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William Leonard Edge was born on 8th November 1904 in Stockport, Cheshire.
His father, William Henry Edge, was a local headmaster and his mother Christina was
also a teacher; there was one brother. He was educated at Stockport Grammar School,
leaving there in 1923 with an Entrance Scholarship to Trinity College, Cambridge. A
treasured item in his library dating from that period provides a glimpse of things to
come: a copy of Algebra of Invariants by J. H. Grace and A. Young (Cambridge,
1903), given by the school as an "Open Scholarship Prize". It is a famous treatise but
hardly expected reading for one who has just left sixth form! He was to refer to this
source on many occasions in his researches. Graduating BA in 1926, he was elected a
Research Fellow of the College in 1928, in which year he was also an Allen Scholar of
the University. Proceeding to the MA in 1930 he was awarded the degree of Doctor
of Science in 1936.

Edge's research was carried out under the supervision of Professor H. F. Baker
whose seminars on geometry, held at 4.15pm on Saturdays, were known informally as
the Baker tea-parties. Baker's flourishing school of geometry, then at its peak, included
many who became great names in the field. H. S. M. Coxeter, J. A. Todd, P. du Val,
to mention but three, were Edge's contemporaries. He was a man who formed firm
friendships and who maintained an extensive correspondence; these and other
associates of the time influenced his work for the rest of his life.

In 1932 he was appointed to a lectureship at the University of Edinburgh under
Professor E. T. Whittaker and settled readily to a noteworthy career in teaching and
research. With characteristic loyalty, however, he retained a life long interest in, and
links with, his old School and College. In Edinburgh, life was congenial. He was able
to indulge his two great loves of music and the countryside, especially hill-walking.
Further warm friendships with Whittaker, A. C. Aitken, H. W. Turnbull and other
distinguished mathematicians of the time were forged. He had a marked tendency to
hero-worship, and affectionate reminiscences of his friends and colleagues loomed large
in his conversation, especially in later life. This was not merely an endearing social trait
but, in parallel with an enormous respect for great mathematicians of yesteryear such
as Cayley, Sylvester, Salmon and the many continental geometers, was to inform and
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shape his whole mathematical development. His knowledge of the writings of these
predecessors can only be described as encyclopaedic. The highly individual style of
writing, too - a little old-fashioned and pedantic, but very clear - can probably be
traced to those sources.

Edge's lecturing spanned the whole range from the First Ordinary class to Honours
work, particularly of course in Geometry. The lectures were full of insight but
maintained traditional standards of manipulative skill and geometric intuition;
consequently they were often found demanding. The routine of "definition, theorem,
proof" was not for him, either in teaching or research. But his classes brought yet
more friendships which he cherished down the years. He was always delighted to hear
of former students' achievements. A certain formality was nevertheless retained. He
was "Leonard" to his family but friends and colleagues would not have addressed him
by Christian name; affection, however, was not diminished by this dignity. Detailed
administration was not to his liking, but fortunately the department had, in David
Gibb and later Ivor Etherington, others who excelled at that task. Characteristically,
though, he did keep the file of pupils' post-graduation records. His eventual promotion
from Reader to a personal chair in Geometry was richly deserved and gave him great
pleasure. He retired as Professor Emeritus in 1975.

In retirement he remained outstandingly active in research. Unfortunately physical
infirmities began to trouble him. Particularly cruelly, knee problems caused difficulty
in walking and he became progressively more deaf. A bachelor, he finally moved from
lodgings to Nazareth House at Bonnyrigg. There, largely confined to his room but still
sharp of mind, reading Salmon and the other masters, he continued to receive much
correspondence and many visitors, some highly distinguished. His last three papers
were published from there, the final one remarkably at the age of 90. Unhappily his
eyesight eventually failed too and he died peacefully in the devoted care of the Sisters
on the 27th September 1997.

A most memorable attribute of the man was the deep, resounding voice. Among
his enormous fund of stories he would tell of meeting a distinguished friend in
Cambridge one afternoon. On taking Edge home the host called out to his wife, "I've
brought Dr. Edge in for tea, dear" to which the reply was, "So I hear". He had too a
fine singing voice, and conducted the E.U. Catholic Chaplaincy choir for many years,
keenly maintaining the tradition of Gregorian chant. On a more earthly plane he was a
man of vigorous appetite; many of his tales included references to memorable meals.
His appreciation of food seems to date back to Cambridge days - among his papers
was a collection of menus of college and other feasts, some as long ago as the 20's, and
very appetising they are.

From the outset of his career in Edinburgh, Edge was a member of the Edinburgh
Mathematical Society. He served it as President and for many years as Librarian. He
was a most regular attender at meetings, afterwards always ready with incisive
comment on the quality of the lecture and of the tea. A particularly staunch supporter
of the St Andrews Colloquium, he was made an Honorary Member of the Society in
1983. He had been elected a Fellow of the Royal Society of Edinburgh in 1934.

It would be fair to say that "W. L. E" was not entirely a creature of the twentieth
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century. His role models and his interests derived from an earlier period. He disliked
change, particularly in colleges, universities and the Catholic Church. He was never a
motorist and spurned lifts until the decline in rail transport and his own impaired
mobility rendered these a necessity. He treated radio and television with disdain. The
decline in geometry in the syllabus of schools and universities distressed him. But his
loyalty to his friends remained steadfast and his passing is felt to be the end of an era,
and the loss irreplaceable.

The mathematical work

This survey of the mathematical legacy of W. L. Edge contains a little detail on
one or two topics to show the flavour of the work, but only by reading the papers does
one obtain a full appreciation of the wealth of information and the loving attention
to detail which they contain. The bibliography is complete as regards the book and
research papers and probably the obituaries, which are charming; a few book reviews
and an article in the Cambridge magazine Eureka have not been detailed.

Edge's first publication was the book [R] based on his Trinity Fellowship
dissertation. This is a systematic classification of the quintic and sextic ruled surfaces
of three-dimensional projective space [3], the quartics having been dealt with by
Cremona in 1868. It is a major undertaking but is probably not the work for which he
will be best remembered. The first paper [1] is concerned with a similar topic, the
quartic developable in [3] being considered as a projection of a rational quartic ruled
surface in [5].

One recurrent theme in the papers is that of linear systems of quadrics, and
particularly nets of quadric surfaces. Again the origins are classical (Hesse, 1855). The
net of quadric surfaces in [3]

^GO + ^IGI +A2Q2 = 0 (1)

contains oo1 cones whose vertices are the points of a sextic curve 9, the Jacobian
curve of the net. This space curve is in (1,1) birational correspondence with a plane
quartic curve 8 which is general, and so of genus 3, when the net is general. If P
is a point of 9 then the polar planes of P with respect to the quadrics (1) have in
common a line which meets 9 in three points - it is a trisecant of 9; the trisecants
generate a scroll of order 8. The quadrics (1) have in common 8 base points whose
joins in pairs are chords of 9. In the plane with homogeneous coordinates
(Ao, A,,A2) the points of a conic yield an oo1 subsystem of the quadrics (1) whose
envelope is a quartic surface having nodes at the 8 base points and called by Cayley
"octadic". In [3] this situation is examined in detail and octadic surfaces with
additional nodes are studied; [7] is a sequel. Consideration of the trisecants of 9
yields properties of 5, especially in- and circumscribed triangles. The next paper [4]
deals with nets in higher dimensions while [8] and [10] extend the theory of the
Jacobian to [4]. Noteworthy specialisations of general situations were always a
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fascination to Edge. In [12] the case when the base points form two Mobius
tetrahedra is considered and furnishes information on the Pliicker quartic surface;
now the plane quartic 8 breaks up into two conies. Related to this is the contact
net [24]. The culmination of these investigations is the series of "Notes on a net of
quadric surfaces" [15, 16, 18, 19, 21] The first four discover many more loci
associated with the net and the last handles yet another fruitful specialisation. Brief
returns to the same theme were made [76] and [80].

If instead of (1) we consider quadrics through just six points the locus of vertices
of cones becomes the quartic Weddle surface, related in turn to the famous Kummer
surface [12, 31, 42, 54]. One of the favourite techniques of "Bakerian" geometry was
the study of configurations by means of projection from a figure in higher dimensions.
This was applied skilfully to the Weddle surface in [42], whilst [6] contains a nice self
contained illustration of the method.

Quartic curves and surfaces were of continuing interest. He had the teacher's eye
for the instructive and structurally rich special case and delighted in showing how a
procedure which is known to be theoretically possible can actually be carried out on a
suitable example. So for instance the quartic form x4 + y4 + z4 is skilfully tackled in
[17]. As mentioned in the first part of this memoir the work is always informed by
close knowledge and critical review of the nineteenth century writings. A key object in
this area in the Veronese surface in [5] defined parametrically by

(x0, x,, x2, x3, x4, x5) = (yj, y\, y\, xyxylt zy2y0, xyoyx) (2)

with T = -Jl\ it has many remarkable properties. The introduction here of x is a typical
touch of Edge's algebraic genius. It corrects and greatly improves the original
treatment by Veronese, of whom Edge writes [20], "his geometrical insight enabled him
to give the correct results without depending on any algebra to discover them, while
he was so sure of the geometry that he must never have troubled to subject his algebra
to any test". The first part of this sentence could well be applied to Edge himself; the
second certainly could not. His papers contain various similar gentle but stylish
rebukes to other authors whose work was not considered sufficiently insightful or
geometrical. A quartic polynomial in y^,yl,y1 can be regarded in various ways as a
quadratic in the squares and products on the right-hand side of (2); this leads to
Sylvester's "unravelment" studied in [23], The famous Klein quartic

xyi + yz1 + zx3 = 0

makes an appearance in this light in [25], where A. B. Coble comes in for criticism: "his
statement that two covariant conies coincide becomes merely an example, albeit a highly
exalted one, of the conclusion that zero is equal to zero, for Klein's quartic has no
covariant conies". Again the quartic

ax4 + /?/ + yz4 = 0
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associated with the name of Dyck, has a special configuration of its 16 "non-
flecnodal" bitangents. Edge [26] recognised the appearance of such figures, and
therefore of Dyck curves, in one of his favourite hunting-grounds, the Klein
configuration of six linear complexes mutually in involution. From this, referring
back to [21], he can derive the Maschke quartic surfaces, invariant under a
collineation group of order 1920; the algebra is elegant. The papers [28] and [31] are
sequels, while [30], also inspired by Klein, provides more algebraic virtuosity.

The study of quartics rich in self-collineations led inexorably to the detailed
contemplation of certain finite groups of exceptional geometrical interest, and this in
its turn to finite geometries - projective planes and higher spaces over Galois fields.
This brings us to the block of papers [34]-[41], [43]-[52], the body of work for which
the author will doubtless be mainly remembered. Again we find characteristic touches,
in which the results of other experts like L. E. Dickson and J. S. Frame are kindly
acknowledged, then recast in more appropriate geometrical settings.

To take an example, over GF(3) a line contains 4 points, a plane has 13 and a 3-
space S has 40. In S there are two kinds of quadric. The ruled quadric or hyperboloid
typified by

H : x2 + y2 + z2 + t2 = 0

contains 16 points which can be partitioned in two ways into sets of 4 lines, its two
reguli. There is a group of 288 direct projectivities, corresponding to orthogonal
matrices of determinant 1, which leave H invariant. This is the first orthogonal group
PO,(4, 3); it has a subgroup of index 2 isomorphic to the direct product of two
alternating groups of degree 4 which act as permutation groups on the lines of the
reguli. The 24 points not on H are the vertices of 6 tetrahedra and these constitute two
associated desmic tetrads. This set-up, involving tetrahedra in multiple perspective, is
one of those classical configurations whose ubiquity was a constant source of pleasure
to Edge.

In contrast the ellipsoid

F : x2 + y2 + z2 - t2 = 0

in S has only 10 points and no lines. Associated with it is an elaborate structure typical
of those which he analysed so perceptively. There are now 30 points not on F; they fall
into two sets of 15, "positive" or "negative" according as x2 + y2 + z2 — t2 = 1 or —1.
A positive pentahedron has as faces five planes, no four having a point in common;
there are ten vertices all of which are positive points and ten edges each tangent to F.
One finds six of these objects and analogously six negative pentahedra. There are 360
direct projectivities which map F to itself and do not interchange positive and negative
pentahedra. They contribute the second orthogonal group PO2(4, 3). Each induces a
different permutation of the six positive pentahedra and this establishes the
isomorphism of PO2(4, 3) and A6. This is in [34]. In a sequel [36] the Klein represent-
ation of the lines of [3] by points of [5] is investigated in meticulous detail over GF(3),

https://doi.org/10.1017/S0013091500019945 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019945


636 DAVID MONK

yielding a representation of the cubic surface group of order 51840 and other well-
known groups; see also [39], [41]. Later work [45] approached the cubic surface group
via GF(2) and likewise, in [47], the group of the bitangents (of a non-singular plane
quartic). On passing from GF(3) to GF(32) the automorphism x -> x3 of the finite field
enables Hermitian structures to be introduced. The resulting 10-point line has
fascinating harmonic and anharmonic properties. In [37] such considerations serve to
illuminate the isomorphism of LF(2, 32) and A6.

Although some very large groups are amenable to this treatment (as evidenced by
the title of [49]), the recent discoveries of various sporadic simple groups came a little
late for him, and they may not have proved accessible to his technique. However one
paper [57] is inspired by work of J. H. Conway. With retirement approaching he
returned largely to classical topics though a few groups still received attention [83, 86,
87]. Special curves and surfaces again came under the microscope. It is remarkable that
properties of so simple a curve as the intersection of two quadrics in [3] remained to
be elucidated but in [60] work of Enriques is corrected and amplified. This concerns
chords which lie in the osculating planes at both extremities; there are 24 of these. The
same curve features in [73]. The papers of this later period do not, as a whole, lend
themselves to ready summary. Once more, though, we meet objects with a rich special
structure such as Bring's and Fricke's curves [71, 77, 84] given by beautifully simple
equations typified by

for the first named, and the author's algebraic skills are displayed to good advantage
yet again.

Particular notice should be made of [75], appropriately published by the Royal Irish
Academy. Here a mistake by his hero Salmon, perpetuated in A treatise on the analytic
geometry of three dimensions (Dublin, 1862 and subsequent editions) is identified - does
one detect a certain glee? - and corrected. Librarians and readers are urged to amend
their copies! The attention of those interested in classical invariant theory should also
be drawn to the closing paragraph of [89]. The binary nonic has two independent
quartic invariants. The geometry of one of these had been treated in [88] but the
interpretation of the other is an open problem to which he returned in conversation
even in his very last days. Any one resolving it could well dedicate their efforts to his
memory. Finally, look at [92] and [93]. Whilst it is virtually certain that Edge never
laid hands on a modern computer he evidently did, perhaps reluctantly, recognize its
powers. He was pleased to accept and acknowledge the assistance of a colleague,
Darrell Desbrow, in preparing illustrative diagrams. The twentieth century had arrived
at last.

To conclude, in reviewing the work one cannot fail to be impressed by the splendid
vision and exhaustive detail. It must be cause for regret that he had only one research
student, James Hirschfeld. Surely others could have benefited from his erudition and
enthusiasm. His geometry was essentially "visual", even when higher dimensions were
involved. One feels that he is seeing the points, lines and planes in their wonderful
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configurations and wants the reader to do the same. It is sad, too, that, perhaps being
perceived as old-fashioned, his labours did not receive greater and earlier recognition.
There must be much that can be distilled from his writings in years to come.
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