255 0.257 −0.001 0.003 0.037 0.051

Standard deviation 0.170 0.219 0.233 0.243 0.209 0.210

Root mean square error 0.307 0.338 0.233 0.243 0.212 0.216

95% Coverage 0.676 0.777 0.945 0.933 0.953 0.951

True model = (III) Fixed effect estimators POST POST

N = 20 (NMT = 1,900) OLS FE-I FE-II FE-III (2.1) (2.2)

Under-fitting or over-fitting Under Under Under Correct Robust Robust

Average 1.425 1.395 1.302 0.999 1.049 1.051

Bias 0.425 0.395 0.302 −0.001 0.049 0.051

Standard deviation 0.173 0.180 0.194 0.243 0.218 0.214

Root mean square error 0.459 0.434 0.359 0.243 0.223 0.220

95% Coverage 0.306 0.399 0.647 0.934 0.944 0.943

and variance is maintained. OLS yields a smaller standard deviation than FE-
I or FE-II, and FE-III yields by far the largest standard deviation. These results
are also consistent with the fact that OLS is the most parsimonious while FE-III
is the most redundant in specification. The standard deviation of POST (2.1) is
between that of OLS and those of FE-I, FE-II, and FE-III. Furthermore, POST
(2.1) yields an even smaller root mean square error than the oracle estimator,
FE-I. The coverage frequency by FE-I, as the oracle estimator, is closer to the
nominal level 95% than those of OLS, FE-II, or FE-III. Furthermore, POST (2.1)
yields a coverage frequency as close to the nominal level as the oracle estimator,
FE-I.
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Table 2. Monte Carlo Fractions of Nonzero Estimates
of the Four Types of Fixed Effects, αi, γj, αit, and γjt,
Under Each of the Models (I), (II), and (III).

True model αi γj αit γjt

(I) 0.107 0.104 0.065 0.060

(II) 0.136 0.132 0.149 0.140

(III) 0.171 0.184 0.286 0.252

We can make similar observations both in the middle panel and in the bottom
panel of Table 1, where the true data generating models are Models (II) and (III),
respectively. To avoid repetitive writing, we relegate detailed discussion of these
simulation results to Appendix C in the Supplementary Material. Summarizing
these omitted details, we once again confirm superior simulation performance of
POST (2.1) over the respective oracle estimators in these two panels as well.

The simulation results reported above demonstrate that the proposed method
(POST (2.1)) can be used as a robustly applicable method of inference when a
researcher does not know the correct fixed effect specification in practice. POST
(2.1) is more precise than biased parsimonious estimators, is more efficient than
redundant estimators, and allows for at least as accurate inference as the oracle
estimator.

Finally, we report how many of each type of the fixed effects, αi, γj, αit, and γjt,
are selected to be zero/nonzero by POST (2.1) under each of the Models (I), (II),
and (III). Table 2 summarizes the fractions of nonzero estimates for each of the
four types of the fixed effects. Under Model (I), most (93–94%) of the αit and γjt

fixed effects are estimated to be exact zeros, as expected. Under Model (II), less
but still most (85–86%) of the αit and γjt fixed effects are estimated to be exact
zeros. Under Model (III), on the other hand, a much smaller fraction (71–75%) of
the αit and γjt fixed effects are estimated to be exact zeros, as expected.

6.3. Alternative Data Generating Processes

Following Examples 1 and 2, we employed a fixed effect design that satisfies our
decomposition and approximate sparsity assumption. Therefore, as expected from
the theory, we presented simulation results for the case in which our proposed
method works and exhibits robust and superior performance.

We also ran additional simulations based on alternative fixed effect designs.
The first alternative design is similar to our baseline design in the sense that
the scale diminishes at the rate of 1/

(
i · (log(i+1))3/2

)
, except that we allow for

stochastically generated fixed effects—see Appendix D.2.1 in the Supplementary
material. Simulation results are qualitatively very similar to those that we presented
above, and hence we draw the same conclusion that our proposed method exhibits
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robust and superior performance even if we allow for stochastically generated fixed
effects.

The second alternative design is based on the counter-example introduced in
Examples 1 and 2. Specifically, αi = (−1)i for all i ∈ N and γj = (−1)j for all
j ∈ N – see Appendix D.2.2 in the Supplementary Material. As emphasized in
Examples 1 and 2, this design violates our assumptions. Interestingly, however,
POST (2.1) still performs better than the other estimators in terms of the root mean
square error. On the other hand, the coverage accuracy by POST (2.1) is not as
good as that by the oracle estimator, as expected. We observe essentially the same
pattern of simulation results under the third alternative design, where the fixed
effects are generated i.i.d. from a nondegenerate distribution—see Appendix D.2.3
in the Supplementary Material.

7. GRAVITY ANALYSIS OF INTERNATIONAL TRADE

In this section, we present a gravity analysis of international trade. We retrieved
data from the International Monetary Fund (IMF’s), Direction of Trade Statistics
(DOTS) Database, a common source of trade flows and trade costs used in gravity
analysis. The DOTS data report exports and imports of merchandise goods by
import source and export destination. This is a standard source of trade flow
data used in gravity analysis—see Head and Mayer (2014). After removing
observations with zero trade volumes, our data set is an unbalanced panel of
103,502 bilateral trade pairs of 188 countries for the years 1995, 2000, 2005, 2010,
and 2015.

7.1. Sparsity of Fixed Effects

Since the number of bilateral observations is much larger than the number of
fixed effects, we may consistently estimate the fixed effects even under the richest
specification. In this light, we first use estimated fixed effects to examine the plau-
sibility of our key assumption of the approximately sparse fixed effects. Following
standard gravity equations, we include the logarithm of distance between the origin
i and destination j, a dummy variable taking the value of 1 if the origin i and
destination i are contiguous, and a dummy variable taking the value of 1 if the
origin i and destination j share a common language.

Figure 1 displays histograms of estimated fixed effects αit (left panel) and γit

(right panel) in absolute value. Both histograms graphically indicate that most
of the estimated fixed effects concentrate around zero. This pattern implies the
plausibility of our assumption of the approximate sparsity. Specifically, let αit =
αit if |αit| ≥ 1 and αit = 0 otherwise. Likewise, let γ it = γit if |γit| ≥ 1 and

γ it = 0 otherwise. Then, we have
∑N

i=1

∑M
j=1

∑T−1
t=1

(
d′

1,it (α −α)
)2 ≈ 135.102,∑N

i=1

∑M
j=1

∑T−1
t=1

(
d′

2,it (γ −γ )
)2 ≈ 166.684, and ‖β‖0 +‖α‖0 +‖γ ‖0 ≈ 481 (out

of the total of 1,884 dimensions). Therefore, the decompositions (2.4) and (2.5)
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Figure 1. Histograms of estimated fixed effects αit (left panel) and γit (right panel) in absolute value.

subject to Assumptions 2–5 are reasonable for this common international trade
data set used for gravity analysis.

7.2. Estimation and Inference

We next apply our proposed method of estimation and inference to this data set.
As in Section 7.1, we consider the standard gravity equation, which includes the
logarithm of distance between the origin i and destination j, a dummy variable
taking the value of 1 if the origin i and destination j are contiguous, and a dummy
variable taking the value of 1 if the origin i and destination j share a common
language. The estimate and its standard error are computed for each of these three
key regressors. We focus on POST (2.1) for its robust and superior performance
as demonstrated through our simulation studies in Section 6.11 While we present
results based on the entire data set consisting of the years 1995, 2000, 2005, 2010,
and 2015, we also present results based on two subsamples of the data set as well—
one is the subsample that consists of the years 1995 and 2000, and the other is the
subsample that consists of the years 2010 and 2015. The motivation to split the
data in this manner is to avoid pooling data across two possibly different structural
regimes divided by a number of historical events that happened during 2001–2009,

11As in simulations, we use cross validation to choose the tuning parameter. This is implemented by the cv.glmnet
function in R. For penalty weights, we set 1 for X, 1/

√
N for D1, and 1/

√
M for D2.
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Table 3. Estimates and their Standard Errors (in Parentheses) for Log Distance,
Contiguity, and Common Language in Gravity Analysis of International Trade.
The full sample consists of the years 1995, 2000, 2005, 2010, and 2015.

Dependent variable: Full 1995 & 2000 &

log trade volume sample 2000 2015

Log distance −1.677 −1.544 −1.713

(0.016) (0.023) (0.023)

Contiguity 0.901 0.791 0.852

(0.001) (0.002) (0.002)

Common language 0.746 0.765 0.769

(0.008) (0.009) (0.011)

Proportion of zero αi 0.005 0.000 0.005

Proportion of zero αit 0.081 0.170 0.218

Proportion of zero γj 0.016 0.011 0.021

Proportion of zero γjt 0.096 0.176 0.218

such as the accession of China to the World Trade Organization (WTO) in 2001
and the great recession of 2008 among others.

Table 3 summarizes the results. The first column shows the results based on the
full sample consisting of the years 1995, 2000, 2005, 2010, and 2015. The second
column shows the results based on the subsample consisting of the years 1995 and
2000. The third column shows the results based on the subsample consisting of
the years 2010 and 2015. Across all three sets of results, we make the following
three points of observations. First, the coefficient of log distance is significantly
negative. Specifically, a one percent increase in geographical distance results in
about a 1.5–1.7% reduction in trade volumes. Second, coefficients of contiguity
and common language are significantly positive. In other words, trade volumes
tend to be greater between pairs of countries that are contiguous and share a
common language.

Third, most of the αi and γj fixed effects are selected as nonzero effects,
while larger proportions of αit and γjt fixed effects are zero, implying that time
heterogeneity matters much less than country heterogeneity. Indeed, in each
subsample, roughly one fifth of all of the time and country-specific fixed effects
are set to zero using our proposed approach. This fraction of zero estimates is at
odds with the exact sparsity, but most of the nonzero estimates in fact concentrate
around near zero as shown in the kernel density plots in Figure 2 implying that the
approximate sparsity assumption may well be satisfied.

Comparing the estimates in Table 3 across different time periods, observe that
the trade elasticity has increased from the period 1995–2000 to the period 2010–
2015. Specifically, a 1% increase in geographical distance results in about a
1.5% reduction in trade volume during the period 1995–2000, and about a 1.7%
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Figure 2. Kernel density plots of estimated fixed effects α (left) and γ (right).

reduction in trade volume during the period 2010–2015. In this sense, our findings
suggest that distance became a greater deterrent to international trade after 2008,
consistent with greater geographic concentration of global supply chains.

8. SUMMARY AND DISCUSSIONS

Three-dimensional panel models are used widely in empirical analysis of inter-
national trade, housing, migration, and consumer prices, among other applica-
tions. Empirical researchers use various combinations of fixed effects for three-
dimensional panels. When a researcher imposes a parsimonious model and the
true model is rich, then estimation based on the assumed parsimonious model
generally incurs misspecification biases. When a researcher employs a rich model
and the true model is parsimonious, then estimation based on the redundantly
rich model generally incurs larger standard errors than necessary. It is therefore
useful for researchers to have a mechanism to determine an accurate specification
in applications. With this motivation, Lu, Miao, and Su (2021) propose methods
of model selection in three-dimensional panel data. In this paper, we advance
this literature by proposing a method of post-selection inference for regression
parameters. We use the lasso technique as the means of model selection and to
de-bias the lasso estimate, but our assumptions allow for many and even all fixed
effects to be nonzero. Furthermore, we discuss the plausibility of the assumption of
approximately sparse fixed effects in the context of gravity analysis of international
trade. Simulation studies demonstrate that the proposed method is less biased than
fixed-effect estimators based on parsimonious models, is more efficient than fixed-
effect estimators based on redundant models, and allows for as accurate inference
as the oracle estimator.

We emphasize that the objective of our method and theory lies in post-selection
inference on β. In other words, model selection per se is out of the scope of this
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paper for the following two reasons. First, using the lasso-based approach as in
our method for the purpose of consistent model selection would require imposing
an additional strong assumption, such as the beta-min assumption, which we do
not assume in this paper. Second, alternative existing approaches, such as the one
taken by Lu, Miao, and Su (2021) accomplish model selection without requiring
such an assumption. We therefore remark that our method should be used primarily
for the purpose of making inferences about β, and not for the purpose of routine
model selection.

We conclude the paper by suggesting a few directions for future research. First,
our model framework does not allow for ij fixed effects, while i, j, t, it, and jt fixed
effects are allowed. Although allowing for ij fixed effects is not of interest in our
motivating example,12 it may be possible to allow for such fixed effects provided
that the asymptotic setting allows for large T as well as large N and/or large M.
Formal theoretical development for this case is left for future research. Second,
although we focus on three-dimensional panels for their relevance to important
applications as discussed in Section 1, the proposed methodology can be extended
to higher-dimensional panel models with more than three-dimensions of fixed
effects. Finally, our framework focuses on shrinkage over fixed effects, as is the
case with a few other preceding papers cited in Section 1. Since (approximately)
non-zero fixed effects can be considered to absorb outliers, the proposed method
can be also interpreted as an outlier-robust estimation method. In this sense,
it complements the existing robust M-estimation methods such as the quantile
regression and regression with Huber loss. We desire to see further research
on comparison between absolute shrinkage of fixed effects and existing robust
methods.

A. MATHEMATICAL APPENDIX

We provide proofs of the main results in Appendix B. Auxiliary lemmas and their proofs
are found in Appendix B in the Supplementary Material. Throughout, we use the following
short-hand notation: Q = S/

√
NM and a = p∨ (NM). Also, for a matrix A, denote ‖A‖∞ =

maxi,j |Ai,j|.

B. PROOFS OF THE MAIN RESULTS

B.1. Proof of Theorem 1

Proof. The K.K.T. condition for the lasso program (3.1) gives

−Z′(Y −Z η̂ )+μP′( η̂ ) = 0.

12In gravity models for international trade, the main parameters of interest are the coefficient of DISTij, interpreted
as the trade elasticity or trade cost, and the coefficient of TAij, interpreted as the effects of bilateral trade agreements
on trade volume. These parameters will not be identified once ij fixed effects enter the model.
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Substituting the representation (2.6) yields

Z′Z( η̂ −η)+μP′( η̂ ) = Z′ε +Z′R.

Multiplying both sides by 
̂′
l/

√
NM, we have

1√
NM


̂′
lZ

′Z( η̂ −η)+ μ
̂′
lP

′( η̂ )√
NM

= 
̂′
lZ

′ε√
NM

+ 
̂′
lZ

′R√
NM

.

Therefore, we have

√
NMe′

l ( η̂ −η)+√
NM

(

̂′

lZ
′Z
/

(NM)− e′
l
)
( η̂ −η)+ μ
̂′

lP
′( η̂ )√

NM
= 
̂′

lZ
′ε√

NM
+ 
̂′

lZ
′R√

NM

or

√
NMe′

l

⎛⎜⎜⎝η̂ + μ

NM

̂′P′( η̂ )︸ ︷︷ ︸

=η̃

−η

⎞⎟⎟⎠+√
NM

(

̂′

lZ
′Z
/

(NM)− e′
l
)
( η̂ −η) = 
̂′

lZ
′ε√

NM
+ 
̂′

lZ
′R√

NM
.

By Assumption 1 (i) and (ii) and the definition of the de-biased lasso in (4.1), we obtain

√
NMe′

l (̃η−η) = 1√
NM


̂′
lZ

′ε +op(1).

Applying Assumption 1 (iii) for each l ∈ [k0] yields the weak convergence result. �

B.2. Proof of Proposition 1

Proof. The sufficiency of Assumptions 2–5 for Assumption 1 (i) is provided in Lemma
B.5 in the Supplementary Appendix. The sufficiency of Assumptions 2–5 for Assumption
1 (ii) is provided in Lemma B.6 in the Supplementary Appendix. The sufficiency of
Assumptions 3–6 for Assumption 1 (iii) is provided in Lemma B.7 in the Supplementary
Appendix. �

B.3. Proof of Theorem 2

Proof. We introduce an intermediate object defined by

̃ = 1

NM

N∑
i=1

M∑
j=1

⎛⎝ T∑
t=1

Zijtεijt

⎞⎠⎛⎝ T∑
t=1

Zijtεijt

⎞⎠′
.

Lemma B.8 under Assumptions 2–5 yields maxl∈[p] ‖
̂l‖0 ≤ Csl with probability 1−o(1)

for some C large enough for all l ∈ [k0]. Therefore, we obtain the decomposition
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|
̂′
l̂
̂l −
′

l
l|
≤|
̂′

l̂
̂l − 
̂′
l
̂l|+ |
̂′

l
̂l −
′
l
l|

≤‖
̂l‖2 max‖ξ‖=1
‖ξ‖0≤Csl

ξ ′(̂− ̃)ξ +‖
̂l‖2
1‖̃−‖∞ +‖
̂l −
l‖2

max‖ξ‖=1
‖ξ‖0≤Csl

ξ ′ξ +2‖
l‖‖
̂l −
l‖ (B.1)

for all l ∈ [k0]. By Lemma B.4 under Assumptions 3–5, it suffices to bound
max ‖ξ‖=1

‖ξ‖0≤Csl

ξ ′(̂− ̃)ξand ‖
̂l‖2
1‖̃−‖∞ on the right hand side.

We first bound ‖
̂l‖2
1‖̃ − ‖∞ on the right hand side of (B.1). Observe that

maxl∈[p] ‖
̂l‖0 = O(sl) with probability approaching one due to Lemma B.8. In addition,

we have max1≤l≤p ‖
̂l‖ = Op(1). To see this, notice that max1≤l≤p ‖
l‖ = O(1) following

Assumption 5 (1) and the fact that max1≤l≤p |1/τ2
l | = O(1) from equation (B.11) in Lemma

B.4, which holds under Assumptions 3–5. We also have max1≤l≤p ‖
̂l − 
l‖ = op(1)

from Lemma 4 under Assumptions 3–5. These facts together yield that ‖
̂l‖1 = Op(
√

sl)

uniformly over l ∈ [k0].
By an application of Lemma B.2, we have

‖̃−‖∞ ≤ T2 max
t∈[T]

max
l∈[p]

∣∣∣ 1

NM

N∑
i=1

M∑
j=1

(Z2
ijt,lε

2
ijt −E[Z2

ijt,lε
2
ijt])

∣∣∣
�

√
σ 2 loga

NM
+ B loga

NM

with probability at least 1−o(1), where

σ 2 = max
t∈[T],l∈[p]

1

NM

N∑
i=1

M∑
j=1

E[Z4
ijt,lε

4
ijt]

≤ max
t∈[T],l∈[p]

√√√√√ 1

NM

N∑
i=1

M∑
j=1

E[Z8
ijt,l]

√√√√√ 1

NM

N∑
i=1

M∑
j=1

E[ε8
ijt] = O(1)

under Assumption 3, and

B2 = E[max
i,j,t

‖Zijtεijt‖2∞]

≤ (E[max
i,j,t

‖Zijtεijt‖q∞])2/q

≤ (NM)2/q

⎛⎝ 1

NM

N∑
i=1

M∑
j=1

T∑
t=1

E[‖Zijtεijt‖q∞]

⎞⎠2/q
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≤ (NM)2/q

⎧⎪⎨⎪⎩
⎛⎝ 1

NM

N∑
i=1

M∑
j=1

T∑
t=1

E[‖Zijt‖2q∞]

⎞⎠1/2⎛⎝ 1

NM

N∑
i=1

M∑
j=1

T∑
t=1

E[ε2q
ijt ]

⎞⎠1/2
⎫⎪⎬⎪⎭

2/q

� (NM)2/qB2
NMO(1)

under Assumption 3. Therefore, we obtain

√
σ 2 loga

NM
+ B loga

NM
�
√

loga

NM
+ BNM loga

(NM)1−1/q
= O

(√
loga

NM

)
,

where the last rate follows from Assumption 3 (i). Combining these results, we obtain

‖
̂l‖2
1‖̃−‖∞ = Op

⎛⎝
√

s2
l loga

NM

⎞⎠ .

We next bound max ‖ξ‖=1
‖ξ‖0≤Csl

ξ ′(̂ − ̃)ξ on the right hand side of (B.1). Note that ε̂ =
ε +R−Z( η̂ −η). Thus,

max‖ξ‖=1
‖ξ‖0≤Csl

ξ ′(̂− ̃)ξ

= max‖ξ‖=1
‖ξ‖0≤Csl

ξ ′
N∑

i=1

M∑
j=1

1

NM

⎧⎨⎩
⎛⎝ T∑

t=1

Zijtεijt

⎞⎠⎛⎝ T∑
t=1

Zijtrijt

⎞⎠′

−
⎛⎝ T∑

t=1

Zijtεijt

⎞⎠⎛⎝ T∑
t=1

ZijtZ
′
ijt( η̂ −η)

⎞⎠′

+
⎛⎝ T∑

t=1

Zijtrijt

⎞⎠⎛⎝ T∑
t=1

Zijtεijt

⎞⎠′
+
⎛⎝ T∑

t=1

Zijtrijt

⎞⎠⎛⎝ T∑
t=1

Zijtrijt

⎞⎠′

−
⎛⎝ T∑

t=1

Zijtrijt

⎞⎠⎛⎝ T∑
t=1

ZijtZ
′
ijt( η̂ −η)

⎞⎠′
−
⎛⎝ T∑

t=1

ZijtZ
′
ijt( η̂ −η)

⎞⎠⎛⎝ T∑
t=1

Zijtεijt

⎞⎠′

−
⎛⎝ T∑

t=1

ZijtZ
′
ijt( η̂ −η)

⎞⎠⎛⎝ T∑
t=1

Zijtrijt

⎞⎠′

+
⎛⎝ T∑

t=1

ZijtX
′
ijt( η̂ −η)

⎞⎠⎛⎝ T∑
t=1

ZijtZ
′
ijt( η̂ −η)

⎞⎠′⎫⎬⎭ξ

=: (1)+ (2)+ (3)+ (4)+ (5)+ (6)+ (7)+ (8).
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We bound each of the last eight terms separately. First, Cauchy–Schwartz’s inequality yields

(8)= max‖ξ‖=1
‖ξ‖0≤Csl

ξ ′
N∑

i=1

M∑
j=1

1

NM

⎧⎨⎩
⎛⎝ T∑

t=1

ZijtZ
′
ijt( η̂ −η)

⎞⎠⎛⎝ T∑
t=1

ZijtZ
′
ijt( η̂ −η)

⎞⎠′⎫⎬⎭ξ

≤T2 max
t∈[T]

max‖ξ‖=1
‖ξ‖0≤Csl

1

NM

N∑
i=1

M∑
j=1

ξ ′ZijtZ
′
ijt( η̂ −η)( η̂ −η)′ZijtZ

′
ijtξ

� max
t∈[T]

max‖ξ‖=1
‖ξ‖0≤Csl

√√√√√ 1

NM

N∑
i=1

M∑
j=1

(
ξ ′ZijtZ

′
ijt( η̂ −η)

)2

√√√√√ 1

NM

N∑
i=1

M∑
j=1

(
( η̂ −η)′ZijtZ

′
ijtξ

)2
.

Due to the sparsity of all the feasible ξ , we have ‖ξ‖1 ≤ √
sl‖ξ‖. Thus, by Assumption 3,

Lemma B.1, and Lemma B.3 with μ = C
√

NM loga under Assumptions 2, 3 (1), and 4, we
have

max
t∈[T]

max‖ξ‖=1
‖ξ‖0≤Csl

1

NM

N∑
i=1

M∑
j=1

(
ξ ′ZijtZ

′
ijt( η̂ −η)

)2

≤ max
t∈[T]

max‖ξ‖=1
‖ξ‖0≤Csl

(max
i,j

|ξ ′Zijt|2)
1

NM

N∑
i=1

M∑
j=1

(
Z′

ijt( η̂ −η)
)2

≤ max
t∈[T]

max‖ξ‖=1
‖ξ‖0≤Csl

(max
i,j

‖ξ ′‖2
1 · (1∨‖Xijt‖2∞))

1

NM
‖Z( η̂ −η)‖2

� sl ·Op(1∨E[max
i,j,t

‖Xijt‖2∞])Op

(
s loga

NM

)
= Op

(
s · slB

2
NM loga

(NM)1−1/q

)
. (B.2)

Therefore, (8) = Op

(
s·slB2

NM loga
(NM)1−1/q

)
. Similarly, for (1) and (3), we have

max‖ξ‖=1
‖ξ‖0≤Csl

ξ ′
N∑

i=1

M∑
j=1

1

NM

⎧⎨⎩
⎛⎝ T∑

t=1

Zijtrijt

⎞⎠⎛⎝ T∑
t=1

Zijtεijt

⎞⎠′⎫⎬⎭ξ

≤ T2 max
t∈[T]

max‖ξ‖=1
‖ξ‖0≤Csl

1

NM

N∑
i=1

M∑
j=1

ξ ′ZijtrijtεijtZ
′
ijtξ

≤ T2 max
t∈[T]

max‖ξ‖=1
‖ξ‖0≤Csl

√√√√√ 1

NM

N∑
i=1

M∑
j=1

(ξ ′Zijtrijt)
2

√√√√√ 1

NM

N∑
i=1

M∑
j=1

(εijtZ
′
ijtξ)2.
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Thus, by Assumptions 2 and 3 (1),

max‖ξ‖=1
‖ξ‖0≤Csl

1

NM

N∑
i=1

M∑
j=1

(ξ ′Zijtrijt)
2 ≤ max‖ξ‖=1

‖ξ‖0≤Csl

1

NM
max
i,j,t

|ξ ′Zijt|
N∑

i=1

M∑
j=1

r2
ijt

≤ max‖ξ‖=1
‖ξ‖0≤Csl

1

NM
‖ξ‖2

1 · (1∨max
i,j,t

‖Zijt‖2∞) · s

= Op

(
s · slB

2
NM

(NM)1−1/q

)
(B.3)

for all feasible ξ . Since Z′Z/NM = Q�̄Q and‖Qξ‖ ≤ ‖ξ‖,

max‖ξ‖=1
‖ξ‖0≤Csl

1

NM

N∑
i=1

M∑
j=1

(εijtZ
′
ijtξ)2 ≤ max

i,j,t
|εijt|2 max‖ξ‖=1

‖ξ‖0≤Csl

1

NM

N∑
i=1

M∑
j=1

(Z′
ijtξ)2

≤ max
i,j,t

|εijt|2 max‖ξ‖=1
‖ξ‖0≤Csl

ξ ′Q�̄Qξ

≤ max
i,j,t

|εijt|2 max‖ξ‖=1
‖ξ‖0≤Csl

ξ ′�̄ξ

≤ Op

(
E max

i,j,t
|εijt|2

)
ϕ2

max(�̄,Csl) = Op

(
(NM)1/q

)
,

(B.4)

where the second inequality is due to Assumption 4 and the last uses Assumption 3 (3).
Since all the remaining terms consist of the products of the above three components,

using (B.2)–(B.4), we obtain

max‖ξ‖=1‖ξ‖0≤Csl
ξ ′(̂− ̃)ξ ≤ Op

⎛⎝√ s · slB
2
NM

(NM)1−2/q

⎞⎠+Op

⎛⎝√ s · slB
2
NM loga

(NM)1−2/q

⎞⎠

+Op

⎛⎝√ s · slB
2
NM

(NM)1−2/q

⎞⎠+Op

(
s · slB

2
NM

(NM)1−1/q

)

+Op

(
s · slB

2
NM

√
loga

(NM)1−1/q

)
+Op

⎛⎝√ s · slB
2
NM loga

(NM)1−2/q

⎞⎠
+Op

(
s · slB

2
NM

√
loga

(NM)1−1/q

)
+Op

(
s · slB

2
NM loga

(NM)1−1/q

)

= Op

⎛⎝√ s · slB
2
NM loga

(NM)1−2/q

⎞⎠ .
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Using the rate for maxl∈[k0] ‖
̂l −
l‖ from Lemma B.4 under Assumptions 2, 3, and 6,
we have

(B.1) = Op

⎛⎝√ s · slB
2
NM loga

(NM)1−2/q

⎞⎠+ sl loga

NM
O(1)+O(1)Op(1)Op

(√
sl loga

NM

)
= oP(1)

as desired. �

Remark 6. As emphasized in the main text, recall that Assumption 5 (4) requires
ssl(log(p ∨ (NM)))2/(N ∧ M) = o(1) instead of ss2

l (log(p ∨ (NM)))2/(N ∧ M) =
o(1). This is due to the fact that we made use of the bound |
̂′

l̂
̂l − 
̂′
l̃
̂l| ≤

‖
̂l‖2 max ‖ξ‖=1
‖ξ‖0≤Csl

ξ ′(̂− ̃)ξ with probability approaching unity following Lemma B.8.

On the other hand, in Kock (2016) and Kock and Tang (2019), the bound based on the dual
norm inequality |
̂′

l̂
̂l − 
̂′
l̃
̂l| ≤ ‖
̂l‖2

1‖̂− ̃‖∞ is used in place. �

B.4. Proof of Corollary 2

Proof. The first statement follows from a minor modification of the proofs of

Corollary 1 and Theorem 2 with the facts that ‖ρ′
̂‖1 =
∥∥∥∑l∈[k0] ρl
̂l

∥∥∥
1

≤ ∑
l∈[k0] |ρl|

maxl∈[k0]

∥∥∥
̂l

∥∥∥
1

≤ maxl∈[k0]

∥∥∥
̂l

∥∥∥
1
, ‖
(ρ′,o′)′‖ ≤ �max(
X)‖ρ‖ ≤ 1/�max(
−1

X ) =
O(1), and ‖(
̂ − 
)′(ρ′,o′)′‖ =

∥∥∥∑k∈[k0]

(

̂l −
l

)
ρl

∥∥∥ ≤ ∑
k∈[k0]

∥∥∥
̂l −
l

∥∥∥ |ρl| ≤
maxl∈[k0]

∥∥∥
̂l −
l

∥∥∥. The second statement follows from the first one and the fact that√
NM{(H′,O′)
̂̂
̂′(H′,O′)′}−1/2(H′β̃ − θ0) � N(0,Iq), where Iq is the q × q identity

matrix. �

B.5. Proof of Corollary 3

Proof. Our proof follows the same strategy as those of Theorem 3 in Caner and Kock
(2018a) or Theorem 3 in Kock and Tang (2019). Fix an l ∈ [k0]. For an ε > 0, define

A1,(N,M) :=
⎧⎨⎩ sup

η∈Rp:η∈B�0 (s)

∣∣∣√NM
(

̂′

lZ
′Z
/

(NM)− e′
l
)
( η̂ −η)

∣∣∣ < ε

⎫⎬⎭,

A2,(N,M) :=
⎧⎨⎩ sup

η∈Rp:η∈B�0 (s)

∣∣∣∣∣ V̂1/2
ll

V1/2
ll

−1

∣∣∣∣∣ < ε

⎫⎬⎭, and

A3,(N,M) :=
⎧⎨⎩ sup

η∈Rp:η∈B�0 (s)

∣∣∣∣ 1√
NM

(
̂′
l −
′

l)Z
′ε
∣∣∣∣ < ε

⎫⎬⎭ .
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Note that V1/2
ll is bounded away from zero and the probabilities of these three sets all tend

to one asymptotically. Thus, for every a ∈ R,

∣∣∣∣∣P
(√

NM(βl −βl)

V̂1/2
ll

≤ a

)
−�(a)

∣∣∣∣∣
=
∣∣∣∣∣P
(


̂lZ
′ε/(NM)1/2

V̂1/2
ll

−
√

NM

V̂1/2
ll

(

̂′

lZ
′Z

NM
− e′

l

)
( η̂ −η) ≤ a

)
−�(a)

∣∣∣∣∣
≤
∣∣∣∣∣P
(


̂lZ
′ε/(NM)1/2

V̂1/2
ll

−
√

NM

V̂1/2
ll

(

̂′

lZ
′Z

NM
− e′

l

)
( η̂ −η)

≤ a,A1,(N,M),A2,(N,M),A3,(N,M)

)
−�(a)

∣∣∣∣∣
+P

(
∪3

i=1Ac
i,(N,M)

)
.

Since V̂1/2
ll does not depend on η and is bounded away from zero, there exists a positive

constant D such that

P

(

̂lZ

′ε/(NM)1/2

V̂1/2
ll

−
√

NM

V̂1/2
ll

(

̂′

lZ
′Z

NM
− e′

l

)
( η̂ −η) ≤ a, A1,(N,M),A2,(N,M),A3,(N,M)

)

= P

(

̂lZ

′ε/(NM)1/2

V1/2
ll

−
√

NM

V1/2
ll

(

̂′

lZ
′Z

NM
− e′

l

)
( η̂ −η)

≤ a

√
V̂ll

Vll
, A1,(N,M),A2,(N,M),A3,(N,M)

⎞⎠
≤ P

(

̂lZ

′ε/(NM)1/2

V1/2
ll

≤ a(1+ ε)+2Dε

)
.

Note that the right hand side is independent of η. Therefore,

sup
η∈Rp:η∈B�0 (s)

P

(

̂lZ

′ε/(NM)1/2

V̂1/2
ll

−
√

NM

V̂1/2
ll

(

̂′

lZ
′Z

NM
− e′

l

)
( η̂ −η)

≤ a, A1,(N,M),A2,(N,M),A3,(N,M)

)

≤ P

(

̂lZ

′ε/(NM)1/2

V1/2
ll

≤ a(1+ ε)+2Dε

)
.
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Corollary 1 then implies that for large N and M, one has

sup
η∈Rp:η∈B�0 (s)

P

(

̂lZ

′ε/(NM)1/2

V̂1/2
ll

−
√

NM

V̂1/2
ll

(

̂′

lZ
′Z

NM
− e′

l

)
( η̂ −η)

≤ a, A1,(N,M),A2,(N,M),A3,(N,M)

)
≤ �(a(1+ ε)+2Dε)+ ε.

The continuity of � then implies that, for any δ > 0, one can pick ε sufficiently small so it
holds that

sup
η∈Rp:η∈B�0 (s)

P

(

̂lZ

′ε/(NM)1/2

V̂1/2
ll

−
√

NM

V̂1/2
ll

(

̂′

lZ
′Z

NM
− e′

l

)
( η̂ −η)

≤ a, A1,(N,M),A2,(N,M),A3,(N,M)

)
≤ �(a)+ δ + ε.

Using a symmetric argument, one can also show that

inf
η∈Rp:η∈B�0 (s)

P

(

̂lZ

′ε/(NM)1/2

V̂1/2
ll

−
√

NM

V̂1/2
ll

(

̂′

lZ
′Z

NM
− e′

l

)
( η̂ −η)

≤ a, A1,(N,M),A2,(N,M),A3,(N,M)

)
≥ �(a)+ δ + ε.

Combining these intermediate results yields the claimed statement. �
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